Academic literature on the topic 'Raspberry Pi 4'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raspberry Pi 4.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Raspberry Pi 4"
Mulyanto, Trio Ade, Mukhtar Habiby, Kusnadi Kusnadi, and Rinaldi Adam. "HOME AUTOMATION SYSTEM DENGAN MENGGUNAKAN RASPBERRY PI 4." Jurnal Digit 11, no. 1 (May 30, 2021): 60. http://dx.doi.org/10.51920/jd.v11i1.180.
Full textGanesan, M., R. Hemanth., S. Gunalan., and J. Hemprasad. "Raspberry PI Based Smart Walking Stick." IOP Conference Series: Materials Science and Engineering 981 (December 5, 2020): 042090. http://dx.doi.org/10.1088/1757-899x/981/4/042090.
Full textPrasath kumar, S., P. Rayavel, N. Anbarasi, B. Renukadevi, and D. Maalini. "Raspberry pi based secured cloud data." Journal of Physics: Conference Series 1964, no. 4 (July 1, 2021): 042101. http://dx.doi.org/10.1088/1742-6596/1964/4/042101.
Full textSrivastava, Ankit, Prabhat Singh, Sushil Kumar Verma, Kumar Kartikey, and Prof Shubham Shukla. "Path Planning Robot Using PI-CAM." International Journal for Research in Applied Science and Engineering Technology 10, no. 4 (April 30, 2022): 66–70. http://dx.doi.org/10.22214/ijraset.2022.41133.
Full textHermawan, Indra, Defiana Arnaldy, Maria Agustin, M. Farishanif Widyono, David Nathanael, and Meutia Tri Mulyani. "Sistem Pengenalan Benih Padi menggunakan Metode Light Convolutional Neural Network pada Raspberry PI 4 B." Jurnal Teknologi Terpadu 7, no. 2 (December 30, 2021): 120–26. http://dx.doi.org/10.54914/jtt.v7i2.443.
Full textMaragatham, T., P. Balasubramanie, and M. Vivekanandhan. "IoT Based Home Automation System using Raspberry Pi 4." IOP Conference Series: Materials Science and Engineering 1055, no. 1 (February 1, 2021): 012081. http://dx.doi.org/10.1088/1757-899x/1055/1/012081.
Full textPrasetya, Aldo Dwi, Muhammad Daffa Raihan Ma'arif, Shania Syaharani, Imam Halimi, and Dezetty Monika. "Smart Mirror Berbasis Raspberry Pi 4 untuk Home Automation." ELECTRICES 3, no. 1 (June 3, 2021): 34–39. http://dx.doi.org/10.32722/ees.v3i1.4136.
Full textBudiyanta, Nova Eka, Catherine Olivia Sereati, and Ferry Rippun Gideon Manalu. "Processing time increasement of non-rice object detection based on YOLOv3-tiny using Movidius NCS 2 on Raspberry Pi." Bulletin of Electrical Engineering and Informatics 11, no. 2 (April 1, 2022): 1056–61. http://dx.doi.org/10.11591/eei.v11i2.3483.
Full textHadiwandra, T. Yudi, and Feri Candra. "High Availability Server Using Raspberry Pi 4 Cluster and Docker Swarm." IT Journal Research and Development 6, no. 1 (July 6, 2021): 43–51. http://dx.doi.org/10.25299/itjrd.2021.vol6(1).5806.
Full textANDRIOAIA, DRAGOS-ALEXANDRU, GEORGE CULEA, and PETRU-GABRIEL PUIU. "ENVIRONMENTAL TEMPERATURE AND HUMIDITY MONITORING SYSTEM USING RASPBERRY PI 4 AND THINGSPEACK." Journal of Engineering Studies and Research 27, no. 3 (January 10, 2022): 20–23. http://dx.doi.org/10.29081/jesr.v27i3.283.
Full textDissertations / Theses on the topic "Raspberry Pi 4"
Živčák, Adam. "Správa Raspberry Pi 4 clusteru pomocí Nix." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445519.
Full textHirš, David. "Systém prevence průniků využívající Raspberry Pi." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442389.
Full textMarmayohan, Nivethan, and Abdirahman Farah. "Scene analysis using Tensorflow & YOLO algorithms on Raspberry pi 4." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-45540.
Full textObject detection is one of the essential software components in the next generation of traffic monitoring. Real-time detection and recognition of objects are essential tasks for image processing. Therefore, deep learning algorithms for object detection such as YOLO (You Only Look Once) are increasingly used in image analysis, since they run in normal video frame rate (real-time) and are reasonably accurate. This study presents an embedded system and its results for detecting and recognizing objects in real-time. Results are based on a video stream originating from a traffic environment in the city of Halmstad (Sweden). The embedded system is implemented in Raspberry pi 4 using the software Tensorflow and different deep learning algorithms of the YOLO software package. Real-time analyses on frames per second, accuracy in mean average precision, CPU temperature, and CPU frequency are reported for experiments comprising transfer learning. A main conclusion is that Raspberry pi 4 can perform object classification and detection with high accuracy in certain scenarios for traffic monitoring with YOLO algorithms. For example, classifying objects with the speed of a pedestrian would be feasible with classifying and detecting with high accuracy. On the other hand, with high-speed objects such as cars and cyclists, it is a more challenging task for Raspberry pi 4 to detect and classify objects.
Krejčí, Jan. "Implementace komunikačních protokolů pro IoT s využitím rozšiřujícího modulu UniPi pro Raspberry Pi." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317015.
Full textCho, Minn, and Philipe Granhäll. "An Analysis on Bluetooth Mesh Networks and its Limits to Practical Use." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301847.
Full textEtt mesh nätverk är en teknik som blivit populär igen och används ofta av allmänheten. Eftersom denna ökade användning observeras, tekniker som Bluetooth anpassas för att skapa mesh nätverksvarianter. I denna avhandling skapas och testas ett Bluetoothnätverk med Raspberry pi 4’s och Bluetoothgränssnittet, btferret. Denna uppsats försöker nå gränserna för denna teknik med hjälp av tillgängliga verktyg, definiera nätverks prestandan som en riktlinje för att avgöra om det är lämpligt för användning för uppgifter till hands. Resultaten visar att BLE mesh nätverk har tydliga begränsningar som avslöjar sig i olika sammanhang. I denna raport så undersöks paket storlek och antal hopp som ett paket kan göra inom nätverket utan signifikant prestandafall. Dessutom har olika andra faktorer, såsom väggar och andra störande radiofrekvenser visat sig påverka nätverket. Från alla experiment som genomförts så illustreras relativa effekt av det olika faktorer.
Lefler, Přemysl. "Optimalizace operačního systému s jádrem Linux pro zařízení napájené z akumulátoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442374.
Full textFerm, Oliwer. "Real-time Object Detection on Raspberry Pi 4 : Fine-tuning a SSD model using Tensorflow and Web Scraping." Thesis, Mittuniversitetet, Institutionen för elektronikkonstruktion, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39455.
Full textAnvändning av djupinlärning på lågkostnadsmaskiner, som Raspberry Pi, kan idag mer än någonsin användas på grund av enkel användning, tillgänglighet, och hög prestanda. En kvantiserad förtränad SSD-objektdetekteringsmodell har implementerats på en Raspberry Pi 4 B för att utvärdera om genomströmningen är tillräcklig för att utföra realtidsobjektigenkänning. Med en ingångsupplösning på 300x300 pixlar erhölls en periodtid på 185 ms. Detta är en stor förbättring med avseende på prestanda jämfört med den tidigare modellen; Raspberry Pi 3 B+, 238 ms med en ingångsupplösning på 96x96 som erhölls i en relaterad studie. Att använda en kvantiserad modell till förmån för hög genomströmning bidrar till lägre noggrannhet. För att kompensera för förlusten av noggrannhet har, med hjälp av överföringsinlärning och Tensorflow, en skräddarsydd modell tränats genom att finjustera en färdigtränad SSD-modell. Den finjusterade modellen tränas på bilder som skrapats från webben med människor i vinterlandskap. Den förtränade modellen var tränad att känna igen olika typer av objekt, inklusive människor i olika miljöer. Förutsägelser visar att den skräddarsydda modellen detekterar människor med bättre precision än den ursprungliga. Slutsatsen härifrån är att webbskrapning kan användas för att finjustera en modell. Skrapade bilder är emellertid av dålig kvalitet och därför är det viktigt att rengöra all data noggrant och välja vilka bilder som är lämpliga att behålla gällande en specifik applikation.
Papponi, Tommaso. "Sviluppo, implementazione e verifica sperimentale di un sensore di sole basato sulla piattaforma Raspberry." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24891/.
Full textMozart, Andraws David, and Larsson Marcus Thornemo. "Crowd Avoidance in Public Transportation using Automatic Passenger Counter." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106090.
Full textZatloukal, Jiří. "Senzorika a řízení pohonů 4 kolového mobilního robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230890.
Full textBooks on the topic "Raspberry Pi 4"
Gay, Warren W. Raspberry Pi Hardware Reference. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4842-0799-4.
Full textSoper, Mark Edward. Expanding Your Raspberry Pi. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2922-4.
Full textShovic, John C. Raspberry Pi IoT Projects. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6911-4.
Full textVenu, Sibeesh. Asp.Net Core and Azure with Raspberry Pi 4. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0.
Full textMembrey, Peter, and David Hows. Learn Raspberry Pi with Linux. Berkeley, CA: Apress, 2013. http://dx.doi.org/10.1007/978-1-4302-4822-4.
Full textGuillen, Guillermo. Sensor Projects with Raspberry Pi. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5299-4.
Full textAbdul Kadhar, K. Mohaideen, and G. Anand. Data Science with Raspberry Pi. Berkeley, CA: Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6825-4.
Full textNewmarch, Jan. Raspberry Pi GPU Audio Video Programming. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2472-4.
Full textPajankar, Ashwin. Raspberry Pi Supercomputing and Scientific Programming. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2878-4.
Full textDonat, Wolfram. Learn Raspberry Pi Programming with Python. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3769-4.
Full textBook chapters on the topic "Raspberry Pi 4"
Venu, Sibeesh. "About Raspberry Pi." In Asp.Net Core and Azure with Raspberry Pi 4, 1–18. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_1.
Full textVenu, Sibeesh. "Configuring Your Raspberry Pi." In Asp.Net Core and Azure with Raspberry Pi 4, 19–28. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_2.
Full textModrzyk, Nicolas. "Vision on Raspberry Pi 4." In Real-Time IoT Imaging with Deep Neural Networks, 67–108. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5722-7_3.
Full textKarthika, P., and P. Vidhya Saraswathi. "Machine Learning Security Allocation in IoT using Raspberry Pi." In Data Security in Internet of Things Based RFID and WSN Systems Applications, 49–68. Boca Raton : CRC Press, 2020. | Series: Internet of everything (ioe): security and privacy paradigm: CRC Press, 2020. http://dx.doi.org/10.1201/9780429294990-4.
Full textGehlot, Anita, Rajesh Singh, Lovi Raj Gupta, Bhupendra Singh, and Mahendra Swain. "Basics of Arduino." In Internet of Things with Raspberry Pi and Arduino, 29–43. First edition. | New York, N.Y. : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429284564-4.
Full textVenu, Sibeesh. "Creating and Deploying a .NET Core Application to Raspberry Pi." In Asp.Net Core and Azure with Raspberry Pi 4, 43–61. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_4.
Full textVenu, Sibeesh. "Azure IoT Central." In Asp.Net Core and Azure with Raspberry Pi 4, 191–228. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_10.
Full textVenu, Sibeesh. "Setting Up the Prerequisites to Develop the Application." In Asp.Net Core and Azure with Raspberry Pi 4, 29–42. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_3.
Full textVenu, Sibeesh. "Playing with Azure IoT Hub and Our Application." In Asp.Net Core and Azure with Raspberry Pi 4, 63–86. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_5.
Full textVenu, Sibeesh. "Finally, A Windows Terminal That You Can Customize." In Asp.Net Core and Azure with Raspberry Pi 4, 87–93. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6443-0_6.
Full textConference papers on the topic "Raspberry Pi 4"
Mythili, R., Pullyala Nithin Reddy, B. Keerthivasan, and V. Sooriya. "Encrypted NAS using Raspberry Pi 4." In 2021 5th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). IEEE, 2021. http://dx.doi.org/10.1109/iceeccot52851.2021.9707921.
Full textBuzura, Loredana, Gabriel Groza, Radu Papara, and Ramona Galatus. "Assisted OCT diagnosis embedded on Raspberry Pi 4." In 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2021. http://dx.doi.org/10.1109/siitme53254.2021.9663686.
Full textMora, Eduardo Alfonso Huerta, Victor Alejandro Gonzalez Huitron, Abraham Efraim Rodriguez Mata, and Hector Rodriguez Rangel. "Plant disease detection with convolutional neural networks implemented on Raspberry Pi 4." In 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2020. http://dx.doi.org/10.1109/ropec50909.2020.9258684.
Full textSoares, Felipe, Lucas Fernandes, Atslands Da Rocha, Paulo Rego, José Maia, and José De Souza. "Avaliação de Desempenho de Computadores Raspberry Pi com Algoritmos para o Reconhecimento Automático de Placas Veiculares." In Simpósio Brasileiro de Engenharia de Sistemas Computacionais. Sociedade Brasileira de Computação, 2020. http://dx.doi.org/10.5753/sbesc_estendido.2020.13088.
Full textAncheva, Veselina, and Valentina Voinohovska. "MINICOMPUTER RASPBERRY PI 4 AS AN EFFECTIVE INSTRUMENT IN CONDUCTING STEM EDUCATION IN INFORMATICS CLASSES." In 13th annual International Conference of Education, Research and Innovation. IATED, 2020. http://dx.doi.org/10.21125/iceri.2020.0594.
Full textAzlan, Mohammad Azerul, Abd Kadir Mahamad, and Sharifah Saon. "Face Recognition of Passenger for Bus Services." In Conference on Faculty Electrical and Electronic Engineering 2021/2. UTHM, 2021. http://dx.doi.org/10.30880/eeee.2021.02.01.007.
Full textHariawan, Febrian Rachmad, and Septia Ulfa Sunaringtyas. "Design an Intrusion Detection System, Multiple Honeypot and Packet Analyzer Using Raspberry Pi 4 for Home Network." In 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering. IEEE, 2021. http://dx.doi.org/10.1109/qir54354.2021.9716189.
Full textHelbet, Robert, Vasile Monda, Andrei Cristian Bechet, and Paul Bechet. "Low Cost System for Terrestrial Trunked Radio Signals Monitoring Based on Software Defined Radio Technology and Raspberry Pi 4." In 2020 International Conference and Exposition on Electrical And Power Engineering (EPE). IEEE, 2020. http://dx.doi.org/10.1109/epe50722.2020.9305536.
Full textĐuraševic, Slađana, Uroš Pešovic, Dejan Vujičic, Dušan Markovic, Snežana Tanaskovic, Dalibor Tomic, and Vladeta Stevovic. "PRAĆENJE AKTIVNOSTI PČELA PRIMENOM RAČUNARSKE VIZIJE." In SAVETOVANJE o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.107dj.
Full textTjahjono, Budi, Ade Sulaeman, Fransiskus Adikara, and Kundang Juman. "Implementation of Load Balancing Technology Using Raspberry Pi as a Server for Computer Based Examination." In Proceedings of the 2nd International Conference on Quran and Hadith Studies Information Technology and Media in Conjunction with the 1st International Conference on Islam, Science and Technology, ICONQUHAS & ICONIST, Bandung, October 2-4, 2018, Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.2-10-2018.2295570.
Full text