Academic literature on the topic 'Random Network Codes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random Network Codes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random Network Codes"
Gabidulin, E. M., N. I. Pilipchuk, and M. Bossert. "Decoding of random network codes." Problems of Information Transmission 46, no. 4 (December 2010): 300–320. http://dx.doi.org/10.1134/s0032946010040034.
Full textChen, Chao, Hongmei Xie, and Baoming Bai. "Layered subspace codes for random network coding." Transactions on Emerging Telecommunications Technologies 26, no. 3 (June 4, 2013): 461–68. http://dx.doi.org/10.1002/ett.2648.
Full textRiemensberger, Maximilian, Yalin Sagduyu, Michael Honig, and Wolfgang Utschick. "Training overhead for decoding random linear network codes in wireless networks." IEEE Journal on Selected Areas in Communications 27, no. 5 (June 2009): 729–37. http://dx.doi.org/10.1109/jsac.2009.090613.
Full textLi, Ye, Jun Zhu, and Zhihua Bao. "Sparse Random Linear Network Coding With Precoded Band Codes." IEEE Communications Letters 21, no. 3 (March 2017): 480–83. http://dx.doi.org/10.1109/lcomm.2016.2632731.
Full textWang, Shiheng, Quan Zhou, Siyuan Yang, Chaoyuan Bai, and Heng Liu. "Wireless Communication Strategy with BATS Codes for Butterfly Network." Journal of Physics: Conference Series 2218, no. 1 (March 1, 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2218/1/012003.
Full textChen, Siguang, Meng Wu, and Weifeng Lu. "Compressed error and erasure correcting codes via rank-metric codes in random network coding." International Journal of Communication Systems 25, no. 11 (August 16, 2011): 1398–414. http://dx.doi.org/10.1002/dac.1316.
Full textNazer, Bobak, and Michael Gastpar. "The case for structured random codes in network capacity theorems." European Transactions on Telecommunications 19, no. 4 (2008): 455–74. http://dx.doi.org/10.1002/ett.1284.
Full textLARASATI, SOLICHAH, and KHOIRUN NI’AMAH. "Sub-Optimal Degree Distribution untuk Prioritas Komunikasi Manusia menggunakan Proyeksi EXIT Chart pada Jaringan Masa Depan." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 7, no. 3 (September 30, 2019): 442. http://dx.doi.org/10.26760/elkomika.v7i3.442.
Full textWachter-Zeh, Antonia, Markus Stinner, and Vladimir Sidorenko. "Convolutional Codes in Rank Metric With Application to Random Network Coding." IEEE Transactions on Information Theory 61, no. 6 (June 2015): 3199–213. http://dx.doi.org/10.1109/tit.2015.2424930.
Full textXiao, Ming, Muriel Medard, and Tor Aulin. "Cross-Layer Design of Rateless Random Network Codes for Delay Optimization." IEEE Transactions on Communications 59, no. 12 (December 2011): 3311–22. http://dx.doi.org/10.1109/tcomm.2011.112311.100366.
Full textDissertations / Theses on the topic "Random Network Codes"
Lee, Anna H. "Simplified random network codes for multicast networks." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33306.
Full textIncludes bibliographical references (p. 43).
Network coding is a method of data transmission across a network which involves coding at intermediate nodes. Network coding is particularly attractive for multicast. Building on the work done on random linear network codes, we develop a constrained, simplified code construction suitable for multicast in wireless networks. We analyze bounds on sufficient code size and code success probability via an algebraic framework for network coding. We also present simulation results that compare generalized random network codes with our code construction. Issues unique to the simplified code are explored and a relaxation of the code to improve code performance is discussed.
by Anna H. Lee.
M.Eng.and S.B.
Von, Solms Suné. "Design of effective decoding techniques in network coding networks / Suné von Solms." Thesis, North-West University, 2013. http://hdl.handle.net/10394/9544.
Full textThesis (PhD (Computer Engineering))--North-West University, Potchefstroom Campus, 2013
Lu, Lu. "Wireless Broadcasting with Network Coding." Licentiate thesis, KTH, Kommunikationsteori, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-40472.
Full textQC 20110907
Susanto, Misfa. "Network Coding for Multihop Wireless Networks: Joint Random Linear Network Coding and Forward Error Correction with Interleaving for Multihop Wireless Networks." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14864.
Full textKhoudro, Nader. "Modelling and performance evaluation of random access CDMA networks." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/12385.
Full textPishro-Nik, Hossein. "Applications of Random Graphs to Design and Analysis of LDPC Codes and Sensor Networks." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7722.
Full textBadri, Moncef. "Performance analysis of star architecture packet-switched VSAT networks using random code division multiple access." Thesis, Virginia Polytechnic Institute and State University, 1987. http://hdl.handle.net/10919/91081.
Full textM.S.
Ni, Jian. "Connectivity, dynamic performance of random radio networks & state independent uniquely decodable codes, codeword synchronisation of collaborative coding multiple access communications." Thesis, University of Warwick, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282534.
Full textSabir, Essaïd. "MAC protocols design and a cross-layered QoS framework for next generation wireless networks." Phd thesis, Université d'Avignon, 2010. http://tel.archives-ouvertes.fr/tel-00544071.
Full textLeyva, Mayorga Israel. "On reliable and energy efficient massive wireless communications: the road to 5G." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/115484.
Full textLa cinquena generació de xarxes mòbils (5G) es troba molt a la vora. S'espera que proveïsca de beneficis extraordinaris a la població i que resolga la majoria dels problemes de les xarxes 4G actuals. L'èxit de 5G, per a la qual ja ha sigut completada la primera fase del qual d'estandardització, depén de tres pilars: comunicacions tipus-màquina massives, banda ampla mòbil millorada, i comunicacions ultra fiables i de baixa latència (mMTC, eMBB i URLLC, respectivament, per les seues sigles en anglés). En aquesta tesi ens enfoquem en el primer pilar de 5G, mMTC, però també proveïm una solució per a aconseguir eMBB en escenaris de distribució massiva de continguts. Específicament, les principals contribucions són en les àrees de: 1) suport eficient de mMTC en xarxes cel·lulars; 2) accés aleatori per al report d'esdeveniments en xarxes sense fils de sensors (WSNs); i 3) cooperació per a la distribució massiva de continguts en xarxes cel·lulars. En l'apartat de mMTC en xarxes cel·lulars, aquesta tesi realitza una anàlisi profunda de l'acompliment del procediment d'accés aleatori, que és la forma mitjançant la qual els dispositius mòbils accedeixen a la xarxa. Aquestes anàlisis van ser inicialment dutes per mitjà de simulacions i, posteriorment, per mitjà d'un model analític. Els models van ser desenvolupats específicament per a aquest propòsit i inclouen un dels esquemes de control d'accés més prometedors: el access class barring (ACB). El nostre model és un dels més precisos que es poden trobar i l'únic que incorpora l'esquema d'ACB. Els resultats obtinguts per mitjà d'aquest model i per simulació són clars: els accessos altament sincronitzats que ocorren en aplicacions de mMTC poden causar congestió severa en el canal d'accés. D'altra banda, també són clars en què aquesta congestió es pot previndre amb una adequada configuració de l'ACB. No obstant això, els paràmetres de configuració de l'ACB han de ser contínuament adaptats a la intensitat d'accessos per a poder obtindre unes prestacions òptimes. En la tesi es proposa una solució pràctica a aquest problema en la forma d'un esquema de configuració automàtica per a l'ACB; l'anomenem ACBC. Els resultats mostren que el nostre esquema pot aconseguir un acompliment molt proper a l'òptim sense importar la intensitat dels accessos. Així mateix, pot ser directament implementat en xarxes cel·lulars per a suportar el trànsit mMTC, ja que ha sigut dissenyat tenint en compte els estàndards del 3GPP. A més de les anàlisis descrites anteriorment per a xarxes cel·lulars, es realitza una anàlisi general per a aplicacions de comptadors intel·ligents. És a dir, estudiem un escenari de mMTC des de la perspectiva de les WSNs. Específicament, desenvolupem un model híbrid per a l'anàlisi de prestacions i l'optimització de protocols de WSNs d'accés aleatori i basats en clúster. Els resultats mostren la utilitat d'escoltar el mitjà sense fil per a minimitzar el nombre de transmissions i també de modificar les probabilitats de transmissió després d'una col·lisió. Pel que fa a eMBB, ens enfoquem en un escenari de distribució massiva de continguts, en el qual un mateix contingut és enviat de forma simultània a un gran nombre d'usuaris mòbils. Aquest escenari és problemàtic, ja que les estacions base de la xarxa cel·lular no compten amb mecanismes eficients de multicast o broadcast. Per tant, la solució que s'adopta comunament és la de replicar el contingut per a cadascun dels usuaris que ho sol·liciten; és clar que això és altament ineficient. Per a resoldre aquest problema, proposem l'ús d'esquemes de network coding i d'arquitectures cooperatives anomenades núvols mòbils. En concret, desenvolupem un protocol per a realitzar la distribució massiva de continguts de forma eficient, juntament amb un model analític per a la seua optimització. Els resultats demostren que el model proposat és simple i precís
The 5th generation (5G) of mobile networks is just around the corner. It is expected to bring extraordinary benefits to the population and to solve the majority of the problems of current 4th generation (4G) systems. The success of 5G, whose first phase of standardization has concluded, relies in three pillars that correspond to its main use cases: massive machine-type communication (mMTC), enhanced mobile broadband (eMBB), and ultra-reliable low latency communication (URLLC). This thesis mainly focuses on the first pillar of 5G: mMTC, but also provides a solution for the eMBB in massive content delivery scenarios. Specifically, its main contributions are in the areas of: 1) efficient support of mMTC in cellular networks; 2) random access (RA) event-reporting in wireless sensor networks (WSNs); and 3) cooperative massive content delivery in cellular networks. Regarding mMTC in cellular networks, this thesis provides a thorough performance analysis of the RA procedure (RAP), used by the mobile devices to switch from idle to connected mode. These analyses were first conducted by simulation and then by an analytical model; both of these were developed with this specific purpose and include one of the most promising access control schemes: the access class barring (ACB). To the best of our knowledge, this is one of the most accurate analytical models reported in the literature and the only one that incorporates the ACB scheme. Our results clearly show that the highly-synchronized accesses that occur in mMTC applications can lead to severe congestion. On the other hand, it is also clear that congestion can be prevented with an adequate configuration of the ACB scheme. However, the configuration parameters of the ACB scheme must be continuously adapted to the intensity of access attempts if an optimal performance is to be obtained. We developed a practical solution to this problem in the form of a scheme to automatically configure the ACB; we call it access class barring configuration (ACBC) scheme. The results show that our ACBC scheme leads to a near-optimal performance regardless of the intensity of access attempts. Furthermore, it can be directly implemented in 3rd Generation Partnership Project (3GPP) cellular systems to efficiently handle mMTC because it has been designed to comply with the 3GPP standards. In addition to the analyses described above for cellular networks, a general analysis for smart metering applications is performed. That is, we study an mMTC scenario from the perspective of event detection and reporting WSNs. Specifically, we provide a hybrid model for the performance analysis and optimization of cluster-based RA WSN protocols. Results showcase the utility of overhearing to minimize the number of packet transmissions, but also of the adaptation of transmission parameters after a collision occurs. Building on this, we are able to provide some guidelines that can drastically increase the performance of a wide range of RA protocols and systems in event reporting applications. Regarding eMBB, we focus on a massive content delivery scenario in which the exact same content is transmitted to a large number of mobile users simultaneously. Such a scenario may arise, for example, with video streaming services that offer a particularly popular content. This is a problematic scenario because cellular base stations have no efficient multicast or broadcast mechanisms. Hence, the traditional solution is to replicate the content for each requesting user, which is highly inefficient. To solve this problem, we propose the use of network coding (NC) schemes in combination with cooperative architectures named mobile clouds (MCs). Specifically, we develop a protocol for efficient massive content delivery, along with the analytical model for its optimization. Results show the proposed model is simple and accurate, and the protocol can lead to energy savings of up to 37 percent when compared to the traditional approach.
Leyva Mayorga, I. (2018). On reliable and energy efficient massive wireless communications: the road to 5G [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/115484
TESIS
Books on the topic "Random Network Codes"
Ni, Jian. Connectivity, dynamic performance of random radio networks and state independent uniquely decodable codes: Codeword synchronisation of collaborative coding multiple access communications. [s.l.]: typescript, 1994.
Find full textBook chapters on the topic "Random Network Codes"
Heide, Janus, Morten V. Pedersen, and Frank H. P. Fitzek. "Decoding Algorithms for Random Linear Network Codes." In NETWORKING 2011 Workshops, 129–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23041-7_13.
Full textDjerourou, F., C. Lavault, G. Paillard, and V. Ravelomanana. "Assigning Codes in a Random Wireless Network." In Telecommunications and Networking - ICT 2004, 348–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27824-5_48.
Full textAhlswede, Rudolf. "On Error Control Codes for Random Network Coding." In Probabilistic Methods and Distributed Information, 403–12. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00312-8_19.
Full textYuan, Yuan, Zhen Huang, Shengyun Liu, and Yuxing Peng. "Queueing Analysis of the Decoding Process for Intra-session Network Coding with Random Linear Codes." In Advances in Intelligent and Soft Computing, 481–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27708-5_66.
Full textStefanović, Čedomir, and Dejan Vukobratović. "Coded Random Access." In Network Coding and Subspace Designs, 339–59. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70293-3_13.
Full textSalam, Gamze E., and Rodney M. Goodman. "A Digital Neural Network Architecture Using Random Pulse Trains." In Silicon Implementation of Pulse Coded Neural Networks, 249–61. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2680-3_11.
Full textYang, Hong-Bin, Mikhael Johanes, Frederick Chando Kim, Mathias Bernhard, and Jeffrey Huang. "Architectural Sketch to 3D Model: An Experiment on Simple-Form Houses." In Communications in Computer and Information Science, 53–67. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37189-9_4.
Full textYu, Meng, Jing (Tiffany) Li, and Haidong Wang. "Network Coding for Multi-Hop Wireless Networks." In Cooperative Communications for Improved Wireless Network Transmission, 187–205. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-665-5.ch006.
Full textDematties, Dario, George K. Thiruvathukal, Silvio Rizzi, Alejandro Wainselboim, and B. Silvano Zanutto. "Towards High-End Scalability on Biologically-Inspired Computational Models." In Parallel Computing: Technology Trends. IOS Press, 2020. http://dx.doi.org/10.3233/apc200077.
Full textAli, Ismail, Sandro Moiron, Martin Fleury, and Mohammed Ghanbari. "Intra-Refresh and Data-Partitioning for Video Streaming over IEEE 802.11e." In Advances in Wireless Technologies and Telecommunication, 199–228. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4715-2.ch012.
Full textConference papers on the topic "Random Network Codes"
Lee, A. H., and M. Medard. "Simplified random network codes for multicast networks." In Proceedings. International Symposium on Information Theory, 2005. ISIT 2005. IEEE, 2005. http://dx.doi.org/10.1109/isit.2005.1523640.
Full textvon Solms, Sune, and Albert S. J. Helberg. "Modified Earliest Decoding for Random Network Codes." In 2011 International Symposium on Network Coding (NetCod). IEEE, 2011. http://dx.doi.org/10.1109/isnetcod.2011.5979086.
Full textTran, Tuan, and Thinh Nguyen. "Prioritized Wireless Transmissions Using Random Linear Codes." In 2010 IEEE International Symposium on Network Coding (NetCod). IEEE, 2010. http://dx.doi.org/10.1109/netcod.2010.5487690.
Full textAhlswede, R., and H. Aydinian. "On error control codes for random network coding." In 2009 Workshop on Network Coding, Theory, and Applications (NetCod). IEEE, 2009. http://dx.doi.org/10.1109/netcod.2009.5191396.
Full textRiemensberger, Maximilian, Yalin Evren Sagduyu, Michael L. Honig, and Wolfgang Utschick. "Training overhead for decoding random linear network codes." In MILCOM 2008 - 2008 IEEE Military Communications Conference (MILCOM). IEEE, 2008. http://dx.doi.org/10.1109/milcom.2008.4753084.
Full textNazer, Bobak, and Michael Gastpar. "Structured Random Codes and Sensor Network Coding Theorems." In 2008 International Zurich Seminar on Communications. IEEE, 2008. http://dx.doi.org/10.1109/izs.2008.4497288.
Full textWachter-Zeh, Antonia, and Vladimir Sidorenko. "Rank metric convolutional codes for Random Linear Network Coding." In 2012 International Symposium on Network Coding (NetCod). IEEE, 2012. http://dx.doi.org/10.1109/netcod.2012.6261875.
Full textBalli, H., and Zhen Zhang. "On the limiting behavior of Random Linear Network Codes." In 2009 Workshop on Network Coding, Theory, and Applications (NetCod). IEEE, 2009. http://dx.doi.org/10.1109/netcod.2009.5191385.
Full textEtzion, Tuvi, and Natalia Silberstein. "Construction of error-correcting codes for random network coding." In 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel (IEEEI). IEEE, 2008. http://dx.doi.org/10.1109/eeei.2008.4736654.
Full textBalli, Huseyin, Xijin Yan, and Zhen Zhang. "Error Correction Capability of Random Network Error Correction Codes." In 2007 IEEE International Symposium on Information Theory. IEEE, 2007. http://dx.doi.org/10.1109/isit.2007.4557447.
Full text