Dissertations / Theses on the topic 'Rank of symmetric tensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 42 dissertations / theses for your research on the topic 'Rank of symmetric tensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Erdtman, Elias, and Carl Jönsson. "Tensor Rank." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-78449.
Full textmazzon, andrea. "Hilbert functions and symmetric tensors identifiability." Doctoral thesis, Università di Siena, 2021. http://hdl.handle.net/11365/1133145.
Full textWang, Roy Chih Chung. "Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36975.
Full textHarmouch, Jouhayna. "Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.
Full textWe study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
Savas, Berkant. "Algorithms in data mining using matrix and tensor methods." Doctoral thesis, Linköpings universitet, Beräkningsvetenskap, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11597.
Full textSantarsiero, Pierpaola. "Identifiability of small rank tensors and related problems." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/335243.
Full textTurner, Kenneth James. "Higher-order filtering for nonlinear systems using symmetric tensors." Thesis, Queensland University of Technology, 1999.
Find full textHjelm, Andersson Hampus. "Classification of second order symmetric tensors in the Lorentz metric." Thesis, Linköpings universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-57197.
Full textRovi, Ana. "Analysis of 2 x 2 x 2 Tensors." Thesis, Linköping University, Department of Mathematics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56762.
Full textThe question about how to determine the rank of a tensor has been widely studied in the literature. However the analytical methods to compute the decomposition of tensors have not been so much developed even for low-rank tensors.
In this report we present analytical methods for finding real and complex PARAFAC decompositions of 2 x 2 x 2 tensors before computing the actual rank of the tensor.
These methods are also implemented in MATLAB.
We also consider the question of how best lower-rank approximation gives rise to problems of degeneracy, and give some analytical explanations for these issues.
譚天佑 and Tin-yau Tam. "A study of induced operators on symmetry classes of tensors." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230738.
Full textTam, Tin-yau. "A study of induced operators on symmetry classes of tensors /." [Hong Kong] : University of Hong Kong, 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12322593.
Full textHowarth, Laura. "The existence and structure of constants of geodesic motion admitted by spherically symmetric static space-times." Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310318.
Full textCordolino, Sobral Andrews. "Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS007/document.
Full textThis thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors, as well as the main contributions to face the principal issues in moving object detection. First, we present an overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application to background modeling and foreground segmentation tasks. Next, we address the problem of background model initialization as a reconstruction process from missing/corrupted data. A novel methodology is presented showing an attractive potential for background modeling initialization in video surveillance. Subsequently, we propose a double-constrained version of robust principal component analysis to improve the foreground detection in maritime environments for automated video-surveillance applications. The algorithm makes use of double constraints extracted from spatial saliency maps to enhance object foreground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order to perform background/foreground separation from multidimensional streaming data. These works address the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB)
Eslava, Fernández Laura. "The rank of symmetric random matrices via a graph process." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114602.
Full textLa théorie des matrices aléatoires a un large éventail de sujets et de pistes de recherche, l'un d'entre eux étant de comprendre la probabilité de la singularité des matrices aléatoires discrètes. Ca a été prouvé que pour des matrices aléatoires de Bernoulli symétriques la probabilité de singularité a des bornes polynomiales, mais la conjecture est que le bon ordre de décroissance est exponentiel. Nous sommes intéressés par la matrice d'adjacence Q du graphe aléatoire d'Erdos et Réyni et nous étudions les statistiques du rang de Q comme un moyen de comprende la probabilité de singularité de Q. Nous proposons maintenant une perspective de processus stochastique. Dans ce mémoire, nous considérons la famille Q comme une famille croissante de matrices aléatoires et nous étudions la structure de Q au moment oú il devient non singulière et nous prouvons de la même facon pour certaines propriétés monotones des graphes aléatoires, la propriété d'être non singulière obéit à soi-disant 'théorème de temps d'arrêt'. D'une manière globale, cela signifie que les lignes remplies de zéros, qui sont une propriété locale de la matrice, sont la seule obstruction pour la non-singularité. Ce fait, qui est la nouvelle contribution principale de ce mémoire, élargie les résultats antérieurs de Costello et Vu.
Coloigner, Julie. "Line search and trust region strategies for canonical decomposition of semi-nonnegative semi-symmetric tensors." Rennes 1, 2012. http://www.theses.fr/2012REN1S172.
Full textPendant cette thèse, des méthodes numériques pour décomposer canoniquement des tableaux d'ordre 3 semi-nonnégatifs et semi-symétriques ont été proposées. Ces tableaux possèdent deux matrices de facteurs identiques à composantes positives. Ils apparaissent en séparation aveugle de sources lorsque l'on souhaite diagonaliser conjointement par congruence un ensemble de tranches matricielles de tableaux d'un mélange nonnégatif de sources independantes. Nous nous sommes intéressés à deux familles d'optimisation : la première est celle de la recherche linéaire, combinant le calcul d'une direction de descente basée sur des dérivées de premier et deuxième ordre à la recherche d'un pas optimal ; la seconde est celle de la région de confiance. Ces familles prennent en compte non seulement l'égalité mais aussi la nonnégativité de deux des trois matrices de facteurs par un changement de variable, carré ou exponentiel, permettant ainsi de se ramener à un problème d'optimisation sans contrainte. Le calcul des dérivées est effectué matriciellement pour la plupart des methodes proposées, ce qui permet une implémentation efficace de ces dernières dans un langage de programmation matricielle. Nos simulations sur des données aléatoires montrent un gain en performance par comparaison avec des méthodes n'exploitant aucun a priori notamment dans des contextes difficiles : faibles valeurs de rapport signal à bruit, collinearité des facteurs, et valeurs de rang excédant la plus grande des dimensions. Nos algorithmes sont aussi testés sur données simulées et semi-simulées de spectroscopie à résonance magnétique dans le cadre de l'analyse en composantes indépendantes (ICA) et comparés à des méthodes classiques d'ICA et de factorisation matricielle nonnégative
Malloy, Nicole Andrea. "Minimum Rank Problems for Cographs." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3873.
Full textWalach, Hanna Maria [Verfasser], and Christian [Akademischer Betreuer] Lubich. "Time integration for the dynamical low-rank approximation of matrices and tensors / Hanna Maria Walach ; Betreuer: Christian Lubich." Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1190639831/34.
Full textSexton, William Nelson. "The Minimum Rank of Schemes on Graphs." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4402.
Full textMajidzadeh, Garjani Babak. "On the Rank of the Reduced Density Operator for the Laughlin State and Symmetric Polynomials." Licentiate thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-118807.
Full textGrout, Jason Nicholas. "The Minimum Rank Problem Over Finite Fields." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1995.pdf.
Full textPalzer, Wolfgang [Verfasser], Alexander [Akademischer Betreuer] Alldridge, and George [Akademischer Betreuer] Marinescu. "Fourier Analysis on Non-Compact Symmetric Superspaces of Rank One / Wolfgang Palzer. Gutachter: Alexander Alldridge ; George Marinescu." Köln : Universitäts- und Stadtbibliothek Köln, 2014. http://d-nb.info/1051088070/34.
Full textYip, Martha. "Genus one partitions." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2933.
Full textGarreis, Sebastian [Verfasser], Michael [Akademischer Betreuer] Ulbrich, Matthias [Gutachter] Heinkenschloss, Christian [Gutachter] Clason, and Michael [Gutachter] Ulbrich. "Optimal Control under Uncertainty: Theory and Numerical Solution with Low-Rank Tensors / Sebastian Garreis ; Gutachter: Matthias Heinkenschloss, Christian Clason, Michael Ulbrich ; Betreuer: Michael Ulbrich." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1179360737/34.
Full textOwens, Kayla Denise. "Properties of the Zero Forcing Number." BYU ScholarsArchive, 2009. https://scholarsarchive.byu.edu/etd/2216.
Full textRabusseau, Guillaume. "A tensor perspective on weighted automata, low-rank regression and algebraic mixtures." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4062.
Full textThis thesis tackles several problems exploring connections between tensors and machine learning. In the first chapter, we propose an extension of the classical notion of recognizable function on strings and trees to graphs. We first show that the computations of weighted automata on strings and trees can be interpreted in a natural and unifying way using tensor networks, which naturally leads us to define a computational model on graphs: graph weighted models; we then study fundamental properties of this model and present preliminary learning results. The second chapter tackles a model reduction problem for weighted tree automata. We propose a principled approach to the following problem: given a weighted tree automaton with n states, how can we find an automaton with m
Guerrero, Flores Danny Joel. "On Updating Preconditioners for the Iterative Solution of Linear Systems." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/104923.
Full textThe main topic of this thesis is updating preconditioners for solving large sparse linear systems Ax=b by using Krylov iterative methods. Two interesting types of problems are considered. In the first one is studied the iterative solution of non-singular, non-symmetric linear systems where the coefficient matrix A has a skew-symmetric part of low-rank or can be well approximated with a skew-symmetric low-rank matrix. Systems like this arise from the discretization of PDEs with certain Neumann boundary conditions, the discretization of integral equations as well as path following methods, for example, the Bratu problem and the Love's integral equation. The second type of linear systems considered are least squares (LS) problems that are solved by considering the solution of the equivalent normal equations system. More precisely, we consider the solution of modified and rank deficient LS problems. By modified LS problem, it is understood that the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Rank deficient LS problems are characterized by a coefficient matrix that has not full rank, which makes difficult the computation of an incomplete factorization of the normal equations. LS problems arise in many large-scale applications of the science and engineering as for instance neural networks, linear programming, exploration seismology or image processing. Usually, incomplete LU or incomplete Cholesky factorization are used as preconditioners for iterative methods. The main contribution of this thesis is the development of a technique for updating preconditioners by bordering. It consists in the computation of an approximate decomposition for an equivalent augmented linear system, that is used as preconditioner for the original problem. The theoretical study and the results of the numerical experiments presented in this thesis show the performance of the preconditioner technique proposed and its competitiveness compared with other methods available in the literature for computing preconditioners for the problems studied.
El tema principal d'esta tesi és actualitzar precondicionadors per a resoldre sistemes lineals grans i buits Ax=b per mitjà de l'ús de mètodes iteratius de Krylov. Es consideren dos tipus interessants de problemes. En el primer s'estudia la solució iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu antisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs amb certes condicions de frontera de Neumann, la discretització d'equacions integrals i mètodes de punts interiors, per exemple, el problema de Bratu i l'equació integral de Love. El segon tipus de sistemes lineals considerats, són problemes de mínims quadrats (LS) que es resolen considerant la solució del sistema equivalent d'equacions normals. Concretament, considerem la solució de problemes de LS modificats i de rang incomplet. Per problema LS modificat, s'entén que el conjunt d'equacions lineals s'actualitza amb alguna informació nova, s'agrega una nova variable o, al contrari, s'elimina alguna informació o variable del conjunt. En els problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual cosa dificultata el calcul d'una factorització incompleta de les equacions normals. Els problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l'enginyeria com, per exemple, xarxes neuronals, programació lineal, sismologia d'exploració o processament d'imatges. Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky quan la matriu és simètrica definida positiva. La principal contribució d'esta tesi és el desenvolupament de tècniques d'actualització de precondicionadors. Bàsicament, el mètode consistix en el càlcul d'una descomposició incompleta per a un sistema lineal augmentat equivalent, que s'utilitza com a precondicionador pel problema original. L'estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment de la tècnica de precondicionament proposta i la seua competitivitat en comparació amb altres mètodes disponibles en la literatura per a calcular precondicionadors per als problemes considerats.
Guerrero Flores, DJ. (2018). On Updating Preconditioners for the Iterative Solution of Linear Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/104923
TESIS
Nelson, Curtis G. "Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3246.
Full textRydh, David. "Families of cycles and the Chow scheme." Doctoral thesis, Stockholm : Matematik, Mathematics, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4813.
Full textMuduli, Pranaba Kishor. "Ferromagnetic thin films of Fe and Fe 3 Si on low-symmetric GaAs(113)A substrates." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2006. http://dx.doi.org/10.18452/15473.
Full textIn this work, the molecular-beam epitaxial growth and properties of ferromagnets, namely Fe and Fe_3Si are studied on low-symmetric GaAs(113)A substrates. Three important aspects are investigated: (i) growth and structural characterization, (ii) magnetic properties, and (iii) magnetotransport properties of Fe and Fe_3Si films on GaAs(113)A substrates. The growth of Fe and Fe_3Si films is optimized at growth temperatures of 0 and 250 degree Celsius, respectively, where the layers exhibit high crystal quality and a smooth interface/surface similar to the [001]-oriented films. The stability of Fe_(3+x)Si_(1-x) phase over a range of composition around the Fe_3Si stoichiometry is also demonstrated. The evolution of the in-plane magnetic anisotropy with film thickness exhibits two regions: a uniaxial magnetic anisotropy (UMA) for Fe film thicknesses = 70 MLs. The existence of an out-of-plane perpendicular magnetic anisotropy is also detected in ultrathin Fe films. The interfacial contribution of both the uniaxial and the perpendicular anisotropy constants, derived from the thickness-dependent study, are found to be independent of the [113] orientation and are hence an inherent property of the Fe/GaAs interface. The origin of the UMA is attributed to anisotropic bonding between Fe and As or Ga at the interface, similarly to Fe/GaAs(001). The magnetic anisotropy in Fe_3Si on GaAs(113)A exhibits a complex dependence on the growth conditions and composition. Magnetotransport measurements of both Fe(113) and Fe_3Si(113) films shows the striking appearance of an antisymmetric component (ASC) in the planar Hall effect (PHE). A phenomenological model based on the symmetry of the crystal provides a good explanation to both the ASC in the PHE as well as the symmetric anisotropic magnetoresistance. The model shows that the observed ASC component can be ascribed to a second-order Hall effect.
Medeiros, Rainelly Cunha de. "Degenerations of classical square matrices and their determinantal structure." Universidade Federal da Paraíba, 2017. http://tede.biblioteca.ufpb.br:8080/handle/tede/9318.
Full textMade available in DSpace on 2017-08-25T13:37:53Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1699241 bytes, checksum: 2f092c650c435ae41ec42c261fd9c3af (MD5) Previous issue date: 2017-03-10
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In thisthesis,westudycertaindegenerations/specializationsofthegenericsquare matrix overa eld k of characteristiczeroalongitsmainrelatedstructures,suchthe determinantofthematrix,theidealgeneratedbyitspartialderivatives,thepolarmap de ned bythesederivatives,theHessianmatrixandtheidealofsubmaximalminorsof the matrix.Thedegenerationtypesofthegenericsquarematrixconsideredhereare: (1) degenerationby\cloning"(repeating)avariable;(2)replacingasubsetofentriesby zeros, inastrategiclayout;(3)furtherdegenerationsoftheabovetypesstartingfrom certain specializationsofthegenericsquarematrix,suchasthegenericsymmetric matrix andthegenericsquareHankelmatrix.Thefocusinallthesedegenerations is intheinvariantsdescribedabove,highlightingonthehomaloidalbehaviorofthe determinantofthematrix.Forthis,weemploytoolscomingfromcommutativealgebra, with emphasisonidealtheoryandsyzygytheory.
Nesta tese,estudamoscertasdegenera c~oes/especializa c~oesdamatrizquadradagen erica sobre umcorpo k de caracter sticazero,aolongodesuasprincipaisestruturasrela- cionadas, taiscomoodeterminantedamatriz,oidealgeradoporsuasderivadasparci- ais, omapapolarde nidoporessasderivadas,amatrizHessianaeoidealdosmenores subm aximosdamatriz.Ostiposdedegenera c~aodamatrizquadradagen ericacon- siderados aquis~ao:(1)degenera c~aopor\clonagem"(repeti c~ao)deumavari avel;(2) substitui c~aodeumsubconjuntodeentradasporzeros,emumadisposi c~aoestrat egica; (3) outrasdegenera c~oesdostiposacimapartindodecertasespecializa c~oesdamatriz quadrada gen erica,taiscomoamatrizgen ericasim etricaeamatrizquadradagen erica de Hankel.Ofocoemtodasessasdegenera c~oes enosinvariantesdescritosacima, com destaqueparaocomportamentohomaloidaldodeterminantedamatriz.Paratal, empregamos ferramentasprovenientesda algebracomutativa,com^enfasenateoriade ideais enateoriadesiz gias.
Lestandi, Lucas. "Approximations de rang faible et modèles d'ordre réduit appliqués à quelques problèmes de la mécanique des fluides." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0186/document.
Full textNumerical simulation has experienced tremendous improvements in the last decadesdriven by massive growth of computing power. Exascale computing has beenachieved this year and will allow solving ever more complex problems. But suchlarge systems produce colossal amounts of data which leads to its own difficulties.Moreover, many engineering problems such as multiphysics or optimisation andcontrol, require far more power that any computer architecture could achievewithin the current scientific computing paradigm. In this thesis, we proposeto shift the paradigm in order to break the curse of dimensionality byintroducing decomposition and building reduced order models (ROM) for complexfluid flows.This manuscript is organized into two parts. The first one proposes an extendedreview of data reduction techniques and intends to bridge between appliedmathematics community and the computational mechanics one. Thus, foundingbivariate separation is studied, including discussions on the equivalence ofproper orthogonal decomposition (POD, continuous framework) and singular valuedecomposition (SVD, discrete matrices). Then a wide review of tensor formats andtheir approximation is proposed. Such work has already been provided in theliterature but either on separate papers or into a purely applied mathematicsframework. Here, we offer to the data enthusiast scientist a comparison ofCanonical, Tucker, Hierarchical and Tensor train formats including theirapproximation algorithms. Their relative benefits are studied both theoreticallyand numerically thanks to the python library texttt{pydecomp} that wasdeveloped during this thesis. A careful analysis of the link between continuousand discrete methods is performed. Finally, we conclude that for mostapplications ST-HOSVD is best when the number of dimensions $d$ lower than fourand TT-SVD (or their POD equivalent) when $d$ grows larger.The second part is centered on a complex fluid dynamics flow, in particular thesingular lid driven cavity at high Reynolds number. This flow exhibits a seriesof Hopf bifurcation which are known to be hard to capture accurately which iswhy a detailed analysis was performed both with classical tools and POD. Oncethis flow has been characterized, emph{time-scaling}, a new ``physics based''interpolation ROM is presented on internal and external flows. This methodsgives encouraging results while excluding recent advanced developments in thearea such as EIM or Grassmann manifold interpolation
Goulart, José Henrique De Morais. "Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4147/document.
Full textIn the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation
Sodomaco, Luca. "The Distance Function from the Variety of partially symmetric rank-one Tensors." Doctoral thesis, 2020. http://hdl.handle.net/2158/1220535.
Full textMACCIONI, MAURO. "Tensor rank and eigenvectors." Doctoral thesis, 2017. http://hdl.handle.net/2158/1077336.
Full textCHIEN-YI, MA. "Symmetric Tensors in Ortho-symplectic Lie Superalgebra of Dimension (4,4)." 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-0407200517394100.
Full textMA, CHIEN-YI, and 馬鑑一. "Symmetric Tensors in Ortho-symplectic Lie Superalgebra of Dimension (4,4)." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/43066528074507216240.
Full text國立臺灣大學
數學研究所
93
Ortho-symplectic Lie superalgebra osp can be realized as differential operators and homogeneous polynomial space is closed under its action, that is, homogeneous polynomial space is an osp-module. Our thesis is to study whether or not homogeneous polynomial space can be reduced to a direct sum of irreducible osp-modules. Our conclusion is for any odd homogeneous polynomial space, the answer is yes. For even, the answer is no in the case of degree 2, and therefore invalid for any even homogeneous polynomial space since it must contain a submodule isomorphic to degree 2 homogeneous polynomial space. However, a complete decomposition of arbitrary even homogeneous polynomial space has not been reached yet.
Ashraphijuo, Morteza. "Low-Rank Tensor Completion - Fundamental Limits and Efficient Algorithms." Thesis, 2020. https://doi.org/10.7916/d8-a3j9-zn71.
Full textKimaczyńska, Anna. "The differential operators in the bundle of symmetric tensors on a Riemannian manifold." Phd diss., 2016. http://hdl.handle.net/11089/22071.
Full textGarrido, Garcia Miguel Angel. "Characterization of the Fluctuations in a Symmetric Ensemble of Rank-Based Interacting Particles." Thesis, 2021. https://doi.org/10.7916/d8-azx1-sn93.
Full textXIE, MING-HUA, and 謝明華. "The low rank modification of the symmetric eigenproblem and the implementation of its application in symmetric tridiagonal eigenproblem on CRAY X-MP." Thesis, 1991. http://ndltd.ncl.edu.tw/handle/36773048168702319731.
Full textPohl, Anke D. [Verfasser]. "Symbolic dynamics for the geodesic flow on locally symmetric good orbifolds of rank one / vorgelegt von Anke D. Pohl." 2009. http://d-nb.info/993834043/34.
Full textVan, Zyl Corli. "CUSUM procedures based on sequential ranks / Corli van Zyl." Thesis, 2015. http://hdl.handle.net/10394/15733.
Full textMSc (Risk Analysis), North-West University, Potchefstroom Campus, 2015