Academic literature on the topic 'Rare Earth Elements spectra'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rare Earth Elements spectra.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rare Earth Elements spectra"

1

Suzuki, Chihiro, Fumihiro Koike, Izumi Murakami, Naoki Tamura, Shigeru Sudo, and Gerry O’Sullivan. "Soft X-Ray Spectroscopy of Rare-Earth Elements in LHD Plasmas." Atoms 7, no. 3 (July 3, 2019): 66. http://dx.doi.org/10.3390/atoms7030066.

Full text
Abstract:
Soft X-ray spectra from high Z rare-earth (lanthanide) elements have been systematically observed in optically thin, high-temperature plasmas produced in the Large Helical Device (LHD), a facility for magnetically confined fusion research. It has been demonstrated that the discrete and quasicontinuum (UTA) spectral features from highly charged lanthanide ions are observed depending on the plasma temperature. The analyses of the measured spectra are ongoing by comparisons with theoretical calculations and/or previous experimental data available. The discrete spectra recorded in high-temperature conditions are dominated by individual lines of Ge- to Ni-like ions, while prominent peaks in the narrowed UTA spectra observed in low-temperature conditions are well explained by the transitions of Ag- to Rh-like ions.
APA, Harvard, Vancouver, ISO, and other styles
2

Koerting, Friederike, Nicole Koellner, Agnieszka Kuras, Nina Kristin Boesche, Christian Rogass, Christian Mielke, Kirsten Elger, and Uwe Altenberger. "A solar optical hyperspectral library of rare-earth-bearing minerals, rare-earth oxide powders, copper-bearing minerals and Apliki mine surface samples." Earth System Science Data 13, no. 3 (March 9, 2021): 923–42. http://dx.doi.org/10.5194/essd-13-923-2021.

Full text
Abstract:
Abstract. Mineral resource exploration and mining is an essential part of today's high-tech industry. Elements such as rare-earth elements (REEs) and copper are, therefore, in high demand. Modern exploration techniques from multiple platforms (e.g., spaceborne and airborne), to detect and map the spectral characteristics of the materials of interest, require spectral libraries as an essential reference. They include field and laboratory spectral information in combination with geochemical analyses for validation. Here, we present a collection of REE- and copper-related hyperspectral spectra with associated geochemical information. The libraries contain reflectance spectra from rare-earth element oxides, REE-bearing minerals, copper-bearing minerals and mine surface samples from the Apliki copper–gold–pyrite mine in the Republic of Cyprus. The samples were measured with the HySpex imaging spectrometers in the visible and near infrared (VNIR) and shortwave infrared (SWIR) range (400–2500 nm). The geochemical validation of each sample is provided with the reflectance spectra. The spectral libraries are openly available to assist future mineral mapping campaigns and laboratory spectroscopic analyses. The spectral libraries and corresponding geochemistry are published via GFZ Data Services with the following DOIs: https://doi.org/10.5880/GFZ.1.4.2019.004 (13 REE-bearing minerals and 16 oxide powders, Koerting et al., 2019a), https://doi.org/10.5880/GFZ.1.4.2019.003 (20 copper-bearing minerals, Koellner et al., 2019), and https://doi.org/10.5880/GFZ.1.4.2019.005 (37 copper-bearing surface material samples from the Apliki copper–gold–pyrite mine in Cyprus, Koerting et al., 2019b). All spectral libraries are united and comparable by the internally consistent method of hyperspectral data acquisition in the laboratory.
APA, Harvard, Vancouver, ISO, and other styles
3

Cowley, C. R., and M. Greenberg. "Third spectra of rare earth elements in chemically peculiar stars: IUE spectra." Monthly Notices of the Royal Astronomical Society 232, no. 4 (June 1, 1988): 763–70. http://dx.doi.org/10.1093/mnras/232.4.763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borisov, M. V., D. A. Bychkov, N. F. Pchelintseva, and E. A. Ivleva. "Fractionation of rare-earth elements in the processes of hydrothermal ore formation." Moscow University Bulletin. Series 4. Geology, no. 4 (August 28, 2018): 59–64. http://dx.doi.org/10.33623/0579-9406-2018-4-59-64.

Full text
Abstract:
Data on the distribution of elements across the Pb-Zn section of the Gatsyrovskaya vein (Upper Zgid, North Ossetia, Russia) showed that during the formation of the vein significant changes in the spectra of rare-earth elements (REE) occur in ore samples. The sharp growth of ratios LaN/YbN, LaN/NdN, GdN/HoN, and GdN/YbN is confined to the vein intervals, where the maximum amount of ore components is deposited. A comparison of the REE spectra of ores with the characteristics of the spectra of the near-vein and host rocks suggests that the deposition of the vein material occurred from solutions whose compositions with respect to the REE varied with time. REE fractionation occurred due to the mobilization of components by hydrothermal solutions during their reaction with the host Paleozoic granites.
APA, Harvard, Vancouver, ISO, and other styles
5

Gangrskiĭ, Yu P., S. G. Zemlyanoi, D. V. Karaivanov, N. N. Kolesnikov, K. P. Marinova, B. N. Markov, and V. S. Rostovskii. "Hyperfine magnetic anomaly in the atomic spectra of rare-earth elements." Optics and Spectroscopy 92, no. 5 (May 2002): 658–63. http://dx.doi.org/10.1134/1.1481127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Sung Woo, Shuichi Emura, Shigeya Kimura, Moo Seong Kim, Yi Kai Zhou, Nobuaki Teraguchi, Akira Suzuki, Akira Yanase, and Hajime Asahi. "Emission spectra from AlN and GaN doped with rare earth elements." Journal of Alloys and Compounds 408-412 (February 2006): 717–20. http://dx.doi.org/10.1016/j.jallcom.2005.01.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Afgan, Muhammad Sher, Zongyu Hou, Weiran Song, Jiachen Liu, Yuzhou Song, Weilun Gu, and Zhe Wang. "On the Spectral Identification and Wavelength Dependence of Rare-Earth Ore Emission by Laser-Induced Breakdown Spectroscopy." Chemosensors 10, no. 9 (August 25, 2022): 350. http://dx.doi.org/10.3390/chemosensors10090350.

Full text
Abstract:
The increasing demand for rare earth elements (REE) requires faster analysis techniques for their rapid exploration. Laser-induced breakdown spectroscopy (LIBS) has on-site and real time analysis capability. However, interference and the weaker emission of minor REEs are key challenges for the complex REE emission spectra. Using simulations and experimental results, we presented essential principles for improved line identification in the transient spectra of complicated samples, such as those of REE ores (e.g., monazite). Knowledge of plasma conditions, spectral collection setup, and capability of the spectral system are key parameters to consider for the identification of an emission line in such spectra. Furthermore, emission intensity dependence on laser wavelength was analyzed for major and minor REEs using IR (1064 nm), visible (532 nm) and UV (266 nm) irradiation. A higher plasma temperature was found with the IR laser, while stronger material ablation was observed by UV irradiation. Higher particle density by UV laser ablation was the key factor in the higher signal intensity of the minor elements, and this laser can improve the emission signals for LIBS use as an REE analyzer.
APA, Harvard, Vancouver, ISO, and other styles
8

Tepikina, Anna V., and Svetlana G. Vlasova. "Inorganic Composites Luminophors in Lithium-Borate Glasses with Rare-Earth Elements for White-Emitting Diodes." Defect and Diffusion Forum 410 (August 17, 2021): 764–69. http://dx.doi.org/10.4028/www.scientific.net/ddf.410.764.

Full text
Abstract:
The paper describes the synthesis of novel luminescent composite system, based on lithium-borate glass matrix with addition of rare-earth elements and yttrium-aluminum garnet finely divided powder. The new chemical composition of glass has been selected, composite’s fabrication technology was developed, the temperature conditions of glass and luminophore sintering as well. The spectral characteristics of the obtained luminescent composites are measured, and chromaticity diagrams are considered. The radiation spectra showed a maximum of about 560 nm, the maximum spectral intensity of the radiation is about 90 μw/cm2/nm. Powerful energy saving source of white light was produced.
APA, Harvard, Vancouver, ISO, and other styles
9

Urakawa, R., W. Asano, M. Nishikawa, M. Kawahara, T. Nishi, D. Oshima, T. Kato, and T. Ishibashi. "Magneto-optical property and magnetic anisotropy of (100) oriented R0.5Bi2.5Fe5O12 (R = Eu, Sm, and Pr) thin films prepared by metal–organic decomposition." AIP Advances 12, no. 9 (September 1, 2022): 095322. http://dx.doi.org/10.1063/5.0094475.

Full text
Abstract:
Bi-substituted rare-earth iron garnets, R3− xBi xFe5O12 (Bi:RIG), where R represents one of the rare-earth elements, exhibit the excellent magneto-optical (MO) properties that increase with Bi content x. In addition, magnetic properties of Bi:RIGs, such as the magnetization, the magnetic anisotropy, and the magnetostriction, could be controlled by choosing rare-earth elements. In this paper, we report on R0.5Bi2.5Fe5O12 (Bi2.5:RIG, R = Pr, Sm, and Eu) thin films on Gd3Ga5O12 (GGG) (100) single crystal substrates prepared by the metal–organic decomposition method. XRD analysis reveals that Bi2.5:RIG thin films are grown along the same orientation with GGG substrates, and their lattice constants are dependent on the ionic radii of the rare-earth ions. MO measurements show that Faraday spectra of the Bi2.5:RIG thin films have a typical spectral structure observed for Bi:RIGs. The magnetic anisotropy constants, the uniaxial magnetic anisotropy energy Ku, and the magnetocrystalline anisotropy energy K1 of Bi2.5:RIG (R = Y, Pr, Nd, Sm, and Eu) thin films are investigated by using the ferromagnetic resonance measurement.
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Zhaoqiang, Wenxuan Huang, Sheng Li, Bin Ni, Yalong Zhang, Mingwei Wang, Maolin Chen, and Fuxiao Zhu. "Inversion Evaluation of Rare Earth Elements in Soil by Visible-Shortwave Infrared Spectroscopy." Remote Sensing 13, no. 23 (December 1, 2021): 4886. http://dx.doi.org/10.3390/rs13234886.

Full text
Abstract:
According to historical information, more than 300 metal smelting enterprises have been in the southwest of Xiongan for 300 years; however, these polluting enterprises have been gradually closed with the increased intensity of environmental protection. In the paper, 264 soil samples were collected and analyzed in the range of 400 nm–2500 nm by the spectra vista corporation (SVC), and the spectral noise was smoothed by the Savitzky–Golay filter. In order to enhance the spectral differences and curve shapes, mathematical transformations, such as the standard normal variate (SNV), first-order differential (FD), second-order differential (SD), multiple scattering correction (MSC), and continuum removal (CR), were performed on the data, and the correlation between spectral transformation and contents of REEs was analyzed. Moreover, three machine learning models—partial least-squares (PLS), random forest (RF), back propagation neural network (BPNN)—were used to predict the contents of REEs. Experimental results prove that REEs are combined with spectral active substances, such as organic compounds, clay minerals, and iron oxide, and it is possible to determine the contents of REEs using the reflection spectrum. The R2 between the predicted values and measured contents reached 0.986 by using BPNN after FD transformation. More importantly, the predicted values basically agree with the actual situation for CASI/SASI airborne hyperspectral images, and this is an effective technique to obtain the contents of REEs in soil at the study area.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Rare Earth Elements spectra"

1

Barbera, Marcella. "Behaviour of rare earth elements in the soil/Vitis Vinifera L. system : geochemical approach for food traceability." Electronic Thesis or Diss., Sorbonne université, 2021. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2021SORUS352.pdf.

Full text
Abstract:
La traçabilité géographique des produits alimentaires à l'aide de marqueurs chimiques est un défi important pour garantir la qualité et l'authenticité des aliments. Le comportement des Eléments de Terres Rares (REE) a été identifié comme un possible outil pour l'identification géographique des aliments. Dans cette thèse, le comportement des REE dans le système Sol-Vitis vinifera L. a été exploré en utilisant une approche géochimique. L'objectif est de comprendre si le spectre normalisé des REE (REE*) peut être un outil pour retracer l'origine géographique des aliments. Nous nous sommes concentrés sur des plantes cultivées sur des substrats enrichis et non enrichis en REE, en nous demandant si les enrichissements en REE du sol influencent la croissance de Vitis vinifera L et l'accumulation des REE dans les organes de la plante. Nous avons trouvé que l'enrichissement en REE du sol n'influence ni la masse de la plante ni l'accumulation de REE dans les feuilles, ce qui implique que les sols pollués par les REE ne devraient pas influencer significativement la quantité des REE trouvée dans le produit alimentaire de Vitis vinifera L. Nous démontrons que les REE* des organes de la plante sont capables de tracer les conditions d'enrichissement du sol en discriminant les conditions environnementales de la croissance de Vitis vinifera L. Puisque les REE* peuvent être utilisés pour différencier les plantes de différents sols de croissance, nous proposons que les REE* sont un marqueur potentiel pour identifier le substrat de croissance de Vitis vinifera L. Par conséquent, nous proposons que les REE sont un outil potentiel pour évaluer la qualité et la sécurité d'autres écosystèmes
The geographic traceability of food products through the use of chemical markers is an important challenge to ensure quality and authenticity of food. In recent years, the behaviour of Rare Earth Elements (REE) has been identified as possible tool for food geographical identification based on their known capability of tracing pedo-genetic and petro-genetic processes. In this thesis, the behaviour of REE in the Soil/Vitis vinifera L. system has been explored using a geochemical approach. The goal is to understand if the normalized pattern of REE (REE*) can be a useful tool to trace the geographical origin of food. We focused on plants grown in both greenhouse and field using REE enriched and non-enriched substrates wondering if REE soil enrichments influence the growth of Vitis vinifera L. and the REE accumulation in plant organs. We found that the stress generated by REE enriched soil does not influence neither the plant mass nor the REE accumulation in leaves implying that REE polluted soils should not influence the amount of REE found in Vitis vinifera L food-products. We have, also, demonstrated that that the REE* in plant organs t trace enriched soil substrates discriminating plants from different soils of growth. This work allows to propose that REE* as potential marker for identifying the substrate where Vitis vinifera L. growth. Finally, discrimination of substrate enrichments suggests that REE* is a potential tool for quality and safety of other ecosystems. Our experimental investigation improves our knowledge on REE uptake in soil-Vitis vinifera L. system, highlighting the potential use of REE as biogeochemical tracers of environmental conditions
La tracciabilità geografica dei prodotti alimentari, attraverso l'uso di traccianti chimici, è una sfida importante per garantire la qualità e l'autenticità degli alimenti. Negli ultimi anni, il comportamento degli Elementi delle Terre Rare (REE) è stato identificato come possibile strumento per l'identificazione geografica degli alimenti, sulla base della nota proprietà di tracciare i processi pedo-genetici e petro-genetici. In questa tesi, il comportamento dei REE nel sistema Suolo/Vitis vinifera L. è stato esplorato utilizzando un approccio geochimico. L'obiettivo è capire se il modello normalizzato di REE (REE*) può essere uno strumento utile per tracciare l'origine geografica degli alimenti. Le REE possono essere accumulate nelle piante mantenendo la loro distribuzione nel passaggio dal suolo alle foglie o ai frutti, anche se le foglie possono incorporare i metalli lisciviati dalle particelle di polvere atmosferica in particolari condizioni ambientali. Tuttavia, il meccanismo di trasferimento di REE dal suolo alle piante è poco conosciuto. Ci siamo concentrati su piante cresciute sia in serra che in campo usando substrati arricchiti e non arricchiti di REE chiedendoci se gli arricchimenti del suolo di REE influenzassero la crescita di Vitis vinifera L. e l'accumulo di REE negli organi della pianta, testando l'uso di REE* come discriminatore di piccole quantità di REE nel suolo. Inoltre, abbiamo valutato il ruolo giocato dallo xylema nel trasferimento di REE e il possibile impatto fisiologico nella Vitis vinifera L. Abbiamo trovato che lo stress generato dal suolo arricchito di REE non influenza né la massa della pianta né l'accumulo di REE nelle foglie e abbiamo dimostrato che le REE* negli organi della pianta sono in grado di tracciare le condizioni del suolo arricchito discriminando le condizioni ambientali di crescita della Vitis vinifera L. Poiché REE* può essere usato per differenziare le piante da diversi terreni di crescita, proponiamo che l'uso di REE* sia un potenziale marcatore per identificare il substrato di crescita di Vitis vinifera L. Dal nostro lavoro si possono dedurre importanti implicazioni dal punto di vista ambientale. Poiché la quantità iniziale di REE nei substrati non influenza la quantità accumulata nelle foglie, eventuali suoli inquinati da REE non dovrebbero influenzare significativamente la quantità di REE trovata nei prodotti alimentari di Vitis vinifera L. Infine, la capacità di discriminare degli arricchimenti del substrato suggerisce che REE* può essere uno strumento potenziale per valutare la qualità e la sicurezza di altri ecosistemi. La nostra indagine sperimentale migliora le nostre conoscenze sull'assorbimento di REE nel sistema Suolo/Vitis vinifera L. evidenziando il potenziale uso di REE come traccianti biogeochimici delle condizioni ambientali
APA, Harvard, Vancouver, ISO, and other styles
2

BARBERA, Marcella. "Behaviour of REE in the soil/Vitis Vinifera L. system. Geochemical Approach for Food Traceability." Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/526118.

Full text
Abstract:
The geographic traceability of food products through the use of chemical markers is an important challenge to ensure quality and authenticity of food. In recent years, the behaviour of Rare Earth Elements (REE) has been identified as possible tool for food geographical identification based on their known capability of tracing pedo-genetic and petro-genetic processes. In this thesis, the behaviour of REE in the Soil/Vitis vinifera L. system has been explored using a geochemical approach. The goal is to understand if the normalized pattern of REE (REE*) can be a useful tool to trace the geographical origin of food. REE may be accumulated in plants keeping their distribution in passing from soil to leaves or fruits. However, the mechanism of soil/plant REE transfer is poorly known, even if leaves may incorporate metals leached from atmospheric dust particles in particular environmental conditions. We focused on plants grown in both greenhouse and field using REE enriched and non-enriched substrates wondering if REE soil enrichments influence the growth of Vitis vinifera L. and the REE accumulation in plant organs testing the use of REE* as discriminator of small amounts of REE in the soil. We, also, have evaluated the role of xylem-sap in the transfer of REE transfer and the possible physiological impact in Vitis vinifera L. We found that the stress generated by REE enriched soil does not influence neither the plant mass nor the REE accumulation in leaves and demonstrated that the REE* in plant organs traces enriched soil substrates discriminating plants from different soils of growth. This work allows to propose that REE* as potential marker for identifying the substrate where Vitis vinifera L. grows. This work yields, also, important consequences from environmental perspective: since the REE amount in the substrates does not influence the amount accumulated in leaves REE polluted soils should not influence the amount of REE found in Vitis vinifera L food-products. Finally, discrimination of substrate enrichments suggests that REE* is a potential tool for quality and safety of other ecosystems. Our experimental investigation improves our knowledge on REE uptake in soil-Vitis vinifera L. system, highlighting the potential use of REE as biogeochemical tracers of environmental conditions.
APA, Harvard, Vancouver, ISO, and other styles
3

Broom-Fendley, Sam Louis. "Targeting heavy rare earth elements in carbonatite complexes." Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18490.

Full text
Abstract:
The HREE are generally considered to be the most critical of the REE, indispensable for many high-tech applications such as smart-phones and electric vehicles. Currently, carbonatites are the main source of REE due to their high REE grade; most carbonatites, however, are HREE-poor. This thesis presents the findings on HREE mineralisation at the Songwe Hill carbonatite, in the CAP of south-eastern Malawi. Across all carbonatite types at Songwe, whole-rock Y and P2O5 concentrations correlate positively, indicating that phosphate minerals have a strong control over the HREE contents. This is confirmed through textural and geochemical analyses (LA ICP-MS and EPMA) of apatite, which show that it can be subdivided into 5 different types (Ap-0–4), found at different stages of the paragenetic sequence. The chemistry of each of these apatite types becomes progressively more HREE-enriched, up to 3 wt. % Y2O3, and ultimately culminating in xenotime crystallisation. Cross-cutting relationships indicate that HREE-enriched apatite formed as an early crystallisation product from a late-stage, carbonatite-derived hydrothermal fluid. It is evident that LREE-fluorcarbonate mineralisation occurred after apatite crystallisation and it is assumed that crystallisation of all hydrothermal phases was though the evolution of a single fluid, rather than several different fluids. The apatite composition is compared to a compilation of analyses of apatite from other carbonatites and granitoids, as well as new analyses of late-stage apatite from the Kangankunde and Tundulu carbonatites, Malawi. Based on these analyses, it is concluded that apatite from Songwe has the highest HREE concentration compared to apatite from any previously analysed carbonatite. However, apatite from the Tundulu carbonatite has a similar geochemistry and paragenesis to the HREE-rich apatite from Songwe, suggesting that late-stage HREE enrichment may be a common process in carbonatites. In order to elucidate the fluid conditions which led to HREE mineralisation, new fluid inclusion and stable isotope data are presented to complement the mineralogical data. The fluid inclusions constrain the minimum temperature of apatite crystallisation of 160 °C, and most homogenisation temperatures in apatite are between 160-360 °C. Inclusions from apatite are CO2-rich, and it is suggested that transport of the REE occurred in carbonate complexes. Stable isotope data were obtained from both conventional C and O analyses of carbonates and from a novel method developed for acquiring δ18OPO4 from apatite. A conceptual model involving the simultaneous cooling and mixing of magmatically-derived and meteoric fluids is suggested. Two possible causes of REE fractionation are suggested: (1) a crystal-chemical control and (2) control through preferential stability of LREE and HREE complexes. However, neither mechanism is equivocal and further work on the stability of carbonate complexes is suggested in order to better understand REE mineralisation at carbonatites In addition to results on the HREE mineralisation in carbonatites, new data on the mineralogy, geochemistr y and age of the Songwe Hill carbonatite and the closely-associated Mauze nepheline syenite intr usion are presented. Songwe compr ises three stages of intr usion (C1–3): (C1) sovitic calcite carbonatite, (C2) alvikitic calcite-carbonatite and (C3) Fe-rich carbonatite. The LREE grade increases with the increasing Fe-content of the intrusion, as is common at many REE-rich carbonatites. Later-stages of the intrusion include apatite-fluorite veins (C4) and Mn-Fe-veins. The former is a volumetrically minor stage, but can contain up to 1 wt. % Y2O3, and the latter is formed through oxidation of carbonatite by supergene fluids. Samples analysed from Mauze show that it is REE- and P2O5-poor, with MREE-depleted REE distributions. U-Pb dating of zircons from Songwe and Mauze show that they are 131.5 ± 1.3 and 133.1 ± 2.0 Ma, respectively. The close temporal association of each intrusion suggests that Mauze could be a ‘heat-engine’ for hydrothermal mineralisation at Songwe.
APA, Harvard, Vancouver, ISO, and other styles
4

Simpson, John Andrew. "Magnetic properties of rare-earth elements and superlattices." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Otu, Emmanuel Ogbonna. "Liquid-liquid extraction studies of the rare earth elements." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5804.

Full text
Abstract:
This thesis is directed towards the study of the solvent extraction behaviour of the lanthanides and aluminium, bismuth, calcium and zinc whose radii and/or charges are similar to those of the REE. A brief review of the fundamentals and classification of extraction systems and of extractants is presented in Chapter 1. Chapters 2 and 3 are reviews of the properties and uses of the lanthanides and solvent extraction using phosphonate and sulphonate extractants, respectively. Chapter 4 deals with experimental procedures, results, discussions and conclusions. The extraction of zinc (II), calcium (II), aluminium (III), bismuth (III) and some lanthanide ions from aqueous perchlorate solutions into hexane solutions of 2-ethylhexyl phenylphosphonic acid, HEH$\Phi$P, was studied. The mechanisms of extraction are discussed on the basis of the results obtained by slope analysis. Depending upon the size and charge of the ion, the extracted species contain varying numbers of extractant molecules and phosphonate groups as ligands. Monomeric complexes are formed in the presence of excess extractant. High loadings of the extractant phase with the metal ion resulted in suppression of the extraction. Alkali ions were not extracted but alkali perchlorate suppressed the extraction through the effect of ionic strength on the metal ion activity. To further investigate the mechanism of extraction, $\sp{31}$P NMR of the organic phase following extraction of lanthanum was studied. A polymeric lanthanum-HEH$\Phi$P complex which precipitates out in the organic phase is formed at high (saturation) loading of this phase. A structure is proposed for this complex. The thermodynamics of extraction of these ions from perchlorate solutions into petroleum ether solutions of dinonylnaphthalene sulphonic acid, DNNSA, and HEH$\Phi$P were studied. In the case of DNNSA, extraction of the trivalent ions is dominated by the enthalpy of complexing. Electrostriction of large complex micelles by the complexed ion is postulated in order to account for the entropy effect. For the divalent ions, the enthalpy of dehydration of the ion is more important. A strategy for improving the separation factors is proposed. In the case of HEH$\Phi$P, charge density of the cation has a major influence upon the mechanism of the reaction and in turn upon the thermodynamic parameters. The ionic strength of the aqueous phase influences the thermodynamic parameters in the HEH$\Phi$P and DNNSA systems. Amongst the REE, lanthanum shows a singular behaviour. The extractions have been compared with those that employ dinonylnaphthalene sulphonic acid and factors that are responsible for the greater selectivity of the phosphonate have been elucidated. Development of an extraction chromatographic separation procedure for the lanthanides with a view to separating them from other matrix elements and fractionating them among themselves was studied. This was to be achieved by employing an organic polar solvent in the later stages of column elution. However, low recoveries were observed upon ashing the organic eluent and DCP determinations. The presence of phosphate (as KH$\sb2$PO$\sb4$ or H$\sb3$PO$\sb4)$ was found to lead to depression of analyte signal (concentration) in the DCP.
APA, Harvard, Vancouver, ISO, and other styles
6

Kooy, Hendrikus Johannes. "Two-body operators and rare-earth spectroscopy." Thesis, [Hong Kong : University of Hong Kong], 1994. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13787330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cui, Jianlan. "Surface Spectroscopic Investigation of Rare Earth Minerals Flotation." Thesis, Griffith University, 2016. http://hdl.handle.net/10072/367258.

Full text
Abstract:
This thesis describes fundamental studies of the surface interactions between rare earths and the collector hydroxamate to obtain a mechanistic understanding of the flotation process. A model and systematic investigation has been undertaken in order to ascertain the flotation mechanism and optimise flotation response and selectivity. Major constituent components (rare earth oxides, minerals and gangue minerals) in the flotation system were fully characterized individually prior to the interaction investigations. Six rare earth hydroxamate model compounds have been synthesized to characterize the surface chemical bonding. A model mineral thin film was also synthesized and investigated with the hydroxamate collector. For the vibrational characterization of the rare earth oxides, this thesis has adopted multiple radiation sources (wavelengths of 325 nm, 442 nm, 514 nm and 632.8 nm) scanning Raman shifts from 100 cm-1 – 5000 cm-1. It has been demonstrated that each individual rare earth oxide has similar, but distinct vibrational and electronic properties including Raman and fluorescence spectra. Nd, Er and Ho can be identified through their fluorescence emissions that do not overlap the Raman spectra. It is possible to develop a fast detection technique for these rare earths using their fluorescence emissions spectra in mineral processing. The characterization of natural mineral bastnaesite and monazite demonstrated that the ore exhibits localized enrichment zones of the rare earths of sizes from 1 µm - 5 µm. The results from atomic force microscopy and magnetic atomic force microscopy have confirmed the enrichment zones are smaller than the present grinding sizes for flotation. It would be of interest to re- examine the grinding sizes in practice in order to maximise the liberation of minerals.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Natural Sciences
Science, Environment, Engineering and Technology
Full Text
APA, Harvard, Vancouver, ISO, and other styles
8

Dudley, R. "Magnetoelastic properties and microstructure of rare-earth/iron compounds." Thesis, University of Brighton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lozano, Letellier Alba. "Geochemistry of rare earth elements in acid mine drainage precipitates." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/668458.

Full text
Abstract:
Rare earth elements (REE) are known as the lanthanide series (La-Lu) plus yttrium (Y) and scandium (Sc). REE are essential materials for modern industries and especially for green technologies (wind turbines, batteries, lasers, catalysts, etc.). However, despite their high global demand, their supply is limited such that the EU has cataloged it as critical raw materials. In order to ensure the supply of REE in the future, the search for alternative sources of these elements worldwide has been promoted in recent years. Acid mine drainage (AMD) produced by the Fe-sulphide weathering can effectively leach Fe, Al, SO4, and REE from the host rock. This can lead to high concentrations of these liberated species in the affected waters. Thus, the REE concentrations in AMD can be between two and three orders of magnitude higher than natural waters, as such it can be considered as a complementary source of REE recovery. The increase of pH in AMD by mixing neutral waters results in the precipitation of iron oxy-hydroxysulfate (schwertmannite) from pH 3-3.5, and aluminum (basaluminite) from pH 4-4.5 in the river channels. This process may be accompanied by REE scavenging. Due to its acidity and high metal load, acid mine drainage presents a major environmental problem worldwide, therefore, different treatment systems have been developed to minimize its impact. Disperse Alkaline Substrate (DAS) passive remediation system neutralizes AMD by dissolving calcite, and allowing the sequential precipitation of schwertmannite and basaluminite in separated layers, where REE are preferably retained in the basaluminite-enriched waste. Despite this, there are still no studies describing the adsorption of REE on both basaluminite and schwertmannite in these environments. The REE scavenging mechanism is studied by adsorption on synthetic minerals of basaluminite and schwertmannite as a result of variation to the both the pH and sulfate concentration. A thermodynamic adsorption model is proposed based on experimental results in order to predict and explain the REE mobility in AMD mixtures with neutral waters and in a passive treatment system. Basaluminite and schwertmannite have a nanocrystalline character. Further, schwertmannite has been observed to transform into goethite on weekly timescales, resulting in sulfate release. However, there is a gap of knowledge about basaluminite stability at variable sulfate concentration and pH and its possible transformation to other more crystalline Al-minerals. In this study, basaluminite local order at different pH values and dissolved sulfate concentrations was characterized. Results demonstrate that basaluminite can transform to nanoboehmite in weeks under circumneutral pH. However, the presence of sulfate can inhibit this transformation. Separate adsorption experiments on both basaluminite and schwertmannite were performed with two different concentrations of SO4 while varying the pH (3-7). Results show that the adsorption is strongly dependent on pH, and to a lesser extent on sulfate concentration. Lanthanide and yttrium adsorption is most effective near pH 5 and higher, while that of scandium begins around pH 4. Due to the high concentrations of sulfate in acidic waters, the predominant aqueous REE species are sulfate complexes (MSO4+). Notably, Sc(OH)2+ represents a significant proportion of aqueous Sc. , A surface complexation model is proposed in which predominant aqueous species (Mz+) adsorb on the mineral surface, XOH, following the reaction: The adsorption of the lanthanides and yttrium occurs through the exchange of one and two protons from the basaluminite and schwertmannite surface, respectively, with the aqueous sulfate complexes. The sorbed species form monodentate surface complexes with the aluminum mineral and bidentate with the iron mineral. In the case of Sc, the aqueous species ScSO4+ and Sc(OH)2+ form bidentate surface complexes with both minerals. EXAFS analysis of the YSO4+ complex adsorbed on the basaluminite surface suggests the formation of a monodentate inner sphere complex, in agreement with the proposed thermodynamic model. Once the surface complexation model was validated, it was used to asses and predict the REE mobility in passive remediation systems and acidic water mixing zones with alkaline inputs from the field. The REE are preferentially retained in basaluminite-rich waste during passive remediation due to its sorption capacity between pH 5-6. In contrast, schwertmannite waste contains very little REE because the formation of this mineral occurs at pH lower than 4, which prevents REE adsorption. Further, Sc may be scavenged during schwertmannite precipitation as a result of this low pH The model correctly predicts the absence of REE in schwertmannite precipitates and the enrichment of the heavy and intermediate REE with respect to the light REE in basaluminite precipitates collected in the water mixing zones. However, there is a systematic overestimation of the fractionation of rare earths in basaluminite precipitate. This inaccuracy is mainly due to the fact that the mineral precipitation and adsorption are not synchronous process, while basaluminite precipitates from pH 4, REE adsorption occurs at higher pH values, between 5 and 7, when the water mixture reaches these values and a fraction of the particles have been dispersed.
Las tierras raras (en inglés rare earth elements, REE) son conocidas como el conjunto de la serie de los lantánidos (La-Lu), itrio (Y) y escandio(Sc). Las tierras raras son materiales indispensables para las industrias modernas y en especial para las tecnologías verdes (aerogeneradores, baterías, láseres, catalizadores, etc.). Sin embargo a pesar de su gran demanda mundial, su abastecimiento es limitado, por lo que han sido catalogadas por la UE como materias primas críticas (Critical Raw Materials). Con el objetivo de asegurar el abastecimiento de REE en el futuro, en los últimos años se ha promovido la búsqueda de fuentes alternativas de estos elementos en todo el mundo. El drenaje ácido de mina (en inglés acid mine drainage, AMD) producido por la meteorización de sulfuros de Fe, tiene un alto poder de lixiviación de las rocas, por lo que las aguas afectadas adquieren elevadas concentraciones en disolución de Fe, Al, SO4 y otros metales, como las REE. Así, las concentraciones de REE en AMD son entre dos y tres órdenes de magnitud superiores al resto de las aguas naturales y pueden suponer una fuente complementaria de recuperación de REE. El aumento de pH del AMD por mezcla con aguas neutras da lugar a la precipitación en los cauces de los ríos de oxy-hidroxisulfatos de hierro (schwertmannita), a partir de pH 3-3.5, y de aluminio (basaluminita), a partir de pH 4-4.5; acompañado de la eliminación de las tierras raras. Debido a su acidez y carga metálica, el drenaje ácido de mina presenta un problema medioambiental de primera magnitud, por lo que se han desarrollado diferentes sistemas de tratamiento para minimizar su impacto. El sistema de tratamiento pasivo Disperse Alkaline Substrate (DAS) produce la neutralización de las aguas ácidas por la disolución de la calcita presente en el sistema, permitiendo la precipitación secuencial, de schwertmannita y basaluminita. Las tierras raras quedan retenidas preferentemente en el residuo enriquecido en basaluminita. A pesar de ello, aún no existen estudios que describan la adsorción de tierras raras tanto en basaluminita como schwertmannita en estos ambientes. En esta tesis se estudia el mecanismo de retención de las tierras raras mediante adsorción en minerales sintéticos de basaluminita y schwertmannita, en función del pH y del contenido de sulfato disuelto. Con los resultados experimentales obtenidos, se propone un modelo termodinámico de adsorción para predecir y explicar la movilidad de las tierras raras observada en mezclas de AMD con aguas neutras y en un sistema de tratamiento pasivo. La basaluminita y la schwertmannita presentan un carácter nanocristalino. Es conocido que la schwertmannita se transforma en goethita en semanas, liberando sulfato. Sin embargo, nada se sabe de la basaluminita y su posible transformación a otros minerales de Al más cristalinos. De este modo, la caracterización del orden local de la basaluminita a diferentes valores de pH y sulfato se expone en primer lugar. Dependiendo del pH y el sulfato en disolución, la basaluminita se transforma en diferentes grados a nanoboehmita en semanas, pero tiende a estabilizarse con la presencia de sulfato en solución. Los experimentos de adsorción en basaluminita y schwertmannita con diferentes concentraciones de SO4 realizados para cada mineral y en rangos de 3-7 de pH han demostrado que la adsorción es fuertemente dependiente del pH, y en menor medida del sulfato. La adsorción de los lantánidos y del itrio es efectiva a pH 5, mientras que la del escandio comienza a pH 4. Debido a las altas concentraciones de sulfato en aguas ácidas, las especies acuosas predominantes de las tierras raras son los complejos con sulfato, MSO4+. Además del complejo sulfato, el Sc presenta importantes proporciones de Sc(OH)2+ en solución. En función de la dependencia del pH y de la importancia de la especiación acuosa, se propone un modelo de complejación superficial donde la especie acuosa predominante (Mz+) se adsorbe a la superficie libre el mineral, XOH, cumpliendo la siguiente reacción: La adsorción de los lantánidos y del itrio se produce a través del intercambio de uno o dos protones de la superficie de la basaluminita o de la schwertmannita, respectivamente, con los complejos sulfato acuoso, formando complejos superficiales monodentados con el mineral de aluminio y bidentados con el de hierro. En el caso del Sc, las especies acuosas ScSO4+ y Sc(OH)2+ forman complejos superficiales bidentados con ambos minerales. Complementando el modelo propuesto, el análisis de EXAFS del complejo YSO4+ adsorbido en la superficie basaluminita sugiere la formación de un complejo monodentado de esfera interna, coincidiendo con el modelo termodinámico propuesto. El modelo de complejación superficial, una vez validado, ha permitido evaluar y predecir la movilidad de REE en los sistemas de tratamiento pasivos y en zonas de mezcla de aguas ácidas con aportes alcalinos estudiados en el campo. La preferente retención de las tierras raras en la zona de la basaluminita precipitada en los sistemas de tratamiento pasivo ocurre por adsorción de las mismas a pH entre 5-6. La ausencia de tierras raras en la zona de schwertmannita se debe al bajo pH de su formación, inferior a 4, que impide la adsorción de las mismas. Sin embargo, debido a su menor pH de adsorción, una fracción de Sc puede quedar retenida en la schwertmannita. El modelo también predice correctamente la ausencia de REE en los precipitados de schwertmannita y el enriquecimiento de las tierras raras pesadas e intermedias respecto a las ligeras en los precipitados de basaluminita recogidos en el campo en las zonas de mezcla de aguas. Sin embargo, se ha observado una sistemática sobreestimación del fraccionamiento de las tierras raras en los precipitados de basaluminita. Este hecho se debe principalmente a que la precipitación del mineral no ocurre de forma síncrona con la adsorción, precipitando la basaluminita a partir de pH 4 y adsorbiendo tierras raras a pH más altos, entre 5 y 7, cuando las partículas sólidas han sido parcialmente dispersadas.
APA, Harvard, Vancouver, ISO, and other styles
10

Redling, Kerstin. "Rare Earth Elements in Agriculture with Emphasis on Animal Husbandry." Diss., lmu, 2006. http://nbn-resolving.de/urn:nbn:de:bvb:19-59362.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Rare Earth Elements spectra"

1

Benli, Huang, ed. An atlas of high resolution spectra of rare earth elements for inductively coupled plasma atomic emission spectroscopy. Cambridge: Royal Society of Chemistry, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zepf, Volker. Rare Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35458-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

1927-, Gürs K., Bergmann Hartmut, Koeppel Claus, and Pscheidl Helmut, eds. Rare earth elements. 8th ed. Berlin: Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Voncken, J. H. L. The Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26809-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bochkarev, M. N., L. N. Zakharov, and G. S. Kalinina. Organoderivatives of Rare Earth Elements. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0361-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hedrick, James B. Rare earth elements and yttrium. [Washingtion, D.C.?]: Bureau of Mines, U.S. Dept. of the Interior, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

N, Zakharov L., and Kalinina G. S, eds. Organoderivatives of rare earth elements. Dordrecht: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Jack, Baodong Zhao, and Bryan Schreiner. Separation Hydrometallurgy of Rare Earth Elements. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28235-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Roesky, Peter W., ed. Molecular Catalysis of Rare-Earth Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12811-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wijn, H. P. J., ed. Rare Earth Elements, Alloys and Compounds. Berlin/Heidelberg: Springer-Verlag, 2004. http://dx.doi.org/10.1007/b79359.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Rare Earth Elements spectra"

1

Mariano, A. N. "Appendix: CATHODOLUMINESENCE EMISSION SPECTRA OF RARE EARTH ELEMENT ACTIVATORS IN MINERALS." In Geochemistry and Mineralogy of Rare Earth Elements, edited by Bruce R. Lipin and G. A. McKay, 339–50. Berlin, Boston: De Gruyter, 1989. http://dx.doi.org/10.1515/9781501509032-015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lazarev, A. N. "Spectra and Crystal Chemistry of the Silicates of the Rare-Earth Elements." In Vibrational Spectra and Structure of Silicates, 205–60. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4803-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kurtz, Wolfgang, and Hans Vanecek. "Rare Earth Elements." In W Tungsten, 20–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-08690-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ting, Ming Hwa. "Rare Earth Elements." In Mining in the Asia-Pacific, 177–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61395-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1432–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 2148–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wall, Frances. "Rare earth elements." In Critical Metals Handbook, 312–39. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118755341.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spellman, Frank R. "Rare Earth Elements." In The Science of Rare Earth Elements, 43–45. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003350811-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pinti, Daniele L. "Rare Earth Elements." In Encyclopedia of Astrobiology, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1348-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Rare Earth Elements spectra"

1

Bilyi, Mykola U., M. Diab, M. A. Krysyuk, L. M. Lymarenko, Z. T. Moroz, and Sergiy G. Nedelko. "Establishment of admixtures of heavy and rare-earth elements in cadmium tungstate on luminescence spectra." In International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, edited by Sergey V. Svechnikov and Mikhail Y. Valakh. SPIE, 1995. http://dx.doi.org/10.1117/12.226192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martin, Madhavi Z., Robert V. Fox, Andrzej W. Miziolek, Frank C. DeLucia, and Nicolas André. "Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy." In SPIE Sensing Technology + Applications, edited by Mark A. Druy, Richard A. Crocombe, and David P. Bannon. SPIE, 2015. http://dx.doi.org/10.1117/12.2178192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sasaki, Akira. "Modeling of the emission spectrum from Sn to rare-earth elements for the extreme ultra-violet lithography." In Photomask Japan 2023: XXIX Symposium on Photomask and Next-Generation Lithography Mask Technology, edited by Yosuke Kojima. SPIE, 2023. http://dx.doi.org/10.1117/12.3012437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghanbari, Yasaman. "Quantification of Rare Earth Elements." In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wise, Paige. "RARE EARTH ELEMENTS ADSORPTION ON KAOLINITE." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-368035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martinez Bejarano, Cesar. "Reactors and Rare Earth Elements Extraction Systems." In Proposed for presentation at the DRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morones, Isaiah. "Opportunities and Challenges of Rare Earth Elements." In Proposed for presentation at the LDRD Student Research Poster Session/NM Partnership Schools LDRD Student Poster Session in ,. US DOE, 2021. http://dx.doi.org/10.2172/1884661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yatskiv, R., J. Grym, K. Zdansky, L. Pekarek, and J. Zavadil. "Growth of InP crystals with rare-earth elements." In Related Materials (IPRM). IEEE, 2009. http://dx.doi.org/10.1109/iciprm.2009.5012450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Churchill, Dakota, Michael Manga, Michael Manga, Shaul Hurwitz, Shaul Hurwitz, Sara Peek, Sara Peek, Richard M. Conrey, and Richard M. Conrey. "RARE EARTH ELEMENTS IN YELLOWSTONE’S SILICEOUS SINTER DEPOSITS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-354438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hedrick, Gabrielle. "Towards Mining Rare Earth Elements on the Moon." In 2023 IEEE Aerospace Conference. IEEE, 2023. http://dx.doi.org/10.1109/aero55745.2023.10116027.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Rare Earth Elements spectra"

1

Huleatt, Mike. Australian resource reviews: rare earth elements 2019. Geoscience Australia, 2019. http://dx.doi.org/10.11636/9781925848441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Romero, Jared L., and Samuel Adam McCord. Rare earth elements : procurement, application, and reclamation. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1051724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

BRIGMON, ROBIN. LDRD-2022-00108: BIOMINING RARE EARTH ELEMENTS. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1894914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skone, Timothy J. Separation of rare earth elements using ion exchange. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1509123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bopp, Karl. An Integrated Rare Earth Elements Supply Chain Strategy. Fort Belvoir, VA: Defense Technical Information Center, February 2011. http://dx.doi.org/10.21236/ada547354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hasler, Abigail, and David Reed. Recovery of Rare Earth Elements from Bioleachates by Precipitation. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1668825.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sadan, Mandy, Dan Smyer Yü, Dan Seng Lawn, David Brown, and Ronghui Zhou. Rare Earth Elements, Global Inequalities, and the ‘Just Transition’. The British Academy, June 2022. http://dx.doi.org/10.5871/just-transitions-s-i/m-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hurst, Cindy. China's Rare Earth Elements Industry: What Can the West Learn? Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada525378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sutterlin, William. RECOVERY OF RARE EARTH ELEMENTS FROM COAL MINING WASTE MATERIALS. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1560384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Burton, Jr, and Robert E. Implications of Competition for Rare Earth Elements (REE) in Africa. Fort Belvoir, VA: Defense Technical Information Center, March 2011. http://dx.doi.org/10.21236/ada553070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography