Academic literature on the topic 'Rational enzyme engineering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rational enzyme engineering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rational enzyme engineering"

1

Eijsink, Vincent G. H., Alexandra Bjørk, Sigrid Gåseidnes, Reidun Sirevåg, Bjørnar Synstad, Bertus van den Burg, and Gert Vriend. "Rational engineering of enzyme stability." Journal of Biotechnology 113, no. 1-3 (September 2004): 105–20. http://dx.doi.org/10.1016/j.jbiotec.2004.03.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mirzaei, Mitra, and Per Berglund. "Engineering of ωTransaminase for Effective Production of Chiral Amines." Journal of Computational and Theoretical Nanoscience 17, no. 6 (June 1, 2020): 2827–32. http://dx.doi.org/10.1166/jctn.2020.8947.

Full text
Abstract:
ωTransaminases are pyridoxal-5-phosphat (PLP) dependent enzymes having the ability to catalyze the transference of an amino group to a keto compound. These enzymes are used for production of chiral amines which are important building blocks in pharmaceutical industry. There is often a need to improve enzyme properties such as enzyme stability, enzyme specificity and to decrease substrate-product inhibition. Here, protein engineering was applied to improve the enzyme activity of the enzyme from Chromobacterium violaceum Rational-design and site-directed mutagenesis were applied on position of (W60) in the active site of the enzyme. Different mutated enzyme variants such as W60H, W60F and W60Y were made. Also, the enantiopreference of the wild type enzyme was reversed to produce (R)-chiral amines. For this aim, a screening assay was followed by semi-rational approach and saturation mutagenesis in the active site of the enzyme. Creating the mutated enzyme libraries resulted to obtaining two enzyme variants. Their properties were low enantiopreference towards formations of (R)-enantiopreference and low specific constant ratio between fast and slow enantiomers (Evalue around one).
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Ridong. "Enzyme engineering: rational redesign versus directed evolution." Trends in Biotechnology 19, no. 1 (January 2001): 13–14. http://dx.doi.org/10.1016/s0167-7799(00)01522-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Acebes, Sandra, Elena Fernandez-Fueyo, Emanuele Monza, M. Fatima Lucas, David Almendral, Francisco J. Ruiz-Dueñas, Henrik Lund, Angel T. Martinez, and Victor Guallar. "Rational Enzyme Engineering Through Biophysical and Biochemical Modeling." ACS Catalysis 6, no. 3 (February 5, 2016): 1624–29. http://dx.doi.org/10.1021/acscatal.6b00028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Steiner, Kerstin, and Helmut Schwab. "RECENT ADVANCES IN RATIONAL APPROACHES FOR ENZYME ENGINEERING." Computational and Structural Biotechnology Journal 2, no. 3 (September 2012): e201209010. http://dx.doi.org/10.5936/csbj.201209010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sousa, João P. M., Pedro Ferreira, Rui P. P. Neves, Maria J. Ramos, and Pedro A. Fernandes. "The bacterial 4S pathway – an economical alternative for crude oil desulphurization that reduces CO2 emissions." Green Chemistry 22, no. 22 (2020): 7604–21. http://dx.doi.org/10.1039/d0gc02055a.

Full text
Abstract:
We discuss structural and mechanistic aspects of the Dsz enzymes in the 4S pathway, with a focus on rational molecular strategies for enzyme engineering, aiming at enzyme catalytic rate and efficiency improvement to meet industrial demands.
APA, Harvard, Vancouver, ISO, and other styles
7

Russell, Alan J., and Alan R. Fersht. "Rational modification of enzyme catalysis by engineering surface charge." Nature 328, no. 6130 (August 1987): 496–500. http://dx.doi.org/10.1038/328496a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Payongsri, Panwajee, David Steadman, John Strafford, Andrew MacMurray, Helen C. Hailes, and Paul A. Dalby. "Rational substrate and enzyme engineering of transketolase for aromatics." Organic & Biomolecular Chemistry 10, no. 45 (2012): 9021. http://dx.doi.org/10.1039/c2ob25751c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Jae-Seong, Sang Woo Seo, Sungho Jang, Gyoo Yeol Jung, and Sanguk Kim. "Rational Engineering of Enzyme Allosteric Regulation through Sequence Evolution Analysis." PLoS Computational Biology 8, no. 7 (July 12, 2012): e1002612. http://dx.doi.org/10.1371/journal.pcbi.1002612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Albenne, Cécile, Bart A. Van Der Veen, Gabrielle Potocki-Véronèse, Gilles Joucla, Lars Skov, Osman Mirza, Michael Gajhede, Pierre Monsan, and Magali Remaud-Simeon. "Rational and Combinatorial Engineering of the Glucan Synthesizing Enzyme Amylosucrase." Biocatalysis and Biotransformation 21, no. 4-5 (October 2003): 271–77. http://dx.doi.org/10.1080/10242420310001618537.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rational enzyme engineering"

1

Knapic, Lorena. "Computational methods for rational screening and engineering of enzyme properties." Doctoral thesis, Università degli studi di Trieste, 2012. http://hdl.handle.net/10077/7388.

Full text
Abstract:
2010/2011
State of the art computational thechniques were applied to several current research toppics in biocatalysis such as substrate promiscuity, reaction promiscuity and high throughput mutant generation and screening. The studied subjects are of great interest to industrial biocatalysis nowadays and can find large application for rational redesign of inefficient biocatalysts and fast substrate engineering and screening. The overall work can be devided into three principal areas, i.e. understanding catalytic mechanisms, description of enzyme-substrate interactions and integration of available computational methods for the development of a novel authomatized tool for enzyme engineering. In each of these areas, the goal has been to test the existing methodologies as well as the development of new descriptors and ready to use strategies.
XXIV Ciclo
1982
APA, Harvard, Vancouver, ISO, and other styles
2

Acebes, Serrano Sandra. "Rational enzyme engineering of heme peroxidases through biophysical and biochemical modeling." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/399735.

Full text
Abstract:
Enzymes are proteins that catalyze biochemical reactions and their use report multiple advantages, as they can be very selective, low polluting (biodegradable), cheap and allow working in mild conditions compared with traditional non enzymatic processes. Despite their enormous benefits, their applications at the industrial level are still limited, mainly due to low productivity, low substrate tolerance (too specifics) and poor resistance to the industrial conditions, and for this reason, developing enhanced enzymes by means of enzyme engineering is a central research field nowadays. Notably, the application of computational chemistry in the field of enzyme engineering is increasing due to improvements in hardware and software. Moreover, this process is fast and low-priced and therefore, profitable for the application to the real problems that face industry. Therefore, motivated by this progress, the main goal of this thesis is the development of computational strategies that allow designing and evaluating modifications in enzymes, also aiming to obtain results quickly and inexpensively. This purpose was reached by the combination of different in silico methodologies that were further supported by experimental data in an interactive feedback process. As a result of this thesis, the enzymatic process in heme peroxidases was first satisfactorily described by dividing the process into two steps (from the ligand diffusion to the chemical reaction), using a combination of different computational techniques. The first step, which involves the protein/ligand recognition, was characterized with different molecular mechanics based techniques (MD, Docking and MC-PELE). On the other hand, the chemical reaction (including bond formation and electron transfer) was reproduced using QM based methods by means of energy calculation, spin density characterization, e-coupling calculations and QM/MM e-pathways descriptions. Following this procedure, the oxidation of veratryl alcohol by the enzyme lignin peroxidase was also characterized. Moreover, regarding the e-coupling calculations, a server to compute this vale faster and easy was developed. In the second part of the thesis, the results demonstrated that our protocol could reliably describe and predict enzymatic functions, not only in native enzymes but also in mutated ones, which results were in agreement with experimental data. For example, the structural implications over the reactivity in manganese peroxidase and its engineered variant obtained by cutting the last terminal residues were identified and characterized by the combination of Monte Carlo simulations (PELE) and electronic coupling calculations. The pH resistance in the mutant 2-1B (which was obtained experimentally by random directed evolution) in contrast with the wild type versatile peroxidase, were also rationalized by molecular dynamics, where the residues in the heme environment presented different conformation due to the mutations introduced, resulting in different pH resistance. Interestingly, the last part of the thesis was centered of engineering heme peroxidases. We engineered a peroxidase from in silico predictions to elucidate the long range electron transfer processes involved in the oxidation of the substrate veratryl alcohol by the enzyme versatile peroxidase. In this work we identify the key residues involved in the process, with further applications in engineering enhanced enzymes. Moreover, an enhanced manganese peroxidase mutant from a complete computational study was designed. First, the ligand diffusion study allowed finding the key aminoacids in the substrate/enzyme recognition and binding. Then, the chemical reaction in terms of the oxidation probability and kinetic constant for the proposed mutant were estimated, and the results were in agreement with experimental data. Therefore, the work of this thesis probed that computational biophysics and biochemistry are promising and valuable tools for enzyme engineering. In particular, in the field of rational design of heme peroxidases, they provide relevant information about the enzymatic mechanism and allow designing new enzymes, as well as checking their improvement/worsening, in an efficient way.
Las enzimas son proteínas que catalizan reacciones bioquímicas y cuyo uso aporta múltiples ventajas, ya que son en general muy selectivas, poco contaminantes (biodegradables), baratas y permiten trabajar en condiciones suaves, en comparación con los procesos tradicionales no enzimáticos. A pesar de sus enormes beneficios, sus aplicaciones a nivel industrial son todavía limitadas, debido principalmente a la baja productividad, baja tolerancia al sustrato (demasiado específicos) y una escasa resistencia a las condiciones industriales en general, y por esta razón el desarrollo de enzimas mejoradas es un campo de investigación muy importante hoy en día. En particular, la aplicación de la química computacional en el campo de la ingeniería de enzimas está en aumento debido a las mejoras en hardware y software. Motivado por este progreso, el objetivo principal de esta tesis es el desarrollo de estrategias de cálculo que, mediante la combinación de diferentes metodologías in silico permitan diseñar y evaluar modificaciones en las enzimas, centrándonos en la obtención de resultados de forma rápida y económica. La primera parte de la tesis está centrada en la descripción del mecanismo enzimático entendido como un proceso de dos pasos que incluyen la difusión ligando y la reacción química, mediante una combinación de diferentes técnicas computacionales. El primer paso, que implica el reconocimiento de la proteína / ligando, se caracterizó con diferentes técnicas basadas en la mecánica molecular (dinámica molecular, docking y Monte Carlo- PELE). Por otro lado, la reacción química (incluyendo la formación de enlaces y la transferencia de electrones) se simuló usando métodos basados en mecánica cuántica por medio de cálculos de energía, la caracterización del spin o cálculos de acoplamiento electrónico. Por ejemplo, siguiendo este procedimiento, se caracterizó la oxidación de alcohol veratrílico por medio de la enzima lignin peroxidasa. Además, con el objetivo de poder calcular los acoplamientos electrónicos de una manera más rápida y fácil, se desarrolló un servidor web: ecoupling server. En la segunda parte de la tesis, los resultados demostraron que el protocolo anterior podría describir funciones enzimáticas no sólo en las especies nativas sino también en las variantes mutadas. Por ejemplo, se identificaron las implicaciones estructurales de la reactividad en una manganeso peroxidasa de la subfamilia larga y su variante modificada obtenida mediante la reducción de los últimos residuos terminales gracias al estudio de simulaciones de Monte Carlo (PELE) y cálculos de acoplamiento electrónico. Además, la resistencia a pH ácido en el mutante 2-1B (que se había obtenido previamente por evolución dirigida al azar) se comparó con la especie nativa y también se racionalizó por dinámica molecular, donde se observó que los residuos del entorno del hemo presentaban diferente conformación debido a las mutaciones introducidas, resultando en una diferente resistencia a pH ácido. La última parte de la tesis se centra en la ingeniería racional de hemo peroxidasas. A partir de predicciones in silico se diseñaron variantes de peroxidasa versátil para tratar de entender los procesos de transferencia electrónica de largo alcance que participan en la oxidación del sustrato de alcohol veratrílico, mediante la identificación de los residuos intermedios involucrados en el proceso. Además, a partir de un estudio computacional completo, se diseñó un mutante mejorado de manganeso peroxidasa, cuyos valores cinéticos estimados computacionalmente se encontraban de acuerdo con los resultados experimentales. En conclusión, en esta tesis se ilustra cómo los métodos biofísicos y bioquímicos computacionales son herramientas prometedoras y valiosas para la ingeniería de enzimas, en particular en el campo del diseño racional.
APA, Harvard, Vancouver, ISO, and other styles
3

Hendil-Forssell, Peter. "Rational engineering of esterases for improved amidase specificity in amide synthesis and hydrolysis." Doctoral thesis, KTH, Industriell bioteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-196892.

Full text
Abstract:
Biocatalysis is an ever evolving field that uses enzymes or microorganisms for chemical synthesis. By utilizing enzymes that generally have evolved for specific reactions under mild conditions and temperatures, biocatalysis can be a more environmentally friendly option compared to traditional chemistry. Amide-type chemistries are important and bond formation avoiding poor atom economy is of high priority in organic chemistry. Biocatalysis could potentially be a solution but restricted substrate scope is a limitation. Esterases/lipases usually display broad substrate scope and catalytic promiscuity but are poor at hydrolyzing amides compared to amidases/proteases. The difference between the two enzyme classes is hypothesized to reside in one key hydrogen bond present in amidases, which facilitates the transition state for nitrogen inversion during catalysis. In this thesis the work has been focused on introducing a stabilizing hydrogen bond acceptor in esterases, mimicking that found in amidases, to develop better enzymatic catalysts for amide-based chemistries. By two strategies, side-chain or water interaction, variants were created in three esterases that displayed up to 210-times increased relative amidase specificity compared to the wild type. The best variant displayed reduced activation enthalpy corresponding to a weak hydrogen bond. The results show an estimated lower limit on how much the hydrogen bond can be worth to catalysis. MsAcT catalyze kinetically controlled N-acylations in water. An enzymatic one-pot one-step cascade was developed for the formation of amides from aldehydes in water that gave 97% conversion. In addition, engineered variants of MsAcT with increased substrate scope could synthesize an amide in water with 81% conversion, where the wild type gave no conversion. Moreover, variants of MsAcT displayed up to 32-fold change in specificity towards amide synthesis and a switch in reaction preference favoring amide over ester synthesis.

QC 20161125

APA, Harvard, Vancouver, ISO, and other styles
4

Sandström, Anders G. "Protein Engineering of Candida antarctica Lipase A : Enhancing Enzyme Properties by Evolutionary and Semi-Rational Methods." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-49248.

Full text
Abstract:
Enzymes are gaining increasing importance as catalysts for selective transformations in organic synthetic chemistry. The engineering and design of enzymes is a developing, growing research field that is employed in biocatalysis. In the present thesis, combinatorial protein engineering methods are applied for the development of Candida antarctica lipase A (CALA) variants with broader substrate scope and increased enantioselectivity. Initially, the structure of CALA was deduced by manual modelling and later the structure was established by X-ray crystallography. The elucidation of the structure of CALA revealed several biocatalytically interesting features. With the knowledge derived from the enzyme structure, enzyme variants were produced via iterative saturation mutagenesis (ISM), a powerful protein engineering approach. Several of these variants were highly active and enantioselective towards bulky esters. Furthermore, an extensively combinatorial protein engineering approach was developed and investigated. A CALA variant with a spacious substrate binding pocket that can accommodate an unusually bulky substrate, an ester derivate of the non-steroidal anti-inflammatory drug (S)-ibuprofen, was obtained with this approach.
At the time of the doctoral defence the following paper was unpublished and had a status as follows: Paper nr. 5: Manuscript
APA, Harvard, Vancouver, ISO, and other styles
5

Gullfot, Fredrika. "On the engineering of proteins: methods and applications for carbohydrate-active enzymes." Doctoral thesis, KTH, Glykovetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-24296.

Full text
Abstract:
This thesis presents the application of different protein engineering methods on enzymes and non-catalytic proteins that act upon xyloglucans. Xyloglucans are polysaccharides found as storage polymers in seeds and tubers, and as cross-linking glucans in the cell wall of plants. Their structure is complex with intricate branching patterns, which contribute to the physical properties of the polysaccharide including its binding to and interaction with other glucans such as cellulose. One important group of xyloglucan-active enzymes is encoded by the GH16 XTH gene family in plants, including xyloglucan endo-transglycosylases (XET) and xyloglucan endo-hydrolases (XEH). The molecular determinants behind the different catalytic routes of these homologous enzymes are still not fully understood. By combining structural data and molecular dynamics (MD) simulations, interesting facts were revealed about enzyme-substrate interaction. Furthermore, a pilot study was performed using structure-guided recombination to generate a restricted library of XET/XEH chimeras. Glycosynthases are hydrolytically inactive mutant glycoside hydrolases (GH) that catalyse the formation of glycosidic linkages between glycosyl fluoride donors and glycoside acceptors. Different enzymes with xyloglucan hydrolase activity were engineered into glycosynthases, and characterised as tools for the synthesis of well-defined homogenous xyloglucan oligo- and polysaccharides with regular substitution patterns. Carbohydrate-binding modules (CBM) are non-catalytic protein domains that bind to polysaccharidic substrates. An important technical application involves their use as molecular probes to detect and localise specific carbohydrates in vivo. The three-dimensional structure of an evolved xyloglucan binding module (XGBM) was solved by X-ray diffraction. Affinity-guided directed evolution of this first generation XGBM resulted in highly specific probes that were used to localise non-fucosylated xyloglucans in plant tissue sections.
QC 20100902
APA, Harvard, Vancouver, ISO, and other styles
6

Salin, M. (Mikko). "Protein crystallographic studies of A-TIM—structure based development of new enzymes." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261237.

Full text
Abstract:
Abstract Enzymes are potentially superior as catalysts for many industrial chemical processes because of their high specificity, selectivity, minimum energy requirement and environmental friendliness. However, many challenges remain in order to exploit fully the potential of industrial enzymes. The qualities which are needed are catalytic proficiency, availability in high quantities, low price, low product inhibition, and high activity and stability under process conditions. Directed evolution and rational design are the most common strategies to produce enzymes with the desired properties. The TIM barrel is the most frequent and most versatile fold among naturally occurring enzymes. In all known TIM barrel enzymes, the catalytically active residues are located at one end of the barrel structure, while residues maintaining the stability of the fold are found on the opposite end of the barrel. This special architecture of the TIM barrel proteins makes it possible to change catalytic activity of the protein without compromising its stability, which is a perfect start for protein engineering studies. In this research project, a monomeric triosephosphate isomerase (TIM) variant with an engineered binding groove (A-TIM) was created by using a rational design approach. The major aims of this work were (i) to find novel binders and (ii) characterize the new, bigger binding groove using X-ray crystallographic methods. These studies have discovered that monomeric A-TIM can bind compounds completely different from the natural substrate. Studies on three different classes of binder molecules are reported: (i) true substrate analogues of wild type TIM, (ii) substrate analogues that have an extended hydrophobic tail, and (iii) more extended, phosphate containing substrate analogues. In addition to this, the A-TIM active site was shown to be competent. In general these studies illustrate the importance of protein crystallography for characterizing the binding properties of enzyme variants being studied in enzyme discovery projects
Tiivistelmä Entsyymit voivat toimia ylivoimaisina katalyytteinä monissa kemianteollisuuden prosesseissa johtuen niiden hyvästä spesifisyydestä, valikoimiskyvystä, alhaisesta energiantarpeesta ja ympäristöystävällisyydestä. Näistä ominaisuuksista huolimatta entsyymien kaikkien mahdollisuuksien hyödyntämisen esteenä on monia haasteita. Tarvittavia ominaisuuksia ovat katalyyttinen tehokkuus, saatavuus suurina määrinä, alhainen hinta, alhainen tuoteinhibitio sekä korkea aktiivisuus ja stabiilisuus prosessiolosuhteissa. TIM-tynnyrirakenne on yleisin ja monipuolisin proteiinien laskostumisrakenne luonnossa esiintyvissä entsyymeissä. Tässä rakenteessa katalyyttisesti aktiiviset aminohappotähteet ovat sijoittuneet tynnyrirakenteen toiselle puolelle, kun taas stabiilisuuden kannalta tärkeät aminohappotähteet ovat sijoittuneet kokonaan toiselle puolelle. Tämä erityinen rakenne antaa mahdollisuuden muokata proteiinin katalyyttistä aktiivisuutta vaikuttamatta haitallisesti sen stabiilisuuteen. Tämä on täydellinen lähtökohta proteiininmuokkaukselle. Tässä tutkimusprojektissa käytettiin ns. järkiperäistä suunnittelua monomeerisen trioosifosfaatti-isomeraasivariantin (A-TIM) luomisessa. Tämän tutkimustyön pääasialliset tavoitteet olivat (i) uusien sitoutujien löytäminen ja (ii) uuden, suuremman sitoutumistaskun ominaisuuksien määrittäminen röntgenkristallografisilla menetelmillä. Tässä tutkimuksessa havaittiin, että A-TIM kykenee sitomaan yhdisteitä, jotka ovat täysin erilaisia luonnolliseen substraattiin verrattuna. Tässä tutkimuksessa kuvaillaan kolmenlaisia sitoutujia: (i) todelliset villityypin entsyymin substraattianalogit, (ii) substraattianalogit, joihin on liitetty hydrofobinen hiilivetyketju ja (iii) villityypin substraattia suuremmat sokerifosfaatit. Tämän lisäksi A-TIM:n aktiivisen keskuksen todistettiin olevan toimintakykyinen. Yleisellä tasolla tämä tutkimus osoittaa röntgenkristallografisten menetelmien tärkeyden entsyymienmuokkausprojekteissa, joissa entsyymivarianttien ominaisuuksien määritys on tärkeää
APA, Harvard, Vancouver, ISO, and other styles
7

Modén, Olof. "Mutational Analysis and Redesign of Alpha-class Glutathione Transferases for Enhanced Azathioprine Activity." Doctoral thesis, Uppsala universitet, Biokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-167332.

Full text
Abstract:
Glutathione transferase (GST) A2-2 is the human enzyme most efficient in catalyzing azathioprine activation. Structure-function relationships were sought explaining the higher catalytic efficiency compared to other alpha class GSTs. By screening a DNA shuffling library, five recombined segments were identified that were conserved among the most active mutants. Mutational analysis confirmed the importance of these short segments as their insertion into low-active GSTs introduced higher azathioprine activity. Besides, H-site mutagenesis led to decreased azathioprine activity when the targeted positions belonged to these conserved segments and mainly enhanced activity when other positions were targeted. Hydrophobic residues were preferred in positions 208 and 213. The prodrug azathioprine is today primarily used for maintaining remission in inflammatory bowel disease. Therapy leads to adverse effects for 30 % of the patients and genotyping of the metabolic genes involved can explain some of these incidences. Five genotypes of human A2-2 were characterized and variant A2*E had 3–4-fold higher catalytic efficiency with azathioprine, due to a proline mutated close to the H-site. Faster activation might lead to different metabolite distributions and possibly more adverse effects. Genotyping of GSTs is recommended for further studies. Molecular docking of azathioprine into a modeled structure of A2*E suggested three positions for mutagenesis. The most active mutants had small or polar residues in the mutated positions. Mutant L107G/L108D/F222H displayed a 70-fold improved catalytic efficiency with azathioprine. Determination of its structure by X-ray crystallography showed a widened H-site, suggesting that the transition state could be accommodated in a mode better suited for catalysis. The mutational analysis increased our understanding of the azathioprine activation in alpha class GSTs and highlighted A2*E as one factor possibly behind the adverse drug-effects. A successfully redesigned GST, with 200-fold enhanced catalytic efficiency towards azathioprine compared to the starting point A2*C, might find use in targeted enzyme-prodrug therapies.
APA, Harvard, Vancouver, ISO, and other styles
8

Andrews, Simon Richard. "Alteration of the properties of enzymes by random mutagenesis and rational design." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bissaro, Bastien. "On hydrolysis / transglycosylation modulation in glycoside hydrolases : lessons learnt from the molecular design of the first non-Leloir transarabinofuranosylases." Thesis, Toulouse, INSA, 2014. http://www.theses.fr/2014ISAT0023/document.

Full text
Abstract:
Élargir le répertoire de composés accessibles dans le domaine des Glycosciences est d’un intérêt majeur pour la communauté des biologistes du fait que ces composés, oligosaccharides et glyco-conjugués, sont impliqués dans diverses fonctions biologiques, aussi bien au niveau structurel, qu’énergétique voire même signalétique jouant un rôle primordial dans les interactions inter- ou intracellulaires. L’assemblage, la modification ou la déconstruction de ces glyco-structures complexes est possible grâce à l’action d’enzymes, parmi lesquelles l’on retrouve les CAZymes (Carbohydrate Active enZymes). Ces enzymes font partie du répertoire de la base de données CAZy, incluant les Glycoside Hydrolases (GHs) qui représentent le groupe le plus important et ayant pour fonction biologique principale l’hydrolyse des liens glycosidiques. Cependant, un certain nombre de GHs possède aussi la capacité de catalyser des réactions de synthèse (transglycosylation) en tant qu’activité secondaire mineure, voire en tant qu’activité principale pour un nombre restreint d’entre elles, qui sont alors appelées transglycosylases. Sachant que ces deux types de comportements peuvent se retrouver au sein d’une même famille de GH (donc étroitement liés sur le plan évolutif), la découverte et la compréhension des déterminants moléculaires qui ont été développés par les GHs au cours de leur évolution pour permettre cette partition d’activité, entre hydrolyse et transglycosylation, est d’une importance capitale pour le domaine de la synthèse chimio-enzymatique et des Glycosciences de manière plus générale.Ce travail de thèse décrit une proposition de synthèse pour apporter une réponse à cette question fondamentale via une revue critique de la littérature sur le sujet. Sur le plan expérimental, a été réalisée l’évolution moléculaire d’une enzyme spécifique des pentoses, l’α-L-arabinofuranosidase de Thermobacillus xylanilyticus (TxAbf) de la famille GH51, vers les premières transarabinofuranosylases de type ‘non-Leloir’. Cette évolution itérative a été développée en utilisant un panel d’outils d’ingénierie enzymatique combinant des approches aléatoire, semi-rationnelle, de prédiction in silico suivie de recombinaison dans un processus d’évolution dirigée global. Une analyse fine des mutants générés sur le plan mécanistique en lien avec la partition hydrolyse/transglycosylation mène à des conclusions en accord avec la proposition de synthèse issue de la revue de la littérature sur le sujet. Sur un plan plus appliqué, ces nouveaux biocatalyseurs ont ensuite été mis en oeuvre dans des voies de synthèse chimio-enzymatiques pour la préparation de composés furanosylés de structure contrôlée. Le transfert d’L-arabinofuranosyles permet la génération d’arabinoxylo-oligosaccharides (AXOS) ainsi que la conception d’oligosaccharides non naturels, tel que des galactofuranoxylo-oligosaccharides ou des arabinofuranogluco-oligosaccharides. Dans son ensemble, ce travail de recherche constitue les premières étapes clés du développement de méthodes de synthèse chimio-enzymatique plus élaborées pour la conception d’arabinoxylanes artificiels. Dans le contexte actuel de transition vers une bio-économie, reposant sur des concepts tels que ceux de la bioraffinerie ou de la chimie verte, nous espérons que les outils de glycosynthèse développés au cours de ces travaux trouveront leur application dans la valorisation des pentoses issus de la biomasse. La synthèse à-façon d’arabinoxylooligo- et polysaccharides présente nombre de valorisations possibles allant de la préparation de prébiotiques à la conception de matériaux bio-inspirés en passant par la synthèse de modèles de parois végétales
Widening the spectrum of available compounds in the field of Glycosciences is of utmost importance for the entire biology community, because carbohydrates are determinants of a myriad of life-sustaining or threatening processes. The assembly, modification or deconstruction of complex carbohydrate-based structures mainly involves the action of enzymes, among which one can identify Carbohydrate Active enZymes (CAZymes). These enzymes form part of the CAZy database repertoire and include Glycoside Hydrolases (GHs), which are the biggest group of CAZymes, whose main role is to hydrolyze glycosidic linkages. However, some GHs also display the ability to perform synthesis (transglycosylation), an activity that mostly manifests itself as a minor one alongside hydrolysis, but which is the only activity displayed by a rather select group of GHs that are often called transglycosylases. Understanding how transglycosylases have resulted from the process of evolution is both intringuing and crucial, because it holds the key to the creation of tailored glycosynthetic enzymes that will revolutionize the field of glycosciences.In this thesis, an extensive review of relevant scientific literature that treats the different aspects of GH-catalyzed transglycosylation and glycosynthesis is presented, along with experimental results of work that has been performed on a family GH-51 α-L-arabinofuranosidase, a pentose-acting enzyme from Thermobacillus xylanilyticus (TxAbf). The conclusions of the literature are presented in the form of a hypothesis, which describes the molecular basis of the hydrolysis/transglycosylation partition and thus provides a proposal on how to engineer dominant transglycosylation activity in a GH. Afterwards, using a directed evolution approach, including random mutagenesis, semi-rational approaches, in silico predictions and recombination it has been experimentally possible to create the very first ‘non-Leloir’ transarabinofuranosylases. The mechanistic analysis of the resultant TxAbf mutants notably focusing on the hydrolysis/transglycosylation partition reveals that the results obtained are consistent with the initial hypothesis that was formulated on the basis of the literature review.To demonstrate the applicative value of the experimental work performed in this study, the TxAbf mutants were used to develop a chemo-enzymatic methodology that has procured a panel of well-defined furanosylated compounds. Enzyme-catalyzed transfer of arabinofuranosyl moities can be used to generate arabinoxylo-oligosaccharides (AXOS), but the design of non-natural oligosaccharides, such as galactofuranoxylo-oligosaccharides or arabinofuranogluco-oligosaccharides is also possible. Overall, the work presented constitutes the first steps towards the development of more sophiscated methodologies that will procure the means to synthesize artificial arabinoxylans, with a first proof of concept being presented at the very end of this manuscript.In the present context of the bioeconomy transition, which relies on technologies such as biorefining and green chemistry, it is expected that the glycosynthetic tools that have been developed in this work will be useful for the conversion of pentose sugars obtained from biomass. The synthesis of tailor-made arabinoxylo-oligo- and polysaccharides may lead to a variety of potential applications including the production of prebiotics, surfactants or bio-inspired materials and, more fundamentally, the synthesis of artificial models of plant cell wall
APA, Harvard, Vancouver, ISO, and other styles
10

Rajado, Ana Teresa Amado Mateus Santos. "Computation meets experimentation to improve the catatysis and specificity of Cas12a genome editing enzyme." Master's thesis, 2020. http://hdl.handle.net/10316/92173.

Full text
Abstract:
Dissertação de Mestrado em Bioquímica apresentada à Faculdade de Ciências e Tecnologia
O sistema CRISPR-Cas é uma ferramenta aplicada a edição genética. Esta técnica tornou-se altamente relevante nos últimos anos devido ao seu baixo custo e facilidade de produção e utilização.Cas12a é uma endonuclease do tipo V do Sistema CRISPR-Cas, capaz de editar genoma humano recorrendo a um único RNA guia. Esta enzima já foi adaptada e utilizada em diversas áreas, tal como medicina e agricultura, através da edição genética de células de diferentes tipos, como por exemplo células animais e vegetais. No entanto, este sistema também enfrenta alguns problemas, dos quais se destacam as mutações introduzidas fora dos locais alvo (“off-target mutations”), que são introduzidas de forma não intencional.O objetivo deste trabalho é estudar o mecanismo catalítico da enzima Cas12a, com o intuito de aumentar a especificidade do mesmo. Com este propósito recorremos a uma combinação de métodos computacionais (Dinâmica Molecular) e experimentais (Biologia Molecular), para reduzir os efeitos “off-target” acima mencionados.Foram estudadas seis variantes da enzima nativa (direcionadas para as regiões da enzima que interagem com o motivo PAM, com o loop no terminal 5’ do crRNA e com o centro ativo da enzima) e dois estados intermediários do ciclo catalítico da mesma. Com as variantes criadas induzimos interações mais fortes do que as previamente presentes entre a FnCas12a, uma enzima para edição genética, e o crRNA e DNA alvo a ela associados. Substituímos resíduos polares e não polares por lisinas, carregadas positivamente, criando interações carga-carga com o DNA e o crRNA, o que poderá conduzir ao reconhecimento específico entre a proteína e os ácidos nucleicos através de um mecanismo de reconhecimento indireto (indirect readout mechanism), uma vez que os resíduos mutados não interagem com as bases azotadas.Explorámos também o mecanismo catalítico desta enzima, ao estudarmos a relevância dos resíduos H922 e R1218, localizados no local catalítico da enzima. De acordo com as nossas simulações, H922 aparenta ser o resíduo que atua como base catalítica através de um mecanismo concertado. Neste, a histidina deverá receber um protão da água enquanto que ao mesmo tempo esta realiza um ataque nucleofílico ao grupo fosfato em que irá ocorrer a clivagem.
The CRISPR-Cas system is a tool used for genome editing that became highly relevant in the latest years for being cheap, easy to design and produce.Cas12a is an endonuclease type V of the CRISPR-Cas system and is able to edit human genome through a single-RNA guided approach. This enzyme has already been repurposed to be applied in several fields, such as in medicine and agriculture, through the genome editing of different cells types such animal and plant cell. However a recurrent problem of these systems and related ones is the off-target mutations - unintentionally induced.The objective of this work is to study Cas12a enzyme. For this, we used a combination of computational (Molecular Dynamics) and experimental (Molecular Biology) methods, in order to surpass the above mentioned obstacles.Six variants of the wild type enzyme (directed to enzyme’ regions that interact with the PAM motif, the crRNA 5’ handle and with the active site of the protein) and two putative intermediates of its catalytic cycle were tested. With these variants, we induced stronger interactions between FnCas12a, a genome editing enzyme, and its crRNA and target DNA. We have substituted polar and non-polar residues with positively charged lysine residues creating new salt-bridges with the cRNA and DNA and possibly leading to specific recognition through an indirect readout mechanism, since the newly introduced residues do not interact with the bases.Additionally, we explored the catalytic mechanism of this enzyme, by studying the relevance of H922 and R1218, residues located in the catalytic site of the enzyme. According to our simulations, H922 seems to be the most probable residue to act as a base through a concerted mechanism, in which it receives a proton from the water, simultaneously with nucleophilic attack on the phosphate group that is going to be cleaved.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rational enzyme engineering"

1

Kumar, C. Vijay. Rational Design of Enzyme-Nanomaterials. Elsevier Science & Technology, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rational enzyme engineering"

1

Pongsupasa, Vinutsada, Piyanuch Anuwan, Somchart Maenpuen, and Thanyaporn Wongnate. "Rational-Design Engineering to Improve Enzyme Thermostability." In Methods in Molecular Biology, 159–78. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1826-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shivange, Amol V., and Ulrich Schwaneberg. "Recent Advances in Directed Phytase Evolution and Rational Phytase Engineering." In Directed Enzyme Evolution: Advances and Applications, 145–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50413-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Charles K., Colin R. Monk, and Roy M. Daniel. "Determination of Enzyme Thermal Parameters for Rational Enzyme Engineering and Environmental/Evolutionary Studies." In Methods in Molecular Biology, 219–30. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-354-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weiland, Mitch H. "Enzymatic Biodegradation by Exploring the Rational Protein Engineering of the Polyethylene Terephthalate Hydrolyzing Enzyme PETase from Ideonella sakaiensis 201-F6." In ACS Symposium Series, 161–74. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1357.ch008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braco, Lorenzo, and Ismael Mingarro. "Interfacial Activation-Based Molecular Bioimprinting: Towards a More Rational Use of Lipolytic Enzymes in Nonaqueous Media." In Engineering of/with Lipases, 229–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1671-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Danyang, Qi Wu, and Manfred T. Reetz. "Focused rational iterative site-specific mutagenesis (FRISM)." In Enzyme Engineering and Evolution: General Methods, 225–42. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mie.2020.04.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Choi, Jung Min, and Hak-Sung Kim. "Structure-guided rational design of the substrate specificity and catalytic activity of an enzyme." In Enzyme Engineering and Evolution: General Methods, 181–202. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mie.2020.04.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Anand, Swadha, and Debasisa Mohanty. "Computational Methods for Identification of Novel Secondary Metabolite Biosynthetic Pathways by Genome Analysis." In Handbook of Research on Computational and Systems Biology, 380–405. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-491-2.ch018.

Full text
Abstract:
Secondary metabolites belonging to polyketide and nonribosomal peptide families constitute a major class of natural products with diverse biological functions and a variety of pharmaceutically important properties. Experimental studies have shown that the biosynthetic machinery for polyketide and nonribosomal peptides involves multi-functional megasynthases like Polyketide Synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) which utilize a thiotemplate mechanism similar to that for fatty acid biosynthesis. Availability of complete genome sequences for an increasing number of microbial organisms has provided opportunities for using in silico genome mining to decipher the secondary metabolite natural product repertoire encoded by these organisms. Therefore, in recent years there have been major advances in development of computational methods which can analyze genome sequences to identify genes involved in secondary metabolite biosynthesis and help in deciphering the putative chemical structures of their biosynthetic products based on analysis of the sequence and structural features of the proteins encoded by these genes. These computational methods for deciphering the secondary metabolite biosynthetic code essentially involve identification of various catalytic domains present in this PKS/NRPS family of enzymes; a prediction of various reactions in these enzymatic domains and their substrate specificities and also precise identification of the order in which these domains would catalyze various biosynthetic steps. Structural bioinformatics analysis of known secondary metabolite biosynthetic clusters has helped in formulation of predictive rules for deciphering domain organization, substrate specificity, and order of substrate channeling. In this chapter, the progress in development of various computational methods is discussed by different research groups, and specifically, the utility in identification of novel metabolites by genome mining and rational design of natural product analogs by biosynthetic engineering studies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography