Dissertations / Theses on the topic 'Rare earth metals – Spectra'

To see the other types of publications on this topic, follow the link: Rare earth metals – Spectra.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Rare earth metals – Spectra.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Li, King Fai. "Photoluminescent mechanism of trivalent lanthanide organic complexes." HKBU Institutional Repository, 2002. https://repository.hkbu.edu.hk/etd_ra/364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dyer, Hellen Elizabeth. "New lanthanide complexes as polymerisation catalysts." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.560913.

Full text
Abstract:
This Thesis describes the synthesis and characterisation of a series ofbisphenolate supported samarium borohydride, amide and zwitterionic rare earth complexes and their ability to effect the ring opening polymerisation (ROP) of cyclic esters and methylmethacrylate (MMA). Chapter 1 introduces ROP from both an industrial and an academic perspective and describes in detail the research in this area, with emphasis on rare earth initiators. The lanthanide elements and the bisphenolate ligand are also introduced. Chapter 2 describes the synthesis and characterisation ofbisphenolate supported samarium borohydride and silylamide complexes. Chapter 3 describes the ability of a selection of samarium borohydride and amide complexes to effect the ROP of the cyclic esters s-caprolactone (f-CL) and rac- lactide (rac-LA). Emphasis is placed on the effect that the nature of the bisphenolate pendant arm and the initiating moiety has on the polymerisation process. Chapter 4 describes the synthesis and characterisation of rare earth zwitterionic complexes and the ability ofa range of these complexes to effect the ROP of s-Cl. and rac-lactide. Mechanistic aspects ofthe ROP process will be discussed, as will the ability of these complexes to yield amide functionalised poly(rac-LA). Chapter 5 describes the ability ofbisphenolate samarium borohydride complexes to initiate the polymerisation of MMA. The experimental work conducted as part of this study is further supported computationally by calculations at the DFT level, both aspects will be described. Aspects concerning the synthesis and characterisation of the related borohydride derivative [Sm(N2siMe3NNPY)(BH4)2Li]oo will also be emphasised. Chapter 6 contains full experimental and characterising data for all 0 f the new compounds reported in this Thesis. Appendices A- T contain tables of selected crystallographic data for all new crystallographically characterised complexes described in this Thesis (partially on CD).
APA, Harvard, Vancouver, ISO, and other styles
3

Shalav, Avi School of Photovoltaic &amp Renewable Energy Engineering UNSW. "Rare-earth doped up-converting phosphors for an enhanced silicon solar cell response." Awarded by:University of New South Wales. School of Photovoltaic and Renewable Energy Engineering, 2006. http://handle.unsw.edu.au/1959.4/24184.

Full text
Abstract:
Photovoltaic solar cells can generate electricity directly from sunlight without emitting harmful greenhouse gases. This makes them ideal candidates as large scale future energy producers for the global energy economy. Ideally, solar cells should be efficient and inexpensive to compete in the global energy market. Unfortunately, a number of fundamental limitations exist for the efficiency due to fundamental loss mechanisms of the semiconductor materials used to make solar cells. One of the dominant loss mechanisms from a conventional silicon solar cell is the transparency of sub-bandgap near-infrared photons. Up-conversion is an optical process involving the sequential absorption of lower energy photons followed by luminescence of a higher energy photon. This mechanism could be exploited to minimise photovoltaic sub-bandgap losses. Rare-earth doped materials have ideal up-conversion luminescent properties and have been utilised for many near-infrared to visible applications. This thesis investigates the near-infrared to near-infrared up-conversion processes required for the sub-bandgap photon utilisation within a silicon photovoltaic device. Various sodium yttrium fluoride phosphors doped with rare-earths were characterised theoretically and experimentally. Erbium doped phosphors were found to be ideal for single wavelength power dependent investigations for the non-linear up-conversion processes. The radiative and non-radiative rates of various erbium doped sodium yttrium fluoride phosphors have been approximated and compared with experimental photoluminescence results. These phosphors have been applied to the rear of a bi-facial silicon solar cell and an enhancement in the near-infrared region has been demonstrated. An external quantum efficiency close to 3.4% was measured at 1523nm under 6mW laser excitation. The non-linear dependence on incident pump power has been investigated along with the dominant up-conversion mechanisms involved. It can be concluded that up-conversion phosphors can enhance the near-infrared spectral response of a silicon device. These phosphors have high luminescent efficiencies once up-conversion occurs, but suffer from poor infrared absorption and low up-conversion efficiencies. The results from this study show that relatively high doping levels of selected rare-earths into low phonon energy crystals can improve the absorption and luminescent properties of the phosphor.
APA, Harvard, Vancouver, ISO, and other styles
4

Dhesi, Sarnjett Singh. "Surface structure of rare-earth metals." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Harika, Rita 1979. "Advances in rare earth chemistry." Monash University, School of Chemistry, 2003. http://arrow.monash.edu.au/hdl/1959.1/5545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jehan, David Antony. "Magnetic structures in rare earth metals and superlattices." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Blyth, Robert I. R. "Bulk and surface electronic structure of rare earth metals." Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316767.

Full text
Abstract:
The basic properties of the rare earth metals, including single crystal growth, crystal and magnetic structures, and the relationship between electronic and magnetic structure, are reviewed. The problems encountered by the theoretical treatment of the partially occupied, but highly localised, lanthanide 4f levels as bands are discussed, and bandstructure calculations presented for the hexagonal close-packed rare earths. These are compared with available experimental and theoretical data. It is suggested that the exchange-splitting of the lanthanide valence bands may well persist in the paramagnetic state, and that account should be taken of the localised 4f moments in future calculations. The difficulties associated with the preparation of clean single crystal rare earth surfaces are described. The origin of the surface-orderdependent state seen in angle-resolved UV photoemission (ARUPS) spectra from rare earth (0/001) surfaces is discussed. (7 x 1) reconstructions of the (1120) surfaces of Ho, Er and Y are reported, with the resulting surface geometric and electronic structure being indistinguishable from those of the ideal (0001) structure. Momentum-resolved inverse photoernission measurements are presented for Y(000l), with results in good agreement with the calculated bandstructure. A comprehensive ARUPS study of the valence band of Ho(OOOl) is reported, and the results demonstrated to be entirely explicable in terms of emission from one-electron states. ARUPS data from Y(000l), Gd(000l) and Tb(000l) are presented, discussed in the light of the Ho results, and the conclusions of previous ARUPS studies of these surfaces revealed to be in error. Essentially similar ARUPS features are seen on all hcp rare earth (0001) surfaces so far studied and it is suggested that all other such surfaces will show the same features. The Ho(000l) 5p levels are shown to have significant band character, suggesting that further refinements to the band structure calculations are required.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoh, Soon Wen. "Oxidation catalysis using transition metals and rare earth oxides." Thesis, Cardiff University, 2014. http://orca.cf.ac.uk/69756/.

Full text
Abstract:
Oxygen abstraction together with CO adsorption and oxidation over palladium/platinum-doped cerium (IV) oxide and gold catalyst supported on iron (III) oxide were studied employing density functional theory with the inclusion of on-site Coulomb interaction (DFT+U). Hybrid functionals employing DFT method are able to re-produce structural properties for CeO2 that agrees well with experimental data. The localisation of two excess electrons upon the removal of an oxygen atom from the CeO2 lattice is well described by DFT+U and is found to be most favourable on two next nearest neighbour cerium sites from the vacancy site. This defective bulk structure gave an oxygen vacancy formation energy (Evac) of 2.45 eV using PW91+U (2.43 eV using PBE+U). The surface defect formation energies are calculated to be lower than that of the bulk structure. Other structures with different pair of Ce3+ sites at higher Evac are also present. At higher temperature, it is predicted that the energy gained from thermal heating will allow the defect structure to end up at one of the higher energy defective structures obtained. Both the CeO2 and α-Fe2O3 support are reduced more easily in the presence of transition metal atoms or clusters. Supported gold nanoparticle is found to affect the Evac on the α-Fe2O3(0001) surface only to a certain limited influential area around the nanoparticle. The Evac is reduced further when the Au atoms at the periphery sites are oxidised to give Au10O6 cluster. CO has weak interaction with the CeO2(111) surface. However, by doping the surface with Pd2+ and Pt2+ ions, CO is found to adsorb strongly at the three coordinated metal dopant that has a vacancy coordination site exposed on the surface. Weak adsorptions are also observed at the perimeter sites of Au10O6/α-Fe2O3(0001). Overall, it is predicted that CO oxidation, which follows the Mars-van Krevelen type mechanism can be enhanced by the presence of transition metal dopants or clusters. The continuous effort of researchers to reduce CO emission and the curiosity on where the excess electrons from the removed oxygen localised in the CeO2 system have been the motivation of this project. This work will provide insight on catalyst design and the understanding of the electronic structure of the systems studied.
APA, Harvard, Vancouver, ISO, and other styles
9

Vikström, Hanna. "Rare Metals: Energy Security and Supply." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-168130.

Full text
Abstract:
Lithium and neodymium are two critical materials in our modern society, many technological solutions depend on them. Lithium is used in batteries, which are used in cars and portable electronics. Neodymium, which is a rare earth element, is mainly used in permanent magnets which are used in smartphones, hard disc drives and turbines. There are many reports regarding the availability of the metals, with different results. The available data on the reserves varies considerably, from the few sources there are. In this report, based on geological availability, forecasts are done to investigate how much the production can increase and when it will peak. The prognoses are based on historic production to which different functions, the logistic, gompertz and richards, are fitted with the least square method. The production will peak in the end of this century and in the beginning of the next century for both metals. The production of lithium does not seem to be sufficient for both producing electric and hybrid cars with only li-ion batteries along with fusion. The neodymium production will be sufficient for producing a lower percentage of direct driven wind turbines and electric cars with NiMH batteries. Lithium in seawater is sometimes considered a future source. Since the lithium concentration is low, large volumes have to be processed in order to extract a reasonable amount of lithium. Currently it is not economic to extract lithium from seawater.
APA, Harvard, Vancouver, ISO, and other styles
10

Ueda, Junpei. "Spectral conversion materials using rare earth and transition metal ions for green photonics." Kyoto University, 2012. http://hdl.handle.net/2433/157659.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(人間・環境学)
甲第16948号
人博第591号
新制||人||141(附属図書館)
23||人博||591(吉田南総合図書館)
29623
京都大学大学院人間・環境学研究科相関環境学専攻
(主査)教授 田部 勢津久, 教授 杉山 雅人, 教授 加藤 立久
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
11

Kooy, Hendrikus Johannes. "Two-body operators and rare-earth spectroscopy." Thesis, [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13787330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ellerby, Mark. "Resistance and magnetization study of rare earth metals and compounds." Thesis, Birkbeck (University of London), 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kramer, Mathias. "Cationic alkyl and hydride complexes of the rare earth metals." Aachen Shaker, 2009. http://d-nb.info/998740497/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Coetzee, Louis-Charl Cloete. "A study of lanthanide complexes with di-2-pyridyl ligands." Thesis, Nelson Mandela Metropolitan University, 2016. http://hdl.handle.net/10948/4731.

Full text
Abstract:
The ligands di(2-pyridyl) ketone (DPK) and cis-1,2 di(2-pyridyl) ethylene (DPE) are N,N,Odonor ligands that can undergo nucleophilic addition and become more flexible for coordination. The reaction between the lanthanide thiocyanate salt and DPK gave rise to seven novel complexes of the general formula [Ln(NCS)3(DPKOH)3], where Ln = La, Ce, Nd, Eu, Tb, Dy and Ho. 1H NMR spectroscopy verified that the ligand underwent nucleophilic addition upon coordination. This was further confirmed using UV-Vis spectroscopy which showed a shift in the absorption bands due to conjugation of electrons within the pyridyl ring upon coordination. UV-Vis spectroscopy was also utilised to test the covalent character of the neodymium and holmium complexes. X-ray diffraction and IR spectroscopy showed that three DPK ligands coordinated bidentately through a pyridinic nitrogen and a hydroxyl oxygen, while three isothiocyanato molecules completed the coordination environment around each metal. Furthermore, X-ray diffraction also revealed that these complexes are isostructural, ninecoordinate and the polyhedron which encloses each ion is of trigonal tricapped prismatic shape with D3h symmetry. Micro-analysis on all the complexes, except lanthanum and holmium confirmed the molecular formulae produced from the crystallographic data of each complex. The reaction between the lanthanide thiocyanate salt and DPE produced poor quality crystals which could not be detected by X-ray diffraction. The lanthanide salts used for this reaction were lanthanum, neodymium, europium, dysprosium and holmium. Upon coordination, conductivity measurements detected the presence of lanthanide ions in each solution. 1H NMR and IR spectroscopic studies showed that the ethylenic moiety of DPE underwent nucleophilic addition upon coordination. UV-Vis spectroscopy further confirmed nucleophilic addition upon coordination due to shifts in absorption bands. IR spectroscopy verified the possibility of a bidentate coordination to each metal through a pyridinic nitrogen and a hydroxyl oxygen as well as a monodentate coordination through isothiocyanato ligands. A micro-analysis on all the complexes provided the molecular formulae that can best fit each complex. The effect of the solvent molecules on the bonding parameters of the lanthanum complex was investigated. An analysis of the results produced from crystallographic data revealed the presence of intermolecular forces which interacted and stabilised the complex.
APA, Harvard, Vancouver, ISO, and other styles
15

Madanhire, Tatenda. "Synthesis and characterisation of lanthanide complexes with nitrogen- and oxygen-donor ligands." Thesis, Nelson Mandela Metropolitan University, 2016. http://hdl.handle.net/10948/13127.

Full text
Abstract:
The reactions of Ln(NO3)3∙6H2O (Ln = Pr, Nd or Er) with the potentially tridentate O,N,O chelating ligand 2,6-pyridinedimethanol (H2pydm) were investigated, and complexes with the formula, [Ln(H2pydm)2(NO3)2](NO3) (Ln = Pr or Nd) and [Er(H2pydm)3](NO3)3 were isolated. The ten-coordinate Pr(III) and Nd(III) compounds crystallise in the triclinic space group P-1 while the nine-coordinate Er(III) complex crystallises in the monoclinic system (P21/n). The reaction of PrCl3∙6H2O with H2pydm yielded the compound, [Pr(H2pydm)3](Cl)3, that crystallises in the monoclinic system, space group P21/c with α = 90, β = 98.680(1) and γ = 90°. The nine-coordinate Pr(III) ion is bound to three H2pydm ligands, with bond distances Pr-O 2.455(2)-2.478(2) Å and Pr-N 2.6355(19)-2.64(2) Å. X-ray crystal structures of all the H2pydm complexes reveal that the ligand coordinates tridentately, via the pyridyl nitrogen atom and the two hydroxyl oxygen atoms. The electronic absorption spectra of complexes show 4f-4f transitions. Rare-earth complexes, [Ln(H2L1)2(NO3)3] [Ln = Gd, Ho or Nd], were also prepared from a Schiff base. The X-ray single-crystal diffraction studies and SHAPE analyses of the Gd(III) and Ho(III) complexes shows that the complexes are ten-coordinate and exhibit distorted tetradecahedron geometries. With proton migration occurring from the phenol group to the imine function, complexation of the lanthanides to the ligand gives the ligand a zwitterionic phenoxo-iminium form. A phenolate oxygen-bridged dinuclear complex, [Ce2(H2L1)(ovan)3(NO3)3], has been obtained by reacting Ce(NO3)3∙6H2O with an o-vanillin derived Schiff base ligand, 2-((E)-(1-hydroxy-2-methylpropan-2-ylimino)methyl)-6-methoxyphenol (H2L1). Hydrolysis of the Schiff base occurred to yield o-vanillin, which bridged two cerium atoms with the Ce∙∙∙Ce distance equal to 3.823 Å. The Ce(III) ions are both tencoordinate, but have different coordination environments, showing tetradecahedron and staggered dodecahedron geometries, respectively. The reaction of salicylaldehyde-N(4)-diethylthiosemicarbazone (H2L2) in the presence of hydrated Ln(III) nitrates led to the isolation of two novel compounds: (E)-2[(ortho-hydroxy)benzylidene]-2-(thiomethyl)-thionohydrazide (1) and bis[2,3-diaza4-(2-hydroxyphenyl)-1-thiomethyl-buta-1,3-diene]disulfide. The latter is a dimer of the former. For this asymmetric Schiff base, 1 and the symmetric disulfide, classical hydrogen bonds of the O–H∙∙∙N as well as N–H∙∙∙S (for 1) type are apparent next to C–H∙∙∙O contacts. 4-(4-Bromophenyl)-1-(propan-2-ylidene)thiosemicarbazide was also prepared upon reacting 4-(4-bromophenyl)-3-thiosemicarbazide with acetone in the presence of ethanol and La(NO3)3∙6H2O. The C=S bond length was found to be 1.6686(16) Å which is in good agreement with other thioketones whose metrical parameters have been deposited with the Cambridge Structural Database. Classical hydrogen bonds of the N–H∙∙∙N and the N–H∙∙∙Br type are observed next to C–H∙∙∙S contacts. All synthesised compounds were characterised by microanalyses, single-crystal X-ray diffraction (except for [Nd(H2L1)2(NO3)3]), 1H NMR and IR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
16

Al-Maghrabi, Mufied Mahmoud. "Thermoluminescence spectra from sulphates, fluorides and garnets doped with rare earth ions." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366054.

Full text
Abstract:
Luminescence measurements have been applied to three different structures namely, sulphate, fluorides and YAG. In all cases the RE doping suppresses the intrinsic emission and results in intense luminescence characteristic of the RE dopant. Additionally, in double doped samples, or contaminated ones, the TL data show that each dopant defines a glow peak, which is displaced in temperature relative to the others. Examples of this were discussed for CaS04:Ce,Mn; YAG:Nd,Tb,Cr,Mn; BaF2:Ho,Ce and BaF2:Tm,Ce. The data are discussed in terms of an energy transfer model between different parts of extended defect complexes which encompass the RE ion and the lattice defects. Calcium sulphate doped with Dy define a TL peak near 200°C suitable for radiation measurements, but when co-doped with Ag the TL peak move to higher temperatures with minor effects on the peak sensitivity. In Ce,Mn double doped samples, the peak temperatures differ by -7°C between the Ce and Mn sites. The TL glow curves from alkaline earth fluorides are complex and contain several overlapping peaks. Curve fitting show that the peak maxima below room temperature are insensitive to the RE dopant. Additionally the host material has a modest effect on the peak positions. Above room temperature each dopant provides a TL curve specific to the added RE ion and do not show common peaks. Concentration has many effects on the resultant glow curve, and even at the lowest concentration used here (0.01%) there is evidence of cluster formation. Samples with high RE content show low values of the frequency factor consistent with the energy transfer model in that the emission from RE-RE cluster dominates over the emission from direct charge recombination within the defect complex. The effect of concentration and the TL mechanism operating below room temperature are also discussed. Luminescence signals from the near surface of YAG:Nd (via CL) were contrasted with those from the bulk material via RL. Results indicate that the outer few micron layers differ significantly in luminescence response from the bulk crystal. The differences were ascribed to result from solvents that enter the YAG lattice during the growth stage or subsequently from cleaning treatments via the dislocations caused by cutting and polishing. Additionally, the growth stage may include gases from the residual air in the growth furnace trapped into the YAG lattice. In each case there is a discontinuity in luminescence intensity and/or emission wavelengths at temperatures which mach the phase transitions of the contaminants. At the transition temperature there will be a sudden pressure change and this will induce surface expansion or bulk compression. The differences between the two cases were detected by the alternatives of CL and RL excitation, where the Nd or Er lines have moved in opposite directions. The detection of such low concentrations of solvents/trapped gases by luminescence is extremely difficult due to experimental limitations. Hence their role in luminescence generation is normally ignored.
APA, Harvard, Vancouver, ISO, and other styles
17

Farok, Haitham Mohammed. "Fluorescence and Raman spectra of rare earth metaphosphate glasses and pentaphosphate crystals." Thesis, University of Bath, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shah, N. J. "Hyperfine interactions in amorphous and crystalline alloys containing rare earth metals." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.377743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Webb, Helen Rachael 1975. "Interaction of the rare earth ions with p-sulfonatocalix[4]arene and 18-crown-6." Monash University, Dept. of Chemistry, 2001. http://arrow.monash.edu.au/hdl/1959.1/9076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jin, Geng Bang. "Synthesis and characterization of new Lanthanide chalcogenides." Auburn, Ala., 2007. http://repo.lib.auburn.edu/07M%20Dissertations/JIN_GENGBANG_37.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Aggarwal, Jugdeep K. "The mobility of trace elements and boron isotopes in Icelandic hydrothermal systems." Thesis, University of Bristol, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Tobash, Paul H. "Synthesis, structure, bonding, and physical properties of novel binary and ternary rare-earth metal germanides." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 514 p, 2009. http://proquest.umi.com/pqdweb?did=1833646491&sid=11&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bao, Guochen. "The study of photophysical properties of organic-lanthanide hybrid materials and their applications." HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/773.

Full text
Abstract:
Designing hybrid materials allows leveraging the properties of different material systems to achieve novel functions. Significant progress has been made in recent years to exploit the physicochemical properties of a new generation of hybrid materials for emerging biomedical applications. In Chapter 1, I review the recent advances in the field of dye-lanthanide hybrid materials, centring on the interface between organic dyes and inorganic lanthanide materials and investigating their photophysical and photochemical properties. Five representative dye-lanthanide hybrid material systems including lanthanide complex, dye-sensitised downshifting nanoparticles (DSNPs), dye-sensitised downconversion nanoparticles (DCNPs), dye-sensitised upconversion nanoparticles (UCNPs), and UCNPs-dye energy transfer systems have been thoroughly discussed. We highlight the key applications of dye-lanthanide hybrid materials in bioimaging, sensing, drug delivery, therapy, and cellular activity studies. In Chapter 2, I design and synthesize an ytterbium complex-based sensor for the detection of Hg2+ ions. The water-soluble ytterbium complex exhibits reversible off−on visible and NIR emission upon the binding with mercury ion. The fast response and 150 nM sensitivity of Hg2+ detection are based upon FRET and the lanthanide antenna effect. The reversible Hg2+ detection can be performed in vitro, and the binding mechanism is studied by NMR employing the motif structure in a La complex and by DFT calculations. In Chapter 3, I report a pair of stoichiometric terbium-europium dyads as molecular thermometers and study their energy transfer properties. A strategy for synthesizing hetero-dinuclear complexes that contain chemically similar lanthanides is developed. By this strategy, a pair of thermosensitive dinuclear complexes, cycTb-phEu and cycEu-phTb, was synthesized. Their structures were geometrically optimized with an internuclear distance of approximately 10.6 Å. The dinuclear complexes have sensitive temperature-dependent luminescent intensity ratios of europium and terbium emission, and temporal dimension responses over a wide temperature range (50 - 298 K and 10 - 200 K, respectively). This indicates that both dinuclear complexes are excellent self-referencing thermometers. In Chapter 4, I investigate spectral structure and intensity changes of a pair of dinuclear complexes with a europium ion on cyclen site and a lanthanum ion on phen site or vice verses (cycEu-phLa and cycLa-phEu). Though they have the same components and the same energy levels, they present different photophysical properties due to the different coordination environment. The band positions are different in the emission spectra. The emission of cycEu-phLa showed a stronger relative intensity of 5D0 7F2 transition whereas the relative intensity of 5D0 7F4 transition was weaker in comparison with cycLa-phEu. We found the cycEu-phLa have higher internal quantum efficiency while the cycEu-phLa have higher sensitizing efficiency, though they have similar external quantum yield. We determined the singlet-triplet intersystem crossing rate with values as ~108 s-1. In Chapter 5, I exploit a dye sensitised upconversion nanoparticle with highly enhanced upconversion emission. I designed and synthesized a new dye by connecting tetraphenylethene (TPE) with the cyanide NIR dye, IR783. The resultant compound (TPEO-IR783) has a quantum yield of 22.46% which is 3 times higher than that of reported UCNP sensitiser (IR806). The TPEO-IR783 exhibits a transparent window in a range of 400 nm to 600 nm, making it suitable sensitiser for upconversion nanoparticles by avoiding reabsorption. The TPEO-IR783 sensitised UCNPs show more than 200-fold upconversion emission than the reported IR806 sensitised UCNPs under the same condition. In Chapter 6, I develop an ytterbium nanoparticle-mediated upconversion system. The system enables the singlet energy transfer from sensitisers to acceptor triplet states without the requirement of intersystem crossing. I evaluate the hybrid upconversion design by IR808 and rubrene acid. While the mixture of IR808 and rubrene acid does not show any upconversion emission, the introduction of an intermediate ytterbium energy level by adding NaGdF4:Yb nanoparticles displays strongly enhanced upconversion emissions. This design bypasses the specific requirement of traditional sensitisers in TTA system, providing a wide range of opportunities in deep tissue applications. Chapter 7 is the experiment sections where details of materials, characterizations, and synthetic procedures in each chapter have been provided.
APA, Harvard, Vancouver, ISO, and other styles
24

Mkwakwi, Kwakhanya. "Synthesis and characterisation of lanthanide complexes with O,O-donor ligands: towards a new generation of hydrophosphonylation catalysts." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/11986.

Full text
Abstract:
This study investigates the coordination behaviour of potentially bi- and tridentate O,O- and O,N,O-donor Schiff base ligands with trivalent lanthanide ions. The reactions of lanthanide nitrates with 2-((E)-(tert-butylimino)methyl)-6-methoxyphenol (HL1) have yielded five complexes that are described by the general formula [Ln(HL1)2(NO3)3] (Ln = Ce, Nd, Gd, Ho and Er) and were characterised using physico-chemical techniques including single-crystal X-ray diffraction spectroscopy. The cerium complex crystallised in a triclinic (P-1) space group, while the rest of the complexes crystallised in the monoclinic (P21/c) space group. All the complexes are ten-coordinate adopting a tetradecahedron geometry with two HL1 molecules coordinated through the phenolic and methoxy oxygen atoms. The coordination sphere is completed by six oxygen atoms from three bidentately coordinated nitrate ligands. Electronic data reveals that only the neodymium, holmium and erbium complexes exhibit weak f-f transitions in the visible region. The redox behaviour of the complexes was also investigated and reported. Five novel complexes were prepared by reacting 2-((E)-(tert-butylimino)methyl)phenol (HL2) with [Ln(NO3)3∙xH2O] (Ln = Gd and Dy ; x = 5 or 6) and [LnCl3∙6H2O] (Ln = Nd, Gd and Dy). The crystal structures of the former two complexes are isostructural and the coordination sphere is composed of three HL2 ligands bonded to the metal centre through the phenolic oxygen atom and three nitrate ions coordinated in a bidentate fashion. Both complexes are nine-coordinate and SHAPE analysis reveals that they adopted a muffin geometry. The average Ln-Onitrate and Ln-Ophenolate bond lengths are 2.5078 and 2.2814 Å, respectively. The complexes derived from the chloride salts exhibited an octahedral geometry with four monodentate ligands [Ln-Ophenolate distances range from 2.224(4) to 2.2797(17) Å] coordinating in the equatorial positions and two chloride ions [average Ln-Cl bond length is 2.6527 Å, and average Cl-Ln-Cl angles is 180o] in axial positions. The ligand coordinated through the phenolic oxygen with the phenolic proton migrating to the imino nitrogen to give a zwitterionic form of the ligand. There are weak C-H∙∙∙Cl interactions present and O-H∙∙∙N hydrogen bonds are also observed in the crystal packing. The synthesis of lanthanide complexes with methoxy-6-((E)-(phenylimino)methyl)phenol (HL3) was carried out in methanol to yield two mononuclear complexes with the formulae [Nd(HL3)2(NO3)3] and [Ho(HL3)(NO3)3(DMF)(H2O)]. Single-crystal crystallographic studies shows that the neodymium complex contains two HL3 ligands coordinated bidentately through its methoxide and phenolic oxygen atoms, with three nitrate ions also bonded to the metal in a bidentate manner. The coordination geometry in the holmium complex is composed of only oxygen atoms from the various ligands. Both complexes are ten-coordinate and exhibit a tetradecahedron geometry.
APA, Harvard, Vancouver, ISO, and other styles
25

Dai, Lixiong. "Structural modifications to optimise lanthanide luminescence." HKBU Institutional Repository, 2017. http://repository.hkbu.edu.hk/etd_oa/403.

Full text
Abstract:
Luminescent lanthanide coordination complexes have attracted significant attention due to their unique optical properties. The poor absorption of a lanthanide ion can be resolved by so-called antenna effect and improve the intensity of its luminescence. Three bidentate chromophores: phosphate-pyridine chromophore, 1,2-Hydroxy pyridone (1,2-HOPO) and 2-thenoyltrifluoroacetone (TTA), functioned as both chelator and sensitizer, their energy levels are well matched with the excited state energy levels of the Eu(III) and Sm(III).. To get highly luminescent and stable lanthanide complex, we designed and synthesized various Eu(III) complexes with different backbones to compare different parameters that will affect the sensitizing efficiency of the chromophores, such as rigidity, geometry and coordination saturation.. In chapter two we combined the phosphate-pyridine chromophore with the well-studied cyclen-based chelator to fulfil the requirement of high stability and brightness. We designed a nine-coordinate europium(III) complex as platform, through coupling reactions to realise fast screen of the chromophores energy transfer efficiency.. Chapter three focuses on the structure modifications based on the chromophore of 1,2-HOPO, different chelators and backbones were compared, a europium complex EuL4 with the highest quantum yield with this chromophore was obtained and it could goes into cells and localized on lysosome very fast. Two-phonon in vitro imaging was done which showed its high potential bioapplications.. Chapter four focuses on the structure modification based on the chromophore of TTA. Different backbone directly determined the europium complexes saturation number and sensitization efficiency, therefore, their quantum yields.
APA, Harvard, Vancouver, ISO, and other styles
26

Steinberg, Simon [Verfasser]. "Early Rare-Earth Metal Cluster Complexes With Endohedral Transition Metals / Simon Steinberg." München : Verlag Dr. Hut, 2013. http://d-nb.info/1042307504/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Krupin, Oleg. "Dichroism and Rashba effect at magnetic crystal surfaces of rare earth metals." [S.l. : s.n.], 2004. http://www.diss.fu-berlin.de/2004/249/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Robinson, Katie Jane. "Electrochemical studies of rare earth and transition metals in molten NaCl-KCl." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296988.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zarychta, Bernard. "Theory of resonant x-ray scattering in the heavy rare earth metals." Thesis, Keele University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486008.

Full text
Abstract:
The basic structural &magnetic properties of rare earth ions and metals are discussed.A theory of the electronic structure of rare earth ions is introduced using Self Interaction Corrected Relativistic Spin polarised Density FUnctional Theory (SIC-R-SP-DFT). The ~rystal environment is modelled using the Linear Muffin Tin Orbital (LMTO) method. X-ray scattering from a single electron is discussed using covariant perturbation theory and is then elaborated on for the SIC-R-SP-LMTO environment. The details of the xray scattering calcul~tions are considered. Results for x-ray scattering from the heavy rare earths from Gadolinium to Thulium are compared to experiment. It is found that the asymmetry ratio determined in an ab-initio fashion using the aforementioned elements compares favourably with experimental data. The secondary feature of the asymmetry ratio for a particular geometry is found to be dipolar in nature.
APA, Harvard, Vancouver, ISO, and other styles
30

張志成 and Chi-shing Samuel Cheung. "Ni and rare-earth metals in-diffusion in LiNbO3 for waveguide application." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31215117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kramer, Mathias [Verfasser]. "Cationic Alkyl and Hydride Complexes of the Rare-Earth Metals / Mathias Kramer." Aachen : Shaker, 2009. http://d-nb.info/1161300929/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Struckmann, Mona [Verfasser]. "Reactions of Rare Earth and transition metals under harsh conditions / Mona Struckmann." Gießen : Universitätsbibliothek, 2018. http://d-nb.info/116957095X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Cheung, Chi-shing Samuel. "Ni and rare-earth metals in-diffusion in LiNbO3 for waveguide application /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19982094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lim, Chee Ming. "Automated ultrasound studies of magnetoelastic effects in rare earth metals and alloys." Thesis, University of Warwick, 1998. http://wrap.warwick.ac.uk/91220/.

Full text
Abstract:
Ultrasound studies of single crystals of Er, Tm and alloys of Er-Tm were carried out as a function of temperature (4.2 - 300 K) and applied magnetic field (0 – 5 T). The elastic constants of these materials were measured and anomalies in the elastic constants were observed. The ultrasound data were compared with reported results from other material characterisation techniques and the magnetic phases and transition temperatures of the materials were then identified. The effects of the application of magnetic field on the magnetic ordering of the materials were studied using the ultrasound method. In Er-Tm there was evidence of applied field (a-axis field and c-axis field) induced ordering in the cycloid phase and c-axis applied magnetic field of > 3 T resulted in the ferrimagnetic to ferromagnetic transition in Tm. A commercial ultrasound measurement system was modified and adapted for use in this work. The modified system enables the ultrasonic velocity and attenuation to be measured as a function of: (a) temperature, (b) applied magnetic field and (c) frequency. The present system was enhanced to work with less efficient ultrasonic transducers such as quartz and electromagnetic acoustic (EMAT) transducers. This work looked at the design and feasibility of using EMATs to generate ultrasound in single crystals of the rare earth metals and alloys. EMATs generating (a) in-plane radially polarised shear waves and (b) longitudinal waves were made and shown to work on these materials. The use of EMATs meant that ultrasound measurements could be conducted in the non-contact regime, i.e. no acoustic couplant is required between the sample and transducer. EMATs are particularly useful in this work where the sample and transducer are subjected to repeated temperature cycles over a wide temperature range (4.2 to 300 K) and acoustic couplant can fracture. The EMAT acoustic coupling efficiency in these samples were studied as a function of temperature and applied magnetic field. Large increases in the EMAT acoustic coupling efficiency (combination of generation and detection efficiencies) often occur close to the magnetic phase transition temperatures of the samples.
APA, Harvard, Vancouver, ISO, and other styles
35

Johnson, Kevin Ross David. "An investigation of novel reactivity and bonding in rare earth metal complexes." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Chemistry and Biochemistry, c2012, 2012. http://hdl.handle.net/10133/3329.

Full text
Abstract:
The synthesis, structure and reactivity of organolanthanide complexes supported by a family of novel bis(phosphinimine)carbazole and bis(phosphinimine)pyrrole pincer ligands is presented. Through the systematic development of the ligand frameworks, rare earth metal species with unique structure and reactivity were encountered. A variety of complexes that exhibited unusual bonding modes were prepared and characterized by single-crystal X-ray diffraction and multinuclear NMR spectroscopy. Modulation of the ligand frameworks allowed for rational manipulation of the steric and electronic environment imparted to the metal. Incorporation of a variety of N-aryl rings (mesityl, phenyl, para-isopropylphenyl and 2-pyrimidine) and PR2 moieties (PPh2, PO2C2H4 and PMe2) into the ligand design led to rare earth complexes that revealed diverse reaction behaviour. In particular, C–H bond activation, sigmatropic alkyl migration and ring opening insertion reactivity were observed. Kinetic and deuterium labeling studies are discussed with respect to the unique reaction mechanisms encountered during the study of these highly reactive organometallic rare earth complexes.
xxvi, 247 leaves : ill. (some col.) ; 29 cm + 1 CD-ROM
APA, Harvard, Vancouver, ISO, and other styles
36

Luo, Haihua. "Synthesis and characterization of rare-earth-iron based hard magnetic materials /." free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yilmaz, Serkan. "Optimization Of Conditions Of Metallothermic Reduction Of Rare Earth Preconcentrates." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608189/index.pdf.

Full text
Abstract:
Rare earth ferrosilicon alloy is an important additive for ferrous metallurgy. It is mainly used to control the detrimental effects of sulfur in steel and to modify graphite structures in cast iron. The aim of this study was to optimize the conditions for the production of rare earth ferrosilicon alloy by metallothermic reduction process using a preconcentrate prepared from a bastnasite type of ore present in the Beylikahir-EskiSehir region of Turkey. In this study, the rare earth preconcentrate was reduced by aluminum together with ferrosilicon and rare earth ferrosilicon alloys were produced. The optimum conditions of reduction, which are time, temperature, reducer amounts and the basicity of the slag phase, were investigated by smelting in an induction furnace. At the end of the study, a rare earth ferrosilicon alloy containing 39.3 % rare earths, 37.5 % silicon, 19.3 % iron and 3.9 % aluminum was produced under the optimum conditions determined with 57.7 % rare earth metal recovery.
APA, Harvard, Vancouver, ISO, and other styles
38

Nishi, Masayuki. "Studies on 4f-4f transition spectra of trivalent rare-earth ions in oxide materials." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Eames, Christopher. "LEED and ab initio study of rare earth metals on silicon and germanium." Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides /." Connect to this title, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hopkinson, David Mark. "Reducing rare earth consumption in Nd₂Fe₁₄B magnets through controlled nanostructures." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wong, Ka-Leung. "Synthesis, characterization, and photophysical studies of organic-lanthanide complexes." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B36875351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mathur, Neil David. "Quantum order in heavy fermion systems." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Luo, Yuxia. "The study of energy transfer and local field effect in lanthanide complexes with high and low symmetry." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/696.

Full text
Abstract:
There are lots of important applications for lanthanides (Ln) because of their unique properties. The properties are closely linked to the environment of the crystal field. Thus, two kind of crystals Cs2NaLn(NO2)6 with high Th point-group symmetry and LnPO4 with monoclinic symmetry were chosen to study quantum cutting and Stokes shift. Quantum cutting is a kind of down-conversion energy transfer in which one excitation ultraviolet photon is transformed into multiple near infrared photons. This phenomenon has been studied in Cs2NaY0.96Yb0.04(NO2)6. The emission from Yb3+ can be excited via the NO2- antenna. The electronic transition of NO2- is situated at more than twice the energy of the Yb3+. At room temperature, one photon absorbed at 470 nm in the triplet state produced no more than one photon emitted. Some degree of quantum cutting was observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into singlet and triplet state. The quantum efficiency was about 10% at 25 K. In Chapter 3, Stokes shift which is the energy shift between the peak maxima in absorption and emission was studied. Stokes shift is related to the flexibility of the lattice and the coordination environment. Cs2NaCe(NO2)6 with 12-coordinated Ce3+ situated at a site of Th symmetry demonstrated the largest Ce-O Stokes shift of 8715 cm−1. The 4f1 ground state and 5d1 potential surfaces have displaced so much along the configuration coordinate that overlap takes place above the 5d1 minimum, leading to thermal quenching of emission at 53 K. A comparison of Stokes shifts with other Ce-O systems with different coordination number demonstrated larger Stokes shifts for Ce3+ ions with higher coordination number. Systematic research about the energy transfer (ET) and energy migration phenomenon is still scarce, although they exist extensively among lanthanide ions. The energy migration in highly doped materials has been stated as very fast or slow, but no experimental proof was reported. In Chapter 4, the ET between Tb3+ and Eu3+ was investigated experimentally and compared with available theoretical models in the regime of high Tb3+ concentrations in 30 nm LaPO4 nanoparticles at room temperature. The ET efficiency approached 100% even for lightly Eu3+-doped materials. The use of pulsed laser excitation and switched-off continuous wave laser diode excitation demonstrated that the energy migration between Tb3+ ions, situated on La3+ sites with a 4 Å separation was not fast. The quenching of Tb3+ emission in singly doped LaPO4 only reduced the luminescence lifetime by about 50% in heavily doped samples. Various theoretical models have been applied to simulate the luminescence decays of Tb3+ and Eu3+-doped LaPO4 samples of various concentrations. The transfer mechanism has been identified as forced electric dipole at each ion. The control of energy transfer rate and efficiency is also an important issue. There are many chemical and geometrical factors that affect energy transfer, including the spectra overlap, the dipole orientation and the distance between the donor and acceptor. The local field of the emission center is another factor that affect the energy transfer by changing the photonic environment. In Chapter 5, the local field effect on the energy transfer between Tb3+ and Eu3+ doped in LaPO4 dispersed in different solvents and solids with a wide range of refractive indexes was studied. The effects of local field (reflected by refractive index) on the ET efficiency and ET rates were clarified that the ET efficiency would decrease with increasing refractive index, while ET rates were independent of the refractive index
APA, Harvard, Vancouver, ISO, and other styles
45

Zhou, Yan. "Synthesis, photophysical and biological studies of lanthanide complexes for photodynamic therapy." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/467.

Full text
Abstract:
1.2\xPrior to the PDT, we have also synthesized a series of water-soluble homoleptic lanthanides (Ln3+ = Gd, Er, and Yb) sandwich (DD) di-PEGylated porphyrin complexes. The Yb complex (YbDD) has shown the same NIR emission quantum yield as the highest record Yb complex in the literature (Yb-RhB), yet, the emission intensity is double compared to the Yb-N. This implies a new thinking about the quantity measurement for biological imaging. The brightness might be the prime factor for the development of luminescence in vitro/in vivo imaging agent rather than the emission quantum yield.
APA, Harvard, Vancouver, ISO, and other styles
46

Jones, Daniel M. "A convergent beam electron diffraction study of some rare-earth perovskite oxides." University of Western Australia. School of Physics, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0057.

Full text
Abstract:
This work describes detailed convergent beam electron diffraction (CBED) studies of GdAlO3 and LaAlO3 perovskites. CBED patterns tilted away from major zone axes have been found to have high sensitivity to the presence of mirror or glide mirror symmetry. Such patterns confirm to high accuracy that the space group of GdAlO3 is orthorhombic, Pnma. Tilted patterns from this well characterised structure also serve as benchmarks against which similar patterns may be compared. In the case of LaAlO3, tilted patterns enable the space group to be confirmed as rhombohedral R3c, previously claimed to be cubic (Fm3c) by CBED. Furthermore, no evidence for the low symmetry (I2/a or F1) phases proposed for LaAlO3 has been observed. The LaAlO3 study also gives a careful assessment of the influence of tilted specimen surfaces on the CBED data. Within the qualitative scope of these experiments, no symmetry degrading effects could be observed. Some preliminary Quantitative CBED (QCBED) data from LaAlO3 is also presented. This shows it will be possible to make a detailed study of the bonding charge density (Δρ) in this material when combined with X-ray diffraction data. Also included is a brief CBED study of LaFeO3, a material that is isostructural with GdAlO3. Although this is restricted to exact zone axis patterns, it is noted that tilted patterns have significant potential to improve the quality of the symmetry determination.
APA, Harvard, Vancouver, ISO, and other styles
47

Brown, TJ. "Geology & Geochemistry of the Kingman Feldspar, Rare Metals and Wagon Bow Pegmatites." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1280.

Full text
Abstract:
In the Mojave Pegmatite district, located in northwestern AZ, numerous pegmatites intrude syn- to post-collisional Paleoproterozoic granitic rocks. The slightly older Cerbat plutons are associated with the suturing of the Mojave and Yavapai terranes whereas Aquarius granites were emplaced during the Yavapai Orogeny as the sutured terranes docked with North America. A detailed study of 5 pegmatites shows that they are zoned with composite cores and contain REE minerals characteristic of NYF pegmatites. However, they exhibit characteristics atypical for NYF pegmatites including F depletion, white microcline, an absence of columbite and, in the Rare Metals pegmatite, have muscovite and beryl. With the exception of the Kingman pegmatite, they exhibit normal LREE-HREE distributions. The Kingman pegmatite is extremely LREE enriched, HREE depleted and exhibits an unusual Nd enrichment which, in some cases, is sufficiently high that allanite is Nd dominant, thus a new mineral species, allanite-Nd.
APA, Harvard, Vancouver, ISO, and other styles
48

Weber, Peter. "Spin dependent transport and magnetic ordering in rare earth metals infrared spectroscopy on holmium /." [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11293366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rangavittal, Bharath Vasudev. "Optimization of Rare Earth Metals (REM) addition in high temperature stainless steel grade 253MA." Thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-257206.

Full text
Abstract:
The focus of this thesis work is to optimize rare earth metal (REM) addition in Therma 253MA, an austenitic stainless-steel grade in order to get a good trade-off between oxidation resistance property and the amount of big REM inclusions formed. Big REM inclusions are detrimental to material properties and REM is required to be dissolved in the matrix for improving the oxidation resistance. REM optimization can also lead to economical savings for Outokumpu. The distribution of REM between matrix and inclusion is affected by factors such as REM addition, initial oxygen and sulphur contents and time to casting of the melt. The re-oxidation of melt in the tundish also affects the REM distribution. Hence, the effect of these factors on the inclusion characteristics is investigated by analysing samples with different REM additions, using light optical microscope (LOM) and scanning electron microscope (SEM). LOM analysis focussed on stringer inclusion characteristics. SEM+EDS analysis is done using automated "INCA Feature" software with focus on overall inclusion characteristics. Oxidation and creep tests are also performed to study the effect of different REM additions on oxidation and creep behaviour. The results from inclusion analysis show that increasing REM addition and time to casting has a bad effect on stringer and overall inclusion characteristics. The re-oxidation in the tundish influences the inclusion formation, but does not affect the stringer characteristics. The resistance to oxidation of the samples is also compared and is observed to increase within increasing REM addition. Finally, this works suggests an optimal REM addition for Therma 253MA to get a good balance between oxidation resistance and amount of big inclusions.
Fokus för detta avhandlingsarbete är att optimera tillsats av sällsynt jordartsmetall (REM) i Therma 253MA, en austenitisk rostfritt stålkvalitet för att få en bra avvägning mellan oxidationsbeständighetsegenskap och mängden stora REM-inneslutningar som bildas. Stora REM-inneslutningar är skadliga för materialegenskaperna och REM måste lösas i matrisen för att förbättra oxidationsbeständigheten. REM-optimering kan också leda till ekonomiska besparingar för Outokumpu. Fördelningen av REM mellan matris och inkludering påverkas av faktorer såsom REM-tillsats, initialt syre- och svavelinnehåll och tid till gjutning av smältan. Re-oxidation av smälta i tunden påverkar också REM-fördelningen. Följaktligen undersöks effekten av dessa faktorer på inkluderingsegenskaperna genom att analysera prover med olika REM-tillsatser, med användning av ljusoptiskt mikroskop (LOM) och avsökning av elektronmikroskop (SEM). LOM-analys fokuserade på stringer-inkluderingsegenskaper. SEM + EDS-analys görs med hjälp av automatiserad "INCA Feature" -programvara med fokus på övergripande inkluderingsegenskaper. Oxidations- och krypningstest utförs också för att studera effekten av olika REM-tillsatser på oxidation och krypbeteende. Resultaten från inkluderingsanalys visar att ökande REM-tillsats och tid till gjutning har en dålig effekt på stringer och totala inkluderingsegenskaper. Återoxidationen i tunden påverkar inkluderingsbildningen, men påverkar inte stringeregenskaperna. Motståndet mot oxidation av proverna jämförs också och observeras öka inom ökande REM-tillsats. Slutligen föreslår detta ett optimalt REM-tillägg för Therma 253MA för att få en bra balans mellan oxidationsmotstånd och mängd stora inneslutningar.
APA, Harvard, Vancouver, ISO, and other styles
50

Lozano, Letellier Alba. "Geochemistry of rare earth elements in acid mine drainage precipitates." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.

Full text
Abstract:
Rare earth elements (REE) are known as the lanthanide series (La-Lu) plus yttrium (Y) and scandium (Sc). REE are essential materials for modern industries and especially for green technologies (wind turbines, batteries, lasers, catalysts, etc.). However, despite their high global demand, their supply is limited such that the EU has cataloged it as critical raw materials. In order to ensure the supply of REE in the future, the search for alternative sources of these elements worldwide has been promoted in recent years. Acid mine drainage (AMD) produced by the Fe-sulphide weathering can effectively leach Fe, Al, SO4, and REE from the host rock. This can lead to high concentrations of these liberated species in the affected waters. Thus, the REE concentrations in AMD can be between two and three orders of magnitude higher than natural waters, as such it can be considered as a complementary source of REE recovery. The increase of pH in AMD by mixing neutral waters results in the precipitation of iron oxy-hydroxysulfate (schwertmannite) from pH 3-3.5, and aluminum (basaluminite) from pH 4-4.5 in the river channels. This process may be accompanied by REE scavenging. Due to its acidity and high metal load, acid mine drainage presents a major environmental problem worldwide, therefore, different treatment systems have been developed to minimize its impact. Disperse Alkaline Substrate (DAS) passive remediation system neutralizes AMD by dissolving calcite, and allowing the sequential precipitation of schwertmannite and basaluminite in separated layers, where REE are preferably retained in the basaluminite-enriched waste. Despite this, there are still no studies describing the adsorption of REE on both basaluminite and schwertmannite in these environments. The REE scavenging mechanism is studied by adsorption on synthetic minerals of basaluminite and schwertmannite as a result of variation to the both the pH and sulfate concentration. A thermodynamic adsorption model is proposed based on experimental results in order to predict and explain the REE mobility in AMD mixtures with neutral waters and in a passive treatment system. Basaluminite and schwertmannite have a nanocrystalline character. Further, schwertmannite has been observed to transform into goethite on weekly timescales, resulting in sulfate release. However, there is a gap of knowledge about basaluminite stability at variable sulfate concentration and pH and its possible transformation to other more crystalline Al-minerals. In this study, basaluminite local order at different pH values and dissolved sulfate concentrations was characterized. Results demonstrate that basaluminite can transform to nanoboehmite in weeks under circumneutral pH. However, the presence of sulfate can inhibit this transformation. Separate adsorption experiments on both basaluminite and schwertmannite were performed with two different concentrations of SO4 while varying the pH (3-7). Results show that the adsorption is strongly dependent on pH, and to a lesser extent on sulfate concentration. Lanthanide and yttrium adsorption is most effective near pH 5 and higher, while that of scandium begins around pH 4. Due to the high concentrations of sulfate in acidic waters, the predominant aqueous REE species are sulfate complexes (MSO4+). Notably, Sc(OH)2+ represents a significant proportion of aqueous Sc. , A surface complexation model is proposed in which predominant aqueous species (Mz+) adsorb on the mineral surface, XOH, following the reaction: The adsorption of the lanthanides and yttrium occurs through the exchange of one and two protons from the basaluminite and schwertmannite surface, respectively, with the aqueous sulfate complexes. The sorbed species form monodentate surface complexes with the aluminum mineral and bidentate with the iron mineral. In the case of Sc, the aqueous species ScSO4+ and Sc(OH)2+ form bidentate surface complexes with both minerals. EXAFS analysis of the YSO4+ complex adsorbed on the basaluminite surface suggests the formation of a monodentate inner sphere complex, in agreement with the proposed thermodynamic model. Once the surface complexation model was validated, it was used to asses and predict the REE mobility in passive remediation systems and acidic water mixing zones with alkaline inputs from the field. The REE are preferentially retained in basaluminite-rich waste during passive remediation due to its sorption capacity between pH 5-6. In contrast, schwertmannite waste contains very little REE because the formation of this mineral occurs at pH lower than 4, which prevents REE adsorption. Further, Sc may be scavenged during schwertmannite precipitation as a result of this low pH The model correctly predicts the absence of REE in schwertmannite precipitates and the enrichment of the heavy and intermediate REE with respect to the light REE in basaluminite precipitates collected in the water mixing zones. However, there is a systematic overestimation of the fractionation of rare earths in basaluminite precipitate. This inaccuracy is mainly due to the fact that the mineral precipitation and adsorption are not synchronous process, while basaluminite precipitates from pH 4, REE adsorption occurs at higher pH values, between 5 and 7, when the water mixture reaches these values and a fraction of the particles have been dispersed.
Las tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography