Journal articles on the topic 'Rankine-Hugoniot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Rankine-Hugoniot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Avramenko, Andriy A., Andrii I. Tyrinov, and Igor V. Shevchuk. "Analytical simulation of normal shock waves in turbulent flow." Physics of Fluids 34, no. 5 (May 2022): 056101. http://dx.doi.org/10.1063/5.0093205.
Full textMellmann, Marcel, and Markus Scholle. "Symmetries and Related Physical Balances for Discontinuous Flow Phenomena within the Framework of Lagrange Formalism." Symmetry 13, no. 9 (September 9, 2021): 1662. http://dx.doi.org/10.3390/sym13091662.
Full textGedalin, Michael, Nikolai V. Pogorelov, and Vadim Roytershteyn. "Rankine–Hugoniot Relations Including Pickup Ions." Astrophysical Journal 889, no. 2 (January 30, 2020): 116. http://dx.doi.org/10.3847/1538-4357/ab6660.
Full textKentzer, Czeslaw P. "Quasilinear form of Rankine-Hugoniot jump conditions." AIAA Journal 24, no. 4 (April 1986): 691–93. http://dx.doi.org/10.2514/3.9332.
Full textGao, Yang, and Chung K. Law. "RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES." Astrophysical Journal 760, no. 2 (November 15, 2012): 122. http://dx.doi.org/10.1088/0004-637x/760/2/122.
Full textSATOH, Akira. "Rankine-Hugoniot Relations for Lennard-Jones Liquids." Transactions of the Japan Society of Mechanical Engineers Series B 58, no. 549 (1992): 1419–25. http://dx.doi.org/10.1299/kikaib.58.1419.
Full textSatoh, Akira. "Rankine-Hugoniot Relations for Lennard-Jones Liquids." Journal of Fluids Engineering 116, no. 3 (September 1, 1994): 625–30. http://dx.doi.org/10.1115/1.2910323.
Full textRenardy, Michael. "On Rankine—Hugoniot conditions for Maxwell liquids." Journal of Non-Newtonian Fluid Mechanics 32, no. 1 (January 1989): 69–77. http://dx.doi.org/10.1016/0377-0257(89)85041-4.
Full textSzabo, A. "An improved solution to the “Rankine-Hugoniot” problem." Journal of Geophysical Research 99, A8 (1994): 14737. http://dx.doi.org/10.1029/94ja00782.
Full textGAVRILYUK, S. L., and R. SAUREL. "Rankine–Hugoniot relations for shocks in heterogeneous mixtures." Journal of Fluid Mechanics 575 (March 2007): 495–507. http://dx.doi.org/10.1017/s0022112006004496.
Full textGEDALIN, M., and M. BALIKHIN. "Rankine–Hugoniot relations for shocks with demagnetized ions." Journal of Plasma Physics 74, no. 2 (April 2008): 207–14. http://dx.doi.org/10.1017/s0022377807006708.
Full textEHRT, JULIA, and JÖRG HÄRTERICH. "ASYMPTOTIC BEHAVIOR OF SPATIALLY INHOMOGENEOUS BALANCE LAWS." Journal of Hyperbolic Differential Equations 02, no. 03 (September 2005): 645–72. http://dx.doi.org/10.1142/s0219891605000579.
Full textCarioli, S. M. "Solutions of the Rankine–Hugoniot relations in relativistic magnetohydrodynamics." Physics of Fluids 29, no. 3 (1986): 672. http://dx.doi.org/10.1063/1.865916.
Full textViñas, Adolfo F., and Jack D. Scudder. "Fast and optimal solution to the “Rankine-Hugoniot problem”." Journal of Geophysical Research 91, A1 (1986): 39. http://dx.doi.org/10.1029/ja091ia01p00039.
Full textKennel, C. F., R. D. Blandford, and P. Coppi. "MHD intermediate shock discontinuities. Part 1. Rankine—Hugoniot conditions." Journal of Plasma Physics 42, no. 2 (October 1989): 299–319. http://dx.doi.org/10.1017/s0022377800014379.
Full textWei-Min, Gu, and Lu Ju-Fu. "Standing Rankine–Hugoniot Shocks in Black Hole Accretion Discs." Chinese Physics Letters 21, no. 12 (December 2004): 2551–54. http://dx.doi.org/10.1088/0256-307x/21/12/064.
Full textJaisankar, S., and S. V. Raghurama Rao. "A central Rankine–Hugoniot solver for hyperbolic conservation laws." Journal of Computational Physics 228, no. 3 (February 2009): 770–98. http://dx.doi.org/10.1016/j.jcp.2008.10.002.
Full textYuryk, I. I. "Invariant solutions of a system of Euler equations that satisfy the Rankine–Hugoniot conditions." Reports of the National Academy of Sciences of Ukraine, no. 7 (July 24, 2018): 10–19. http://dx.doi.org/10.15407/dopovidi2018.07.010.
Full textScherer, K., L. R. Baalmann, H. Fichtner, J. Kleimann, D. J. Bomans, K. Weis, S. E. S. Ferreira, and K. Herbst. "MHD-shock structures of astrospheres: λ Cephei -like astrospheres." Monthly Notices of the Royal Astronomical Society 493, no. 3 (February 20, 2020): 4172–85. http://dx.doi.org/10.1093/mnras/staa497.
Full textShelkovich, V. M. "The Rankine-Hugoniot conditions and balance laws for δ-shocks." Journal of Mathematical Sciences 151, no. 1 (May 2008): 2781–92. http://dx.doi.org/10.1007/s10948-008-0173-y.
Full textLeFloch, Philippe G., and Mai Duc Thanh. "Properties of rankine-hugoniot curves for van der Waals fluids." Japan Journal of Industrial and Applied Mathematics 20, no. 2 (June 2003): 211–38. http://dx.doi.org/10.1007/bf03170427.
Full textScherer, Klaus, Horst Fichtner, Hans Jörg Fahr, Christian Röken, and Jens Kleimann. "GENERALIZED MULTI-POLYTROPIC RANKINE–HUGONIOT RELATIONS AND THE ENTROPY CONDITION." Astrophysical Journal 833, no. 1 (December 7, 2016): 38. http://dx.doi.org/10.3847/1538-4357/833/1/38.
Full textKetcheson, David I., and Manuel Quezada de Luna. "Effective Rankine–Hugoniot conditions for shock waves in periodic media." Communications in Mathematical Sciences 18, no. 4 (2020): 1023–40. http://dx.doi.org/10.4310/cms.2020.v18.n4.a6.
Full textPain, J. C. "Shell-structure effects on high-pressure Rankine–Hugoniot shock adiabats." High Energy Density Physics 3, no. 1-2 (May 2007): 204–10. http://dx.doi.org/10.1016/j.hedp.2007.02.013.
Full textJenny, P., and B. Müller. "Rankine–Hugoniot–Riemann Solver Considering Source Terms and Multidimensional Effects." Journal of Computational Physics 145, no. 2 (September 1998): 575–610. http://dx.doi.org/10.1006/jcph.1998.6037.
Full textKrunić, Tanja, and Marko Nedeljkov. "Shadow wave solutions for a scalar two-flux conservation law with Rankine–Hugoniot deficit." Journal of Hyperbolic Differential Equations 18, no. 03 (September 2021): 539–56. http://dx.doi.org/10.1142/s021989162150017x.
Full textWang, Aiju, Wangxun Yu, and Yanyan Zhang. "The Interaction of Waves in the Zero-Pressure Euler Equations with a Coulomb-Like Friction Term." Mathematical Problems in Engineering 2022 (February 28, 2022): 1–6. http://dx.doi.org/10.1155/2022/4837968.
Full textDELMONT, P., and R. KEPPENS. "Parameter regimes for slow, intermediate and fast MHD shocks." Journal of Plasma Physics 77, no. 2 (March 8, 2010): 207–29. http://dx.doi.org/10.1017/s0022377810000115.
Full textMYONG, R. S., and P. L. ROE. "Shock waves and rarefaction waves in magnetohydrodynamics. Part 2. The MHD system." Journal of Plasma Physics 58, no. 3 (October 1997): 521–52. http://dx.doi.org/10.1017/s0022377897005941.
Full textZhang, Yanyan, and Yu Zhang. "Delta-Shock Solution to the Eulerian Droplet Model by Variable Substitution Method." Zeitschrift für Naturforschung A 75, no. 3 (March 26, 2020): 201–10. http://dx.doi.org/10.1515/zna-2019-0256.
Full textJackson, C. R., W. E. Lear, and S. A. Sherif. "Rankine–Hugoniot analysis of two-phase flow with inter-phase slip." Acta Astronautica 45, no. 11 (December 1999): 679–86. http://dx.doi.org/10.1016/s0094-5765(99)00183-6.
Full textGedalin, Michael, Michal Golan, Nikolai V. Pogorelov, and Vadim Roytershteyn. "Change of Rankine–Hugoniot Relations during Postshock Relaxation of Anisotropic Distributions." Astrophysical Journal 940, no. 1 (November 1, 2022): 21. http://dx.doi.org/10.3847/1538-4357/ac958d.
Full textLin, Xiao-Biao. "Generalized Rankine–Hugoniot Condition and Shock Solutions for Quasilinear Hyperbolic Systems." Journal of Differential Equations 168, no. 2 (December 2000): 321–54. http://dx.doi.org/10.1006/jdeq.2000.3889.
Full textPEAKE, N. "A NOTE ON "COMPUTATIONAL AEROACOUSTICS EXAMPLES SHOWING THE FAILURE OF THE ACOUSTIC ANALOGY THEORY TO IDENTIFY THE CORRECT NOISE SOURCES" BY CKW TAM." Journal of Computational Acoustics 12, no. 04 (December 2004): 631–34. http://dx.doi.org/10.1142/s0218396x04002420.
Full textShanmugaraju, A., and S. Umapathy. "On the Possibility of Radio Emission from Quasi-parallel and Quasi-perpendicular Propagation of Shocks." International Astronomical Union Colloquium 179 (2000): 259–62. http://dx.doi.org/10.1017/s0252921100064629.
Full textChen, Hao, Bin Zhang, and Hong Liu. "Non-Rankine–Hugoniot Shock Zone of Mach Reflection in Hypersonic Rarefied Flows." Journal of Spacecraft and Rockets 53, no. 4 (July 2016): 619–28. http://dx.doi.org/10.2514/1.a33411.
Full textFeng, H. Q., C. C. Lin, J. K. Chao, D. J. Wu, L. H. Lyu, and L. C. Lee. "From Rankine-Hugoniot relation fitting procedure: Tangential discontinuity or intermediate/slow shock?" Journal of Geophysical Research: Space Physics 112, A10 (October 2007): n/a. http://dx.doi.org/10.1029/2007ja012311.
Full textMajorana, A. "Analytical solutions of the Rankine-Hugoniot relations for a relativistic simple gas." Il Nuovo Cimento B 98, no. 2 (April 1987): 111–18. http://dx.doi.org/10.1007/bf02721473.
Full textHe, Yong, Xiwei Hu, Yemin Hu, Zhonghe Jiang, and Jianhong Lü. "Rankine-Hugoniot relations of an axial shock in cylindrical non-neutral plasma." Physics of Plasmas 13, no. 9 (September 2006): 092116. http://dx.doi.org/10.1063/1.2355661.
Full textSugiyama, Masaru, and Toshiyuki Isogai. "Microscopic Approach to Shock Waves in Crystal Solids. II Rankine-Hugoniot Relations." Japanese Journal of Applied Physics 35, Part 1, No. 6A (June 15, 1996): 3505–17. http://dx.doi.org/10.1143/jjap.35.3505.
Full textGuy, Capdeville. "A HLL-Rankine–Hugoniot Riemann solver for complex non-linear hyperbolic problems." Journal of Computational Physics 251 (October 2013): 156–93. http://dx.doi.org/10.1016/j.jcp.2013.05.024.
Full textDavey, K., and R. Darvizeh. "Neglected transport equations: extended Rankine–Hugoniot conditions and J -integrals for fracture." Continuum Mechanics and Thermodynamics 28, no. 5 (March 2, 2016): 1525–52. http://dx.doi.org/10.1007/s00161-016-0493-2.
Full textLund, Halvor, Florian Müller, Bernhard Müller, and Patrick Jenny. "Rankine–Hugoniot–Riemann solver for steady multidimensional conservation laws with source terms." Computers & Fluids 101 (September 2014): 1–14. http://dx.doi.org/10.1016/j.compfluid.2014.05.022.
Full textGedalin, M. "Rankine-Hugoniot Relations in Multispecies Plasma With Gyrotropic Anisotropic Downstream Ion Distributions." Journal of Geophysical Research: Space Physics 122, no. 12 (December 2017): 11,857–11,863. http://dx.doi.org/10.1002/2017ja024757.
Full textCheng, Hongjun. "Delta Shock Waves for a Linearly Degenerate Hyperbolic System of Conservation Laws of Keyfitz-Kranzer Type." Advances in Mathematical Physics 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/958120.
Full textLiu, Y. Y., H. S. Fu, J. B. Cao, Z. Wang, R. J. He, Z. Z. Guo, and C. X. Du. "Magnetic Discontinuities in the Inner Heliosphere: Do Intermediate Shocks Exist?" Astrophysical Journal 953, no. 1 (August 1, 2023): 34. http://dx.doi.org/10.3847/1538-4357/ace04c.
Full textDe la cruz, Richard, Juan Galvis, Juan Carlos Juajibioy, and Leonardo Rendón. "Delta Shock Wave for the Suliciu Relaxation System." Advances in Mathematical Physics 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/354349.
Full textZank, G. P., and J. F. Mckenzie. "The interaction of long-wavelength compressive waves with a cosmic ray shock." Journal of Plasma Physics 37, no. 3 (June 1987): 363–72. http://dx.doi.org/10.1017/s0022377800012241.
Full textEliezer, Shalom, Shirly Vinikman Pinhasi, José Maria Martinez Val, Erez Raicher, and Zohar Henis. "Heating in ultraintense laser-induced shock waves." Laser and Particle Beams 35, no. 2 (April 3, 2017): 304–12. http://dx.doi.org/10.1017/s0263034617000192.
Full textLiu, Haochen, Hao Chen, Bin Zhang, and Hong Liu. "Effects of Mach Number on Non-Rankine–Hugoniot Shock Zone of Mach Reflection." Journal of Spacecraft and Rockets 56, no. 3 (May 2019): 761–70. http://dx.doi.org/10.2514/1.a34251.
Full text