To see the other types of publications on this topic, follow the link: Rare earth sesquioxides.

Journal articles on the topic 'Rare earth sesquioxides'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Rare earth sesquioxides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Petermann, K., G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, and S. A. Basun. "Rare-earth-doped sesquioxides." Journal of Luminescence 87-89 (May 2000): 973–75. http://dx.doi.org/10.1016/s0022-2313(99)00497-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

ZINKEVICH, M. "Thermodynamics of rare earth sesquioxides." Progress in Materials Science 52, no. 4 (May 2007): 597–647. http://dx.doi.org/10.1016/j.pmatsci.2006.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Granier, Bernard, and Serge Heurtault. "Density of Liquid Rare-Earth Sesquioxides." Journal of the American Ceramic Society 71, no. 11 (November 1988): C466—C468. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07551.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Djuraev, Davron Rakhmonovich, and Mokhigul Madiyorovna Jamilova. "Physical Properties Of Rare Earth Elements." American Journal of Applied sciences 03, no. 01 (January 30, 2021): 79–88. http://dx.doi.org/10.37547/tajas/volume03issue01-13.

Full text
Abstract:
The article studies the physical properties of rare earth metals, pays special attention to their unique properties, studies the main aspects of the application of rare earth metals in industry. Also, the structure and stability of various forms of sesquioxides of rare earth elements, in particular, europium, as well as the effect of the method of oxide preparation on its structure and properties are considered. The analysis of the ongoing phase transformations of rare earth metals is made. The article emphasizes the use of correct choices to achieve a large technical and economic effect when using rare earth metals in industry. The article is intended for teachers working in the field of physics and chemistry, as well as for students of the specialty "physics and chemistry".
APA, Harvard, Vancouver, ISO, and other styles
5

Rodic, D., B. Antic, and M. Mitric. "The rare earth ion distribution in mixed rare earth-yttrium sesquioxides." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 1181–82. http://dx.doi.org/10.1016/0304-8853(94)01289-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ushakov, Sergey V., Shmuel Hayun, Weiping Gong, and Alexandra Navrotsky. "Thermal Analysis of High Entropy Rare Earth Oxides." Materials 13, no. 14 (July 14, 2020): 3141. http://dx.doi.org/10.3390/ma13143141.

Full text
Abstract:
Phase transformations in multicomponent rare earth sesquioxides were studied by splat quenching from the melt, high temperature differential thermal analysis and synchrotron X-ray diffraction on laser-heated samples. Three compositions were prepared by the solution combustion method: (La,Sm,Dy,Er,RE)2O3, where all oxides are in equimolar ratios and RE is Nd or Gd or Y. After annealing at 800 °C, all powders contained mainly a phase of C-type bixbyite structure. After laser melting, all samples were quenched in a single-phase monoclinic B-type structure. Thermal analysis indicated three reversible phase transitions in the range 1900–2400 °C, assigned as transformations into A, H, and X rare earth sesquioxides structure types. Unit cell volumes and volume changes on C-B, B-A, and H-X transformations were measured by X-ray diffraction and consistent with the trend in pure rare earth sesquioxides. The formation of single-phase solid solutions was predicted by Calphad calculations. The melting point was determined for the (La,Sm,Dy,Er,Nd)2O3 sample as 2456 ± 12 °C, which is higher than for any of constituent oxides. An increase in melting temperature is probably related to nonideal mixing in the solid and/or the melt and prompts future investigation of the liquidus surface in Sm2O3-Dy2O3, Sm2O3-Er2O3, and Dy2O3-Er2O3 systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Urban, Marek W., and Bahne C. Cornilsen. "Bonding anomalies in the rare earth sesquioxides." Journal of Physics and Chemistry of Solids 48, no. 5 (January 1987): 475–79. http://dx.doi.org/10.1016/0022-3697(87)90108-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bernal, S., F. J. Botana, J. J. Calvino, G. Cifredo, R. García, S. Molina, and J. M. Rodríguez-Izquierdo. "HREM characterization of lanthana-supported rhodium catalysts." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 4 (August 1990): 246–47. http://dx.doi.org/10.1017/s0424820100174369.

Full text
Abstract:
Metals supported on rare earth sesquioxides present a non- conventional behavior. Ordinary H2 and-or CO chemisorption techniques cannot be straightforwardly used to characterize this group of catalysts. The assessement to the data of metallic dispersions and the establishment of the occurrence and extent of metal-support interaction phenomena are determinant in order to interpret the properties of these catalysts in hydrogenation reactions. In this work HREM is proposed as a powerfull technique for the study of lanthana supported rhodium catalysts. Such catalysts would be considered as representative of a series of metals supported on rare earth sesquioxides.
APA, Harvard, Vancouver, ISO, and other styles
9

Fedorov, P. P., M. V. Nazarkin, and R. M. Zakalyukin. "On polymorphism and morphotropism of rare earth sesquioxides." Crystallography Reports 47, no. 2 (March 2002): 281–86. http://dx.doi.org/10.1134/1.1466504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sahu, P. Ch, Dayana Lonappan, and N. V. Chandra Shekar. "High Pressure Structural Studies on Rare-Earth Sesquioxides." Journal of Physics: Conference Series 377 (July 30, 2012): 012015. http://dx.doi.org/10.1088/1742-6596/377/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zelmon, David E., Jessica M. Northridge, Nicholas D. Haynes, Dan Perlov, and Klaus Petermann. "Temperature-dependent Sellmeier equations for rare-earth sesquioxides." Applied Optics 52, no. 16 (May 30, 2013): 3824. http://dx.doi.org/10.1364/ao.52.003824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mikami, Masayoshi, and Shinichiro Nakamura. "Electronic structure of rare-earth sesquioxides and oxysulfides." Journal of Alloys and Compounds 408-412 (February 2006): 687–92. http://dx.doi.org/10.1016/j.jallcom.2005.01.068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kränkel, Christian, Anastasia Uvarova, Christo Guguschev, Sascha Kalusniak, Lena Hülshoff, Hiroki Tanaka, and Detlef Klimm. "Rare-earth doped mixed sesquioxides for ultrafast lasers [Invited]." Optical Materials Express 12, no. 3 (February 15, 2022): 1074. http://dx.doi.org/10.1364/ome.450203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Polfus, Jonathan M., Truls Norby, and Reidar Haugsrud. "Nitrogen defects from NH3in rare-earth sesquioxides and ZrO2." Dalton Trans. 40, no. 1 (2011): 132–35. http://dx.doi.org/10.1039/c0dt01068e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kimura, Shin-ichi, Fumitaka Arai, and Mikihiko Ikezawa. "Optical Study on Electronic Structure of Rare-Earth Sesquioxides." Journal of the Physical Society of Japan 69, no. 10 (October 15, 2000): 3451–57. http://dx.doi.org/10.1143/jpsj.69.3451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Dilawar, Nita, Deepak Varandani, Shalini Mehrotra, Himanshu K. Poswal, Surinder M. Sharma, and Ashis K. Bandyopadhyay. "Anomalous high pressure behaviour in nanosized rare earth sesquioxides." Nanotechnology 19, no. 11 (February 19, 2008): 115703. http://dx.doi.org/10.1088/0957-4484/19/11/115703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Norby, Truls, Oddvar Dyrlie, and Per Kofstad. "Protonic Conduction in Acceptor-Doped Cubic Rare-Earth Sesquioxides." Journal of the American Ceramic Society 75, no. 5 (May 1992): 1176–81. http://dx.doi.org/10.1111/j.1151-2916.1992.tb05556.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach, and Michael Ruck. "Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids." Chemistry 5, no. 2 (June 2, 2023): 1378–94. http://dx.doi.org/10.3390/chemistry5020094.

Full text
Abstract:
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly.
APA, Harvard, Vancouver, ISO, and other styles
19

Ben Salem, M., and B. Yangui. "Domain Structures in Ferroelastic Materials: Case of Rare Earth Sesquioxides." Key Engineering Materials 101-102 (March 1995): 61–94. http://dx.doi.org/10.4028/www.scientific.net/kem.101-102.61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Arai, Fumitaka, Shin-ichi Kimura, and Mikihiko Ikezawa. "Resonant Photoemission Study of Electronic Structure of Rare-Earth Sesquioxides." Journal of the Physical Society of Japan 67, no. 1 (January 15, 1998): 225–29. http://dx.doi.org/10.1143/jpsj.67.225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dilawar, Nita, Shalini Mehrotra, D. Varandani, B. V. Kumaraswamy, S. K. Haldar, and A. K. Bandyopadhyay. "A Raman spectroscopic study of C-type rare earth sesquioxides." Materials Characterization 59, no. 4 (April 2008): 462–67. http://dx.doi.org/10.1016/j.matchar.2007.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Nagao, Mahiko, Hideaki Hamano, Koji Hirata, Ryotaro Kumashiro, and Yasushige Kuroda. "Hydration Process of Rare-Earth Sesquioxides Having Different Crystal Structures." Langmuir 19, no. 22 (October 2003): 9201–9. http://dx.doi.org/10.1021/la020954y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Tang, M., J. A. Valdez, K. E. Sickafus, and P. Lu. "Order-disorder phase transformation in ion-irradiated rare earth sesquioxides." Applied Physics Letters 90, no. 15 (April 9, 2007): 151907. http://dx.doi.org/10.1063/1.2720716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Salem, M. Ben, B. Yangui, G. Schiffmacher, and C. Boulesteix. "Twinning of the hexagonal (A) structure of rare earth sesquioxides." physica status solidi (a) 87, no. 2 (February 16, 1985): 527–36. http://dx.doi.org/10.1002/pssa.2210870214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kriklya, A. I. "High-temperature heat capacity of sesquioxides of rare-earth metals." Powder Metallurgy and Metal Ceramics 38, no. 5-6 (May 1999): 274–77. http://dx.doi.org/10.1007/bf02675775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Fellner, Madeleine, Alberto Soppelsa, and Alessandro Lauria. "Heat-Induced Transformation of Luminescent, Size Tuneable, Anisotropic Eu:Lu(OH)2Cl Microparticles to Micro-Structurally Controlled Eu:Lu2O3 Microplatelets." Crystals 11, no. 8 (August 20, 2021): 992. http://dx.doi.org/10.3390/cryst11080992.

Full text
Abstract:
Synthetic procedures to obtain size and shape-controlled microparticles hold great promise to achieve structural control on the microscale of macroscopic ceramic- or composite-materials. Lutetium oxide is a material relevant for scintillation due to its high density and the possibility to dope with rare earth emitter ions. However, rare earth sesquioxides are challenging to synthesise using bottom-up methods. Therefore, calcination represents an interesting approach to transform lutetium-based particles to corresponding sesquioxides. Here, the controlled solvothermal synthesis of size-tuneable europium doped Lu(OH)2Cl microplatelets and their heat-induced transformation to Eu:Lu2O3 above 800 °C are described. The particles obtained in microwave solvothermal conditions, and their thermal evolution were studied using powder X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical microscopy, thermogravimetric analysis (TGA), luminescence spectroscopy (PL/PLE) and infrared spectroscopy (ATR-IR). The successful transformation of Eu:Lu(OH)2Cl particles into polycrystalline Eu:Lu2O3 microparticles is reported, together with the detailed analysis of their initial and final morphology.
APA, Harvard, Vancouver, ISO, and other styles
27

Irshad, K. A., N. V. Chandrashekar, and S. Kalavathi. "Polymorphism in rare earth sesquioxides: dependence on pressure and cationic radii." Acta Crystallographica Section A Foundations and Advances 73, a2 (December 1, 2017): C1256. http://dx.doi.org/10.1107/s2053273317083188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lupascu, D., M. Uhrmacher, and K. P. Lieb. "Electric field gradients of111Cd in monoclinic (B-phase) rare earth sesquioxides." Journal of Physics: Condensed Matter 6, no. 48 (November 28, 1994): 10445–56. http://dx.doi.org/10.1088/0953-8984/6/48/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kolorenč, Jindřich. "Metal-Oxygen Hybridization and Core-Level Spectra in Actinide and Rare-Earth Oxides." MRS Advances 1, no. 44 (2016): 3007–12. http://dx.doi.org/10.1557/adv.2016.403.

Full text
Abstract:
ABSTRACT We employ a combination of the density-functional theory and the dynamical mean-field theory to study the electronic structure of selected rare-earth sesquioxides and dioxides. We concentrate on the core-level photoemission spectra, in particular, we illustrate how these spectra reflect the integer or fractional filling of the 4f orbitals. We compare the results to our earlier calculations of actinide dioxides and analyze why the core-level spectra of actinide compounds display a substantially reduced sensitivity to the filling of the 5f orbitals.
APA, Harvard, Vancouver, ISO, and other styles
30

Tang, M., P. Lu, J. A. Valdez, and K. E. Sickafus. "Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3,Er2O3,Lu2O3)." Journal of Applied Physics 99, no. 6 (March 15, 2006): 063514. http://dx.doi.org/10.1063/1.2184433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bezzine, K., N. Benayad, M. Djermouni, S. Kacimi, and A. Zaoui. "Enhanced d0 ferromagnetism via carbon doping in rare-earth sesquioxides: DFT prediction." Journal of Magnetism and Magnetic Materials 563 (December 2022): 169910. http://dx.doi.org/10.1016/j.jmmm.2022.169910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bernal, S., F. J. Botana, R. García, and J. M. Rodríguez-Izquierdo. "Behaviour of rare earth sesquioxides exposed to atmospheric carbon dioxide and water." Reactivity of Solids 4, no. 1-2 (October 1987): 23–40. http://dx.doi.org/10.1016/0168-7336(87)80085-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hinteregger, Ernst, Michael Enders, Almut Pitscheider, Klaus Wurst, Gunter Heymann, and Hubert Huppertz. "High-pressure Syntheses and Characterization of the Rare-earth Fluoride Borates RE2(BO3)F3 (RE=Tb, Dy, Ho)." Zeitschrift für Naturforschung B 68, no. 11 (November 1, 2013): 1198–206. http://dx.doi.org/10.5560/znb.2013-3258.

Full text
Abstract:
The new rare-earth fluoride borates RE2(BO3)F3 (RE=Tb, Dy, Ho) were synthesized under highpressure/ high-temperature conditions of 1:5 GPa=1200 °C for Tb2(BO3)F3 and 3:0 GPa=900 °C for Dy2(BO3)F3 and Ho2(BO3)F3 in a Walker-type multianvil apparatus from the corresponding rareearth sesquioxides, rare-earth fluorides, and boron oxide. The single-crystal structure determinations revealed that the new compounds are isotypic to the known rare-earth fluoride borate Gd2(BO3)F3. The new rare-earth fluoride borates crystallize in the monoclinic space group P21/c (Z = 8) with the lattice parameters a=16:296(3), b=6:197(2), c=8:338(2) Å , b =93:58(3)° for Tb2(BO3)F3, a= 16:225(3), b = 6:160(2), c = 8:307(2) Å , b = 93:64(3)° for Dy2(BO3)F3, and a = 16:189(3), b = 6:124(2), c = 8:282(2) Å , β= 93:69(3)° for Ho2(BO3)F3. The four crystallographically different rare-earth cations (CN=9) are surrounded by oxygen and fluoride anions. All boron atoms form isolated trigonal-planar [BO3]3- groups. The six crystallographically different fluoride anions are in a nearly planar coordination by three rare-earth cations.
APA, Harvard, Vancouver, ISO, and other styles
34

Dilawar Sharma, Nita, Jasveer Singh, Aditi Vijay, K. Samanta, S. Dogra, and A. K. Bandyopadhyay. "Pressure-Induced Structural Transition Trends in Nanocrystalline Rare-Earth Sesquioxides: A Raman Investigation." Journal of Physical Chemistry C 120, no. 21 (May 23, 2016): 11679–89. http://dx.doi.org/10.1021/acs.jpcc.6b02104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Antic, B., A. Kremenovic, I. Draganic, Ph Colomban, D. Vasiljevic-Radovic, J. Blanusa, M. Tadic, and M. Mitric. "Effects of O2+ ions beam irradiation on crystal structure of rare earth sesquioxides." Applied Surface Science 255, no. 17 (June 2009): 7601–4. http://dx.doi.org/10.1016/j.apsusc.2009.04.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kimmel, Giora, Roni Z. Shneck, Witold Lojkowski, Ze'ev Porat, Tadeusz Chudoba, Dmitry Mogilyanski, Stanislaw Gierlotka, Vladimir Ezersky, and Jacob Zabicky. "Phase stability of rare earth sesquioxides with grain size controlled in the nanoscale." Journal of the American Ceramic Society 102, no. 7 (March 18, 2019): 3829–35. http://dx.doi.org/10.1111/jace.16396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sattonnay, G., S. Bilgen, L. Thomé, C. Grygiel, I. Monnet, O. Plantevin, C. Huet, S. Miro, and P. Simon. "Structural and microstructural tailoring of rare earth sesquioxides by swift heavy ion irradiation." physica status solidi (b) 253, no. 11 (August 1, 2016): 2110–14. http://dx.doi.org/10.1002/pssb.201600451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Frayret, Christine, Antoine Villesuzanne, Michel Pouchard, Fabrice Mauvy, Jean Marc Bassat, and Jean Claude Grenier. "A Density Functional Study of Oxygen Mobility in Ceria-Based Materials." Defect and Diffusion Forum 323-325 (April 2012): 233–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.323-325.233.

Full text
Abstract:
In CeO2-based solid electrolytes, it has been shown that point defects are directly responsible for oxygen ionic conduction. The ionic conductivity is strongly affected by the anion vacancy concentration which is enhanced by doping with aliovalent cations. When rare earth sesquioxides such as La2O3, Gd2O3, Sm2O3, Y2O3 are added to CeO2, the dopant cation substitutes for the cerium ion, and oxygen vacancies are created for charge compensation. Incorporation of trivalent dopants into CeO2 at the Ce4+ sites can be depicted by the following defect reaction (expressed in Kröger-Vink notation):
APA, Harvard, Vancouver, ISO, and other styles
39

Guo, Bing, Ashley S. Harvey, John Neil, Ian M. Kennedy, Alexandra Navrotsky, and Subhash H. Risbud. "Atmospheric Pressure Synthesis of Heavy Rare Earth Sesquioxides Nanoparticles of the Uncommon Monoclinic Phase." Journal of the American Ceramic Society 90, no. 11 (November 2007): 3683–86. http://dx.doi.org/10.1111/j.1551-2916.2007.01961.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Boulesteix, C., M. Ben Salem, and B. Yangui. "Domain structures and plasticity of ferroelastic materials: Case of rare earth sesquioxides and YBa2Cu3O7." Journal of the Less Common Metals 156, no. 1-2 (December 1989): 29–41. http://dx.doi.org/10.1016/0022-5088(89)90404-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Balamurugan, Sarkarainadar, Ute Ch Rodewald, Thomas Harmening, Leo van Wüllen, Daniel Mohr, Heinz Deters, Hellmut Eckert, and Rainer Pöttgen. "PbO / PbF2 Flux Growth of YScO3 and LaScO3 Single Crystals – Structure and Solid-State NMR Spectroscopy." Zeitschrift für Naturforschung B 65, no. 10 (October 1, 2010): 1199–205. http://dx.doi.org/10.1515/znb-2010-1004.

Full text
Abstract:
Well-shaped small single crystals of the orthorhombic perovskites YScO3 and LaScO3 were grown from mixtures of the corresponding sesquioxides RE2O3 in PbO/PbF2 fluxes. Both structures were refined from single-crystal diffractometer data: GdFeO3-type, Pnma, a = 570.68(7), b = 789.3(1), c = 542.44(7) pm, wR2 = 0.0363, 448 F2 values for Y0.96ScO2.94, and a = 579.68(9), b = 810.3(2), c = 568.3(1) pm, wR2 = 0.0387, 513 F2 values for La0.94ScO2.91, with 32 variables per refinement. The 4c rare-earth sites of both perovskites show small defects which are charge-compensated by defects on both oxygen sites, leading to the compositions La0.94ScO2.91 and Y0.96ScO2.94 for the investigated crystals. The rare-earth sites have been characterized by 89Y and 45Sc magic-angle spinning (MAS) NMR. The 45Sc quadrupolar interaction parameters extracted from these spectra by simulations are found to be in good agreement with those obtained from DFT calculations of the electric field gradient.
APA, Harvard, Vancouver, ISO, and other styles
42

Feng, Xiao, Chunmei Jia, Jing Wang, Xiaocong Cao, Panjuan Tang, and Wenbing Yuan. "Efficient vapor-assisted aging synthesis of functional and highly crystalline MOFs from CuO and rare earth sesquioxides/carbonates." Green Chemistry 17, no. 7 (2015): 3740–45. http://dx.doi.org/10.1039/c5gc00378d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Niehle, Michael, and Achim Trampert. "Atomic interface structure of bixbyite rare-earth sesquioxides grown epitaxially on Si(1 1 1)." Journal of Physics D: Applied Physics 45, no. 29 (July 2, 2012): 295302. http://dx.doi.org/10.1088/0022-3727/45/29/295302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Novoselov, A., J. H. Mun, R. Simura, A. Yoshikawa, and T. Fukuda. "Micro-pulling-down: A viable approach to the crystal growth of refractory rare-earth sesquioxides." Inorganic Materials 43, no. 7 (July 2007): 729–34. http://dx.doi.org/10.1134/s0020168507070114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Singh, Nirpendra, Sapan Mohan Saini, Tashi Nautiyal, and Sushil Auluck. "Electronic structure and optical properties of rare earth sesquioxides (R2O3, R=La, Pr, and Nd)." Journal of Applied Physics 100, no. 8 (October 15, 2006): 083525. http://dx.doi.org/10.1063/1.2353267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

SAIKI, Atsushi, Nobuo ISHIZAWA, Nobuyasu MIZUTANI, and Masanori KATO. "Structural Change of C-Rare Earth Sesquioxides Yb2O3 and Er2O3 as a Function of Temperature." Journal of the Ceramic Association, Japan 93, no. 1082 (1985): 649–54. http://dx.doi.org/10.2109/jcersj1950.93.1082_649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meena, Seema Kumari, Lekhraj Meena, N. L. Heda, and B. L. Ahuja. "High energy γ-ray Compton spectroscopy and electronic response of rare earth sesquioxides Er2O3 and Yb2O3." Radiation Physics and Chemistry 176 (November 2020): 108990. http://dx.doi.org/10.1016/j.radphyschem.2020.108990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abrashev, M. V., N. D. Todorov, and J. Geshev. "Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study." Journal of Applied Physics 116, no. 10 (September 14, 2014): 103508. http://dx.doi.org/10.1063/1.4894775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Galenin, Evgeny, Viktoriia Galenina, Iaroslav Gerasymov, Daniil Kurtsev, Serhii Tkachenko, Pavlo Arhipov, Sofiia Sadivnycha, et al. "Growth of Sesquioxide Crystals from Tungsten Crucibles by Vertical Gradient Freezing Method." Crystals 13, no. 4 (March 31, 2023): 591. http://dx.doi.org/10.3390/cryst13040591.

Full text
Abstract:
Sesquioxides of lanthanides, yttrium, and scandium are promising hosts for laser and scintillation materials; however, the crystallization of such compounds is complicated by very high melting temperatures, as well as polymorph transitions. This work reports for the first time the growth of Y2O3 and Y2−xScxO3 crystals by the Vertical Gradient Freezing method from tungsten crucibles, proposing an alternative to extremely expensive rhenium and iridium crucibles. Translucent Y2O3 samples are obtained, and their luminescent and scintillation parameters are evaluated. The main issues of Y2O3 crystallization under the proposed conditions are discussed, as well as ways of enhancing the crystal quality. Finally, polymorph transitions are avoided by decreasing the average radius of the rare earth cation by Y3+/Sc3+ substitution, providing transparent Y2−xScxO3 crystals with a cubic structure.
APA, Harvard, Vancouver, ISO, and other styles
50

Maslen, E. N., V. A. Streltsov, and N. Ishizawa. "A synchrotron X-ray study of the electron density in C-type rare earth oxides." Acta Crystallographica Section B Structural Science 52, no. 3 (June 1, 1996): 414–22. http://dx.doi.org/10.1107/s0108768195013371.

Full text
Abstract:
Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography