Academic literature on the topic 'Randomness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Randomness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Randomness"

1

Landsman, Klaas. "Randomness? What Randomness?" Foundations of Physics 50, no. 2 (January 18, 2020): 61–104. http://dx.doi.org/10.1007/s10701-020-00318-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bartko, John J. "Randomness." Journal of Nervous & Mental Disease 187, no. 7 (July 1999): 448–50. http://dx.doi.org/10.1097/00005053-199907000-00011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bennett, Deborah J., and Stephen Gasiorowicz. "Randomness." Physics Today 52, no. 1 (January 1999): 68–69. http://dx.doi.org/10.1063/1.882575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rute, Jason. "When does randomness come from randomness?" Theoretical Computer Science 635 (July 2016): 35–50. http://dx.doi.org/10.1016/j.tcs.2016.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Liang. "Characterizing strong randomness via Martin-Löf randomness." Annals of Pure and Applied Logic 163, no. 3 (March 2012): 214–24. http://dx.doi.org/10.1016/j.apal.2011.08.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Haug, Espen Gaarder. "Philosophy of Randomness: Limited or Unlimited Randomness?" Wilmott 2018, no. 96 (July 2018): 10–13. http://dx.doi.org/10.1002/wilm.10684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Perminov, N. S., O. I. Bannik, D. Yu Tarankova, and R. R. Nigmatullin. "Correlation Defense for Quantum Randomness." Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki 162, no. 1 (2020): 98–106. http://dx.doi.org/10.26907/2541-7746.2020.1.98-106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Diener, Don, and W. Burt Thompson. "Recognizing Randomness." American Journal of Psychology 98, no. 3 (1985): 433. http://dx.doi.org/10.2307/1422628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dotsenko, Viktor S. "Universal randomness." Physics-Uspekhi 54, no. 3 (March 31, 2011): 259–80. http://dx.doi.org/10.3367/ufne.0181.201103b.0269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Downey, Rodney G., and Evan J. Griffiths. "Schnorr randomness." Journal of Symbolic Logic 69, no. 2 (June 2004): 533–54. http://dx.doi.org/10.2178/jsl/1082418542.

Full text
Abstract:
Abstract.Schnorr randomness is a notion of algorithmic randomness for real numbers closely related to Martin-Löf randomness. After its initial development in the 1970s the notion received considerably less attention than Martin-Löf randomness, but recently interest has increased in a range of randomness concepts. In this article, we explore the properties of Schnorr random reals, and in particular the c.e. Schnorr random reals. We show that there are c.e. reals that are Schnorr random but not Martin-Löf random, and provide a new characterization of Schnorr random real numbers in terms of prefix-free machines. We prove that unlike Martin-Löf random c.e. reals, not all Schnorr random c.e. reals are Turing complete, though all are in high Turing degrees. We use the machine characterization to define a notion of “Schnorr reducibility” which allows us to calibrate the Schnorr complexity of reals. We define the class of “Schnorr trivial” reals, which are ones whose initial segment complexity is identical with the computable reals, and demonstrate that this class has non-computable members.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Randomness"

1

Ghoudi, Kilani. "Multivariate randomness statistics." Thesis, University of Ottawa (Canada), 1993. http://dx.doi.org/10.20381/ruor-17165.

Full text
Abstract:
During the startup phase of a production process while statistics on the product quality are being collected it is useful to establish that the process is under control. Small samples ni qi=1 are taken periodically for q periods. We shall assume each measurement is multivariate. A process is under control or on-target if all the observations are deemed to be independent and identically distributed. Let Fi represent the empirical distribution function of the ith sample. Let F¯ represent the empirical distribution function of all observations. Following Lehmann (1951) we propose statistics of the form i=1q -infinityinfinityFi s-F- s2d Fs. The asymptotics of nonparametric q-sample Cramer-Von Mises statistics were studied in Kiefer (1959). The emphasis there, however, is on the case where n(i) → infinity while q stayed fixed. Here we study the asymptotics of a family of randomness statistics, that includes the above. These asymptotics are in the quality control situation (i.e q → infinity while n( i) stay fixed). Such statistics can be used in many situations; in fact one can use randomness statistics in any situation where the problem amounts to a test of homoscedasticity or homogeneity of a collection of observations. We give two such applications. First we show how such statistics can be used in nonparametric regression. Second we illustrate the application to retrospective quality control.
APA, Harvard, Vancouver, ISO, and other styles
2

Justamante, David. "Randomness from space." Thesis, Monterey, California: Naval Postgraduate School, 2017. http://hdl.handle.net/10945/52996.

Full text
Abstract:
Approved for public release; distribution is unlimited
Includes supplementary material
Reissued 30 May 2017 with correction to degree on title page.
Randomness is at the heart of today's computing. There are two categorical methods to generate random numbers: pseudorandom number generation (PRNG) methods and true random number generation (TRNG) methods. While PRNGs operate orders of magnitude faster than TRNGs, the strength of PRNGs lies in their initial seed. TRNGs can function to generate such a seed. This thesis will focus on studying the feasibility of using the next generation Naval Postgraduate School Femto Satellite (NPSFS) as a TRNG. The hardware for the next generation will come from the Intel Quark D2000 along with its onboard BMC150 6-axis eCompass. We simulated 3-dimensional motion to see if any raw data from the BMC150 could be used as an entropy source for random number generation.We studied various "schemes" on how to select and output specific data bits to determine if more entropy and increased bitrate could be reached. Data collected in this thesis suggests that the BMC150 contains certain bits that could be considered good sources of entropy. Various schemes further utilized these bits to yield a strong entropy source with higher bitrate. We propose the NPSFS be studied further to find other sources of entropy. We also propose a prototype be sent into space for experimental verification of these results.
Lieutenant, United States Navy
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Ru Qi. "Mechanisms of randomness cognition." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/62682.

Full text
Abstract:
The environment is inherently noisy, with regularities and randomness. Therefore, the challenge for the cognitive system is to detect signals from noise. This extraction of regularities forms the basis of many learning processes, such as conditioning and language acquisition. However, people often have erroneous beliefs about randomness. One pervasive bias in people’s conception of randomness is that they expect random sequences to exhibit greater alternations than typically produced by random devices (i.e., the over-alternation bias). To explain the causes of this bias, in the thesis, I examined the cognitive and neural mechanisms of randomness perception. In six experiments, I found that the over-alternation bias was present regardless of the feature dimensions, sensory modalities, and probing methods (Experiment 1); alternations in a binary sequence were harder to encode and are under-represented compared with repetitions (Experiments 2-5); and hippocampal neurogenesis was a critical neural mechanism for the detection of alternating patterns but not for repeating patterns (Experiment 6). These findings provide new insights on the mechanisms of randomness cognition; specifically, we revealed different mechanisms involved in representing alternating patterns versus repeating patterns.
Arts, Faculty of
Psychology, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
4

Bourdoncle, Boris. "Quantifying randomness from Bell nonlocality." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/666591.

Full text
Abstract:
The twentieth century was marked by two scientific revolutions. On the one hand, quantum mechanics questioned our understanding of nature and physics. On the other hand, came the realisation that information could be treated as a mathematical quantity. They together brought forward the age of information. A conceptual leap took place in the 1980's, that consisted in treating information in a quantum way as well. The idea that the intuitive notion of information could be governed by the counter-intuitive laws of quantum mechanics proved extremely fruitful, both from fundamental and applied points of view. The notion of randomness plays a central role in that respect. Indeed, the laws of quantum physics are probabilistic: that contrasts with thousands of years of physical theories that aimed to derive deterministic laws of nature. This, in turn, provides us with sources of random numbers, a crucial resource for information protocols. The fact that quantum theory only describes probabilistic behaviours was for some time regarded as a form of incompleteness. But nonlocality, in the sense of Bell, showed that this was not the case: the laws of quantum physics are inherently random, i.e., the randomness they imply cannot be traced back to a lack of knowledge. This observation has practical consequences: the outputs of a nonlocal physical process are necessarily unpredictable. Moreover, the random character of these outputs does not depend on the physical system, but only of its nonlocal character. For that reason, nonlocality-based randomness is certified in a device-independent manner. In this thesis, we quantify nonlocality-based randomness in various frameworks. In the first scenario, we quantify randomness without relying on the quantum formalism. We consider a nonlocal process and assume that it has a specific causal structure that is only due to how it evolves with time. We provide trade-offs between nonlocality and randomness for the various causal structures that we consider. Nonlocality-based randomness is usually defined in a theoretical framework. In the second scenario, we take a practical approach and ask how much randomness can be certified in a practical situation, where only partial information can be gained from an experiment. We describe a method to optimise how much randomness can be certified in such a situation. Trade-offs between nonlocality and randomness are usually studied in the bipartite case, as two agents is the minimal requirement to define nonlocality. In the third scenario, we quantify how much randomness can be certified for a tripartite process. Though nonlocality-based randomness is device-independent, the process from which randomness is certified is actually realised with a physical state. In the fourth scenario, we ask what physical requirements should be imposed on the physical state for maximal randomness to be certified, and more specifically, how entangled the underlying state should be. We show that maximal randomness can be certified from any level of entanglement.
El siglo XX estuvo marcado por dos revoluciones científicas. Por un lado, la mecánica cuántica cuestionó nuestro entendimiento de la naturaleza y de la física. Por otro lado, quedó claro que la información podía ser tratada como un objeto matemático. Juntos, ambas revoluciones dieron inicio a la era de la información. Un salto conceptual ocurrió en los años 80: se descubrió que la información podía ser tratada de manera cuántica. La idea de que la noción intuitiva de información podía ser gobernada por las leyes contra intuitivas de la mecánica cuántica resultó extremadamente fructífera tanto desde un punto de vista teórico como práctico. El concepto de aleatoriedad desempeña un papel central en este respecto. En efecto, las leyes de la física cuántica son probabilistas, lo que contrasta con siglos de teorías físicas cuyo objetivo era elaborar leyes deterministas de la naturaleza. Además, esto constituye una fuente de números aleatorios, un recurso crucial para criptografía. El hecho de que la física cuántica solo describe comportamientos aleatorios fue a veces considerado como una forma de incompletitud en la teoría. Pero la no-localidad, en el sentido de Bell, probó que no era el caso: las leyes cuánticas son intrínsecamente probabilistas, es decir, el azar que contienen no puede ser atribuido a una falta de conocimiento. Esta observación tiene consecuencias prácticas: los datos procedentes de un proceso físico no-local son necesariamente impredecibles. Además, el carácter aleatorio de estos datos no depende del sistema físico, sino solo de su carácter no-local. Por esta razón, el azar basado en la no-localidad está certificado independientemente del dispositivo físico. En esta tesis, cuantificamos el azar basado en la no-localidad en varios escenarios. En el primero, no utilizamos el formalismo cuántico. Estudiamos un proceso no-local dotado de varias estructuras causales en relación con su evolución temporal, y calculamos las relaciones entre aleatoriedad y no-localidad para estas diferentes estructuras causales. El azar basado en la no-localidad suele ser definido en un marco teórico. En el segundo escenario, adoptamos un enfoque práctico, y examinamos la relación entre aleatoriedad y no-localidad en una situación real, donde solo tenemos una información parcial, procedente de un experimento, sobre el proceso. Proponemos un método para optimizar la aleatoriedad en este caso. Hasta ahora, las relaciones entre aleatoriedad y no-localidad han sido estudiadas en el caso bipartito, dado que dos agentes forman el requisito mínimo para definir el concepto de no-localidad. En el tercer escenario, estudiamos esta relación en el caso tripartito. Aunque el azar basado en la no-localidad no depende del dispositivo físico, el proceso que sirve para generar azar debe sin embargo ser implementado con un estado cuántico. En el cuarto escenario, preguntamos si hay que imponer requisitos sobre el estado para poder certificar una máxima aleatoriedad de los resultados. Mostramos que se puede obtener la cantidad máxima de aleatoriedad indiferentemente del nivel de entrelazamiento del estado cuántico.
APA, Harvard, Vancouver, ISO, and other styles
5

Elias, Joran. "Randomness In Tree Ensemble Methods." The University of Montana, 2009. http://etd.lib.umt.edu/theses/available/etd-10092009-110301/.

Full text
Abstract:
Tree ensembles have proven to be a popular and powerful tool for predictive modeling tasks. The theory behind several of these methods (e.g. boosting) has received considerable attention. However, other tree ensemble techniques (e.g. bagging, random forests) have attracted limited theoretical treatment. Specifically, it has remained somewhat unclear as to why the simple act of randomizing the tree growing algorithm should lead to such dramatic improvements in performance. It has been suggested that a specific type of tree ensemble acts by forming a locally adaptive distance metric [Lin and Jeon, 2006]. We generalize this claim to include all tree ensembles methods and argue that this insight can help to explain the exceptional performance of tree ensemble methods. Finally, we illustrate the use of tree ensemble methods for an ecological niche modeling example involving the presence of malaria vectors in Africa.
APA, Harvard, Vancouver, ISO, and other styles
6

Vaikuntanathan, Vinod. "Distributed computing with imperfect randomness." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34354.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.
Includes bibliographical references (p. 41-43).
Randomness is a critical resource in many computational scenarios, enabling solutions where deterministic ones are elusive or even provably impossible. However, the randomized solutions to these tasks assume access to a pure source of unbiased, independent coins. Physical sources of randomness, on the other hand, are rarely unbiased and independent although they do seem to exhibit somewhat imperfect randomness. This gap in modeling questions the relevance of current randomized solutions to computational tasks. Indeed, there has been substantial investigation of this issue in complexity theory in the context of the applications to efficient algorithms and cryptography. This work seeks to determine whether imperfect randomness, modeled appropriately, is "good enough" for distributed algorithms. Namely, can we do with imperfect randomness all that we can do with perfect randomness, and with comparable efficiency ? We answer this question in the affirmative, for the problem of Byzantine agreement. We construct protocols for Byzantine agreement in a variety of scenarios (synchronous or asynchronous networks, with or without private channels), in which the players have imperfect randomness. Our solutions are essentially as efficient as the best known randomized Byzantine agreement protocols, which traditionally assume that all the players have access to perfect randomness.
by Vinod Vaikuntanathan.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Mezher, Rawad. "Randomness for quantum information processing." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS244.pdf.

Full text
Abstract:
Cette thèse est basée sur la génération et la compréhension de types particuliers des ensembles unitaires aleatoires. Ces ensembles est utile pour de nombreuses applications de physique et de l’Information Quantique, comme le benchmarking aléatoire, la physique des trous noirs, ainsi qu’à la démonstration de ce que l’on appelle un "quantum speedup" etc. D'une part, nous explorons comment générer une forme particulière d'évolution aléatoire appelée epsilon-approximateunitary t-designs . D'autre part, nous montrons comment cela peut également donner des exemples de quantum speedup, où les ordinateurs classiques ne peuvent pas simuler en temps polynomiale le caractère aléatoire. Nous montrons également que cela est toujours possible dans des environnements bruyants et réalistes
This thesis is focused on the generation and understanding of particular kinds of quantum randomness. Randomness is useful for many tasks in physics and information processing, from randomized benchmarking , to black hole physics , as well demonstrating a so-called quantum speedup , and many other applications. On the one hand we explore how to generate a particular form of random evolution known as a t-design. On the other we show how this can also give instances for quantum speedup - where classical computers cannot simulate the randomness efficiently. We also show that this is still possible in noisy realistic settings. More specifically, this thesis is centered around three main topics. The first of these being the generation of epsilon-approximate unitary t-designs. In this direction, we first show that non-adaptive, fixed measurements on a graph state composed of poly(n,t,log(1/epsilon)) qubits, and with a regular structure (that of a brickwork state) effectively give rise to a random unitary ensemble which is a epsilon-approximate t-design. This work is presented in Chapter 3. Before this work, it was known that non-adaptive fixed XY measurements on a graph state give rise to unitary t-designs , however the graph states used there were of complicated structure and were therefore not natural candidates for measurement based quantum computing (MBQC), and the circuits to make them were complicated. The novelty in our work is showing that t-designs can be generated by fixed, non-adaptive measurements on graph states whose underlying graphs are regular 2D lattices. These graph states are universal resources for MBQC. Therefore, our result allows the natural integration of unitary t-designs, which provide a notion of quantum pseudorandomness which is very useful in quantum algorithms, into quantum algorithms running in MBQC. Moreover, in the circuit picture this construction for t-designs may be viewed as a constant depth quantum circuit, albeit with a polynomial number of ancillas. We then provide new constructions of epsilon-approximate unitary t-designs both in the circuit model and in MBQC which are based on a relaxation of technical requirements in previous constructions. These constructions are found in Chapters 4 and 5
APA, Harvard, Vancouver, ISO, and other styles
8

Morphett, Anthony William. "Degrees of computability and randomness." Thesis, University of Leeds, 2009. http://etheses.whiterose.ac.uk/11291/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Spiegel, Christoph. "Additive structures and randomness in combinatorics." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669327.

Full text
Abstract:
Arithmetic Combinatorics, Combinatorial Number Theory, Structural Additive Theory and Additive Number Theory are just some of the terms used to describe the vast field that sits at the intersection of Number Theory and Combinatorics and which will be the focus of this thesis. Its contents are divided into two main parts, each containing several thematically related results. The first part deals with the question under what circumstances solutions to arbitrary linear systems of equations usually occur in combinatorial structures..The properties we will be interested in studying in this part relate to the solutions to linear systems of equations. A first question one might ask concerns the point at which sets of a given size will typically contain a solution. We will establish a threshold and also study the distribution of the number of solutions at that threshold, showing that it converges to a Poisson distribution in certain cases. Next, Van der Waerden’s Theorem, stating that every finite coloring of the integers contains monochromatic arithmetic progression of arbitrary length, is by some considered to be the first result in Ramsey Theory. Rado generalized van der Waerden’s result by characterizing those linear systems whose solutions satisfy a similar property and Szemerédi strengthened it to a statement concerning density rather than colorings. We will turn our attention towards versions of Rado’s and Szemerédi’s Theorem in random sets, extending previous work of Friedgut, Rödl, Rucin´ski and Schacht in the case of the former and of Conlon, Gowers and Schacht for the latter to include a larger variety of systems and solutions. Lastly, Chvátal and Erdo¿s suggested studying Maker-Breaker games. These games have deep connections to the theory of random structures and we will build on work of Bednarska and Luczak to establish the threshold for how much a large variety of games need to be biased in favor of the second player. These include games in which the first player wants to occupy a solution to some given linear system, generalizing the van der Waerden games introduced by Beck. The second part deals with the extremal behavior of sets with interesting additive properties. In particular, we will be interested in bounds or structural descriptions for sets exhibiting some restrictions with regards to either their representation function or their sumset. First, we will consider Sidon sets, that is sets of integers with pairwise unique differences. We will study a generalization of Sidon sets proposed very recently by Kohayakawa, Lee, Moreira and Rödl, where the pairwise differences are not just distinct, but in fact far apart by a certain measure. We will obtain strong lower bounds for such infinite sets using an approach of Cilleruelo. As a consequence of these bounds, we will also obtain the best current lower bound for Sidon sets in randomly generated infinite sets of integers of high density. Next, one of the central results at the intersection of Combinatorics and Number Theory is the Freiman–Ruzsa Theorem stating that any finite set of integers of given doubling can be efficiently covered by a generalized arithmetic progression. In the case of particularly small doubling, more precise structural descriptions exist. We will first study results going beyond Freiman’s well-known 3k–4 Theorem in the integers. We will then see an application of these results to sets of small doubling in finite cyclic groups. Lastly, we will turn our attention towards sets with near-constant representation functions. Erdo¿s and Fuchs established that representation functions of arbitrary sets of integers cannot be too close to being constant. We will first extend the result of Erdo¿s and Fuchs to ordered representation functions. We will then address a related question of Sárközy and Sós regarding weighted representation function.
La combinatòria aritmètica, la teoria combinatòria dels nombres, la teoria additiva estructural i la teoria additiva de nombres són alguns dels termes que es fan servir per descriure una branca extensa i activa que es troba en la intersecció de la teoria de nombres i de la combinatòria, i que serà el motiu d'aquesta tesi doctoral. La primera part tracta la qüestió de sota quines circumstàncies es solen produir solucions a sistemes lineals d’equacions arbitràries en estructures additives. Una primera pregunta que s'estudia es refereix al punt en que conjunts d’una mida determinada contindran normalment una solució. Establirem un llindar i estudiarem també la distribució del nombre de solucions en aquest llindar, tot demostrant que en certs casos aquesta distribució convergeix a una distribució de Poisson. El següent tema de la tesis es relaciona amb el teorema de Van der Waerden, que afirma que cada coloració finita dels nombres enters conté una progressió aritmètica monocromàtica de longitud arbitrària. Aquest es considera el primer resultat en la teoria de Ramsey. Rado va generalitzar el resultat de van der Waerden tot caracteritzant en aquells sistemes lineals les solucions de les quals satisfan una propietat similar i Szemerédi la va reforçar amb una versió de densitat del resultat. Centrarem la nostra atenció cap a versions del teorema de Rado i Szemerédi en conjunts aleatoris, ampliant els treballs anteriors de Friedgut, Rödl, Rucinski i Schacht i de Conlon, Gowers i Schacht. Per últim, Chvátal i Erdos van suggerir estudiar estudiar jocs posicionals del tipus Maker-Breaker. Aquests jocs tenen una connexió profunda amb la teoria de les estructures aleatòries i ens basarem en el treball de Bednarska i Luczak per establir el llindar de la quantitat que necessitem per analitzar una gran varietat de jocs en favor del segon jugador. S'inclouen jocs en què el primer jugador vol ocupar una solució d'un sistema lineal d'equacions donat, generalitzant els jocs de van der Waerden introduïts per Beck. La segona part de la tesis tracta sobre el comportament extrem dels conjunts amb propietats additives interessants. Primer, considerarem els conjunts de Sidon, és a dir, conjunts d’enters amb diferències úniques quan es consideren parelles d'elements. Estudiarem una generalització dels conjunts de Sidons proposats recentment per Kohayakawa, Lee, Moreira i Rödl, en que les diferències entre parelles no són només diferents, sinó que, en realitat, estan allunyades una certa proporció en relació a l'element més gran. Obtindrem límits més baixos per a conjunts infinits que els obtinguts pels anteriors autors tot usant una construcció de conjunts de Sidon infinits deguda a Cilleruelo. Com a conseqüència d'aquests límits, obtindrem també el millor límit inferior actual per als conjunts de Sidon en conjunts infinits generats aleatòriament de nombres enters d'alta densitat. A continuació, un dels resultats centrals a la intersecció de la combinatòria i la teoria dels nombres és el teorema de Freiman-Ruzsa, que afirma que el conjunt suma d'un conjunt finit d’enters donats pot ser cobert de manera eficient per una progressió aritmètica generalitzada. En el cas de que el conjunt suma sigui de mida petita, existeixen descripcions estructurals més precises. Primer estudiarem els resultats que van més enllà del conegut teorema de Freiman 3k-4 en els enters. Llavors veurem una aplicació d’aquests resultats a conjunts de dobles petits en grups cíclics finits. Finalment, dirigirem l’atenció cap a conjunts amb funcions de representació gairebé constants. Erdos i Fuchs van establir que les funcions de representació de conjunts arbitraris d’enters no poden estar massa a prop de ser constants. Primer estendrem el resultat d’Erdos i Fuchs a funcions de representació ordenades. A continuació, abordarem una pregunta relacionada de Sárközy i Sós sobre funció de representació ponderada.
APA, Harvard, Vancouver, ISO, and other styles
10

Wong, Erick Bryce. "Structure and randomness in arithmetic settings." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42887.

Full text
Abstract:
We study questions in three arithmetic settings, each of which carries aspects of random-like behaviour. In the setting of arithmetic functions, we establish mild conditions under which the tuple of multiplicative functions [f₁, f₂, …, f_d ], evaluated at d consecutive integers n+1, …, n+d, closely approximates points in R^d for a positive proportion of n; we obtain a further generalization which allows these functions to be composed with various arithmetic progressions. Secondly, we examine the eigenvalues of random integer matrices, showing that most matrices have no rational eigenvalues; we also identify the precise distributions of both real and rational eigenvalues in the 2 × 2 case. Finally, we consider the set S(k) of numbers represented by the quadratic form x² + ky², showing that it contains infinitely many strings of five consecutive integers under many choices of k; we also characterize exactly which numbers can appear as the difference of two consecutive values in S(k).
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Randomness"

1

Gorban, Igor I. Randomness and Hyper-randomness. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-60780-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bennett, Deborah J. Randomness. Cambridge, Mass: Harvard University Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chaitin, Gregory J. Exploring RANDOMNESS. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0307-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Möller, Bernd, and Michael Beer. Fuzzy Randomness. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07358-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calude, Cristian. Information and Randomness. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03049-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Calude, Cristian S. Information and Randomness. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04978-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maass, Alejandro, Servet Martínez, and Jaime San Martín, eds. Dynamics and Randomness. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0345-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nies, André. Computability and randomness. Oxford: Oxford University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Computability and randomness. New York: Oxford University Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Maass, Alejandro. Dynamics and Randomness. Dordrecht: Springer Netherlands, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Randomness"

1

Berend, Daniel, Shlomi Dolev, and Manish Kumar. "Randomness for Randomness Testing." In Cyber Security, Cryptology, and Machine Learning, 153–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07689-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Subero, Armstrong. "Randomness." In Codeless Data Structures and Algorithms, 93–105. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5725-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schlosshauer, Maximilian. "Randomness." In The Frontiers Collection, 109–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20880-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hannon, Bruce, and Matthias Ruth. "Randomness." In Dynamic Modeling, 96–101. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0211-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hannon, Bruce, and Matthias Ruth. "Randomness." In Dynamic Modeling, 56–60. New York, NY: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4684-0224-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cleophas, Ton J., and Aeilko H. Zwinderman. "Randomness." In Understanding Clinical Data Analysis, 1–12. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39586-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ullah, Mukhtar, and Olaf Wolkenhauer. "Randomness." In Stochastic Approaches for Systems Biology, 53–74. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0478-1_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stewart, David E. "Randomness." In Numerical Analysis: A Graduate Course, 489–536. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08121-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morazán, Marco T. "Randomness." In Texts in Computer Science, 47–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04317-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chamberlin, Scott A. "Randomness." In Probability for Kids, 29–44. New York: Routledge, 2021. http://dx.doi.org/10.4324/9781003237280-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Randomness"

1

Nisan, N., and A. Wigderson. "Hardness vs. randomness." In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science. IEEE, 1988. http://dx.doi.org/10.1109/sfcs.1988.21916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Voris, Jonathan, Nitesh Saxena, and Tzipora Halevi. "Accelerometers and randomness." In the fourth ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1998412.1998433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhiheng, Naman Saraf, Kia Bazargan, and Arnd Scheel. "Randomness meets feedback." In DAC '15: The 52nd Annual Design Automation Conference 2015. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2744769.2744898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bloch, Matthieu. "Channel intrinsic randomness." In 2010 IEEE International Symposium on Information Theory - ISIT. IEEE, 2010. http://dx.doi.org/10.1109/isit.2010.5513744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gurevich, Yuri. "Impugning alleged randomness." In 2015 Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC). IEEE, 2015. http://dx.doi.org/10.1109/nafips-wconsc.2015.7284118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pironio, Stefano. "Certified Quantum Randomness." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jth4k.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurri, Gowtham R., and Vinod M. Prabhakaran. "Coordination via Shared Randomness." In 2019 IEEE Information Theory Workshop (ITW). IEEE, 2019. http://dx.doi.org/10.1109/itw44776.2019.8988914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Halprin, Ran, and Moni Naor. "Games for extracting randomness." In the 5th Symposium. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1572532.1572548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fernandes, Diogo A. B., Liliana F. B. Soares, Mario M. Freire, and Pedro R. M. Inacio. "Randomness in Virtual Machines." In 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing (UCC). IEEE, 2013. http://dx.doi.org/10.1109/ucc.2013.57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khuri, Sami, Frederick Stern, and Teresa Chiu. "Randomness of finite strings." In the 1997 ACM symposium. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/331697.332343.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Randomness"

1

Chatterjee, Krishnendu, Luca de Alfaro, and Thomas A. Henzinger. Trading Memory for Randomness. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada458138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Eastlake, D., S. Crocker, and J. Schiller. Randomness Recommendations for Security. RFC Editor, December 1994. http://dx.doi.org/10.17487/rfc1750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eastlake, D., J. Schiller, and S. Crocker. Randomness Requirements for Security. RFC Editor, June 2005. http://dx.doi.org/10.17487/rfc4086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scotchmer, Suzanne, and Joel Slemrod. Randomness in Tax Enforcement. Cambridge, MA: National Bureau of Economic Research, February 1988. http://dx.doi.org/10.3386/w2512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cremers, C., L. Garratt, S. Smyshlyaev, N. Sullivan, and C. Wood. Randomness Improvements for Security Protocols. RFC Editor, October 2020. http://dx.doi.org/10.17487/rfc8937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anantharam, Venkat, and Vivek Borkar. Common Randomness and Distributed Control: A Counterexample. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada520303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guzman, Martin, and Joseph Stiglitz. Towards a Dynamic Disequilibrium Theory with Randomness. Cambridge, MA: National Bureau of Economic Research, June 2020. http://dx.doi.org/10.3386/w27453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zurek, Wojciech H. Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps. Office of Scientific and Technical Information (OSTI), June 2014. http://dx.doi.org/10.2172/1133748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Soto, Juan Jr. Randomness testing of the advanced encryption standard candidate algorithms. Gaithersburg, MD: National Institute of Standards and Technology, 1999. http://dx.doi.org/10.6028/nist.ir.6390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soto, Juan, and Lawrence Bassham. Randomness testing of the advanced encryption standard finalist candidates. Gaithersburg, MD: National Institute of Standards and Technology, 2000. http://dx.doi.org/10.6028/nist.ir.6483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography