Academic literature on the topic 'Random graphs'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random graphs.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random graphs"
FÜRER, MARTIN, and SHIVA PRASAD KASIVISWANATHAN. "Approximately Counting Embeddings into Random Graphs." Combinatorics, Probability and Computing 23, no. 6 (July 9, 2014): 1028–56. http://dx.doi.org/10.1017/s0963548314000339.
Full textMcDiarmid, C. "RANDOM GRAPHS." Bulletin of the London Mathematical Society 19, no. 3 (May 1987): 273. http://dx.doi.org/10.1112/blms/19.3.273a.
Full textRuciński, A. "Random graphs." ZOR Zeitschrift für Operations Research Methods and Models of Operations Research 33, no. 2 (March 1989): 145. http://dx.doi.org/10.1007/bf01415170.
Full textBorbély, József, and András Sárközy. "Quasi-Random Graphs, Pseudo-Random Graphs and Pseudorandom Binary Sequences, I. (Quasi-Random Graphs)." Uniform distribution theory 14, no. 2 (December 1, 2019): 103–26. http://dx.doi.org/10.2478/udt-2019-0017.
Full textGao, Yong. "Treewidth of Erdős–Rényi random graphs, random intersection graphs, and scale-free random graphs." Discrete Applied Mathematics 160, no. 4-5 (March 2012): 566–78. http://dx.doi.org/10.1016/j.dam.2011.10.013.
Full textKOHAYAKAWA, YOSHIHARU, GUILHERME OLIVEIRA MOTA, and MATHIAS SCHACHT. "Monochromatic trees in random graphs." Mathematical Proceedings of the Cambridge Philosophical Society 166, no. 1 (January 16, 2018): 191–208. http://dx.doi.org/10.1017/s0305004117000846.
Full textWhittle, P. "Random fields on random graphs." Advances in Applied Probability 24, no. 2 (June 1992): 455–73. http://dx.doi.org/10.2307/1427700.
Full textBender, E. A., and N. C. Wormald. "Random trees in random graphs." Proceedings of the American Mathematical Society 103, no. 1 (January 1, 1988): 314. http://dx.doi.org/10.1090/s0002-9939-1988-0938689-5.
Full textWhittle, P. "Random fields on random graphs." Advances in Applied Probability 24, no. 02 (June 1992): 455–73. http://dx.doi.org/10.1017/s0001867800047601.
Full text?uczak, Tomasz. "Random trees and random graphs." Random Structures and Algorithms 13, no. 3-4 (October 1998): 485–500. http://dx.doi.org/10.1002/(sici)1098-2418(199810/12)13:3/4<485::aid-rsa16>3.0.co;2-y.
Full textDissertations / Theses on the topic "Random graphs"
Ramos, Garrido Lander. "Graph enumeration and random graphs." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405943.
Full textEn aquesta tesi utilitzem l'analítica combinatòria per treballar amb dos problemes relacionats: enumeració de grafs i grafs aleatoris de classes de grafs amb restriccions. En particular ens interessa esbossar un dibuix general de determinades famílies de grafs determinant, en primer lloc, quants grafs hi ha de cada mida possible (enumeració de grafs), i, en segon lloc, quin és el comportament típic d'un element de mida fixa triat a l'atzar uniformement, quan aquesta mida tendeix a infinit (grafs aleatoris). Els problemes en què treballem tracten amb grafs que satisfan condicions globals, com ara ésser planars, o bé tenir restriccions en el grau dels vèrtexs. En el Capítol 2 analitzem grafs planar aleatoris amb grau mínim dos i tres. Mitjançant tècniques de combinatòria analítica i els conceptes de nucli i kernel d'un graf, obtenim estimacions asimptòtiques precises i analitzem paràmetres rellevants de grafs aleatoris, com ara el nombre d'arestes o la mida del nucli, on obtenim lleis límit gaussianes. També treballem amb un paràmetre que suposa un repte més important: el paràmetre extremal que es correspon amb la mida de l'arbre més gran que penja del nucli. En aquest cas obtenim una estimació logarítmica per al seu valor esperat, juntament amb un resultat sobre la seva concentració. En el Capítol 3 estudiem el nombre de subgrafs isomorfs a un graf fix en classes de grafs subcrítiques. Quan el graf fix és biconnex, obtenim lleis límit gaussianes amb esperança i variància lineals. L'eina principal és l'anàlisi de sistemes infinits d'equacions donada per Drmota, Gittenberger i Morgenbesser, que utilitza la teoria d'operadors compactes. El càlcul de les constants exactes de la primera estimació dels moments en general es troba fora del nostre abast. Per a la classe de grafs sèrie-paral·lels podem calcular les constants en alguns casos particulars interessants. En el Capítol 4 enumerem grafs (arbitraris) el grau de cada vèrtex dels quals pertany a un subconjunt fix dels nombres naturals. En aquest cas les funcions generatrius associades són divergents i la nostra anàlisi utilitza l'anomenat model de configuració. El nostre resultat consisteix a obtenir estimacions asimptòtiques precises per al nombre de grafs amb un nombre de vèrtexs i arestes donat, amb la restricció dels graus. Aquest resultat generalitza àmpliament casos particulars existents, com ara grafs d-regulars, o grafs amb grau mínim com a mínim d.
Seierstad, Taral Guldahl. "The phase transition in random graphs and random graph processes." Doctoral thesis, [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985760044.
Full textEngström, Stefan. "Random acyclicorientations of graphs." Thesis, KTH, Matematik (Avd.), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116500.
Full textHeckel, Annika. "Colourings of random graphs." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:79e14d55-0589-4e17-bbb5-a216d81b8875.
Full textOosthuizen, Joubert. "Random walks on graphs." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86244.
Full textENGLISH ABSTRACT: We study random walks on nite graphs. The reader is introduced to general Markov chains before we move on more specifically to random walks on graphs. A random walk on a graph is just a Markov chain that is time-reversible. The main parameters we study are the hitting time, commute time and cover time. We nd novel formulas for the cover time of the subdivided star graph and broom graph before looking at the trees with extremal cover times. Lastly we look at a connection between random walks on graphs and electrical networks, where the hitting time between two vertices of a graph is expressed in terms of a weighted sum of e ective resistances. This expression in turn proves useful when we study the cover cost, a parameter related to the cover time.
AFRIKAANSE OPSOMMING: Ons bestudeer toevallige wandelings op eindige gra eke in hierdie tesis. Eers word algemene Markov kettings beskou voordat ons meer spesi ek aanbeweeg na toevallige wandelings op gra eke. 'n Toevallige wandeling is net 'n Markov ketting wat tyd herleibaar is. Die hoof paramaters wat ons bestudeer is die treftyd, pendeltyd en dektyd. Ons vind oorspronklike formules vir die dektyd van die verdeelde stergra ek sowel as die besemgra ek en kyk daarna na die twee bome met uiterste dektye. Laastens kyk ons na 'n verband tussen toevallige wandelings op gra eke en elektriese netwerke, waar die treftyd tussen twee punte op 'n gra ek uitgedruk word in terme van 'n geweegde som van e ektiewe weerstande. Hierdie uitdrukking is op sy beurt weer nuttig wanneer ons die dekkoste bestudeer, waar die dekkoste 'n paramater is wat verwant is aan die dektyd.
Bienvenu, François. "Random graphs in evolution." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS180.
Full textThis thesis consists of five independent research projects, related either to random graphs or to evolutionary biology - and most often to both. Chapters 2 and 3 introduce two random graphs that are obtained as the stationary distributions of graph-valued Markov chains. The first of these, which we term the split-and-drift random graph, aims to describe the structure and dynamics of interbreeding-potential networks; the second one is a random forest that was inspired by the celebrated Moran model of population genetics. Chapter 4 is devoted to the study of a new class of phylogenetic networks that we term ranked tree-child networks, or RTCNs for short. These networks correspond to a subclass of tree-child networks that are endowed with an additional structure ensuring compatibility with a time-embedded evolutionary process, and are designed to model reticulated phylogenies. We focus on the enumeration and sampling of RTCNs before turning to the structural properties of large uniform RTCNs. In Chapter 5, we prove a general result about oriented percolation in randomly oriented graphs: the positive association of the percolation cluster. Finally, in Chapter 6 we focus on a widely used statistic of populations: the mean age at which parents give birth. We point out several problems with one of the most widely used way to compute it, and provide an alternative measure
Johansson, Tony. "Random Graphs and Algorithms." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/938.
Full textRoss, Christopher Jon. "Properties of Random Threshold and Bipartite Graphs." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306296991.
Full textPymar, Richard James. "Random graphs and random transpositions on a circle." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610350.
Full textCrippa, Davide. "q-distributions and random graphs /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10923.
Full textBooks on the topic "Random graphs"
Janson, Svante, Tomasz Łuczak, and Andrzej Rucinski. Random Graphs. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2000. http://dx.doi.org/10.1002/9781118032718.
Full textKolchin, V. F. Random graphs. Cambridge, UK: Cambridge University Press, 1999.
Find full textInternational Seminar on Random Graphs and Probabilistic Methods in Combinatorics. (2nd 1985 Uniwersytet im. Adama Mickiewicza w Poznaniu. Instytut Matematyki). Random graphs '85. New York: North-Holland, 1987.
Find full textChatterjee, Sourav. Large Deviations for Random Graphs. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65816-2.
Full textCeccherini-Silberstein, Tullio, Maura Salvatori, and Ecaterina Sava-Huss, eds. Groups, Graphs and Random Walks. Cambridge: Cambridge University Press, 2017. http://dx.doi.org/10.1017/9781316576571.
Full textPalka, Zbigniew. Asymptotic properties of random graphs. Warszawa: Państwowe Wydawn. Nauk., 1988.
Find full textGrimmett, Geoffrey. Probability on graphs: Random processes on graphs and lattices. Cambridge: Cambridge University Press, 2010.
Find full textMarchette, David J. Random Graphs for Statistical Pattern Recognition. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/047172209x.
Full textSpencer, Joel. The Strange Logic of Random Graphs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04538-1.
Full textSpencer, Joel H. The strange logic of random graphs. Berlin: Springer, 2001.
Find full textBook chapters on the topic "Random graphs"
Bollobás, Béla. "Random Graphs." In Modern Graph Theory, 215–52. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0619-4_7.
Full textBrémaud, Pierre. "Random Graphs." In Discrete Probability Models and Methods, 255–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-43476-6_10.
Full textDiestel, Reinhard. "Random Graphs." In Graph Theory, 323–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53622-3_11.
Full textLi, Xueliang, Colton Magnant, and Zhongmei Qin. "Random Graphs." In Properly Colored Connectivity of Graphs, 63–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89617-5_7.
Full textBonato, Anthony, and Richard Nowakowski. "Random graphs." In The Student Mathematical Library, 133–64. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/stml/061/06.
Full textBonato, Anthony. "Random graphs." In Graduate Studies in Mathematics, 33–57. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/gsm/089/03.
Full textDiestel, Reinhard. "Random Graphs." In Graph Theory, 309–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-642-14279-6_11.
Full textPrömel, Hans Jürgen, and Anusch Taraz. "Random Graphs, Random Triangle-Free Graphs, and Random Partial Orders." In Computational Discrete Mathematics, 98–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45506-x_8.
Full textGao, Pu, Mikhail Isaev, and Brendan D. McKay. "Sandwiching random regular graphs between binomial random graphs." In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 690–701. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611975994.42.
Full textBarthelemy, Marc. "Random Geometric Graphs." In Lecture Notes in Morphogenesis, 177–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-20565-6_9.
Full textConference papers on the topic "Random graphs"
Oren-Loberman, Mor, Vered Paslev, and Wasim Huleihel. "Testing Dependency of Weighted Random Graphs." In 2024 IEEE International Symposium on Information Theory (ISIT), 1263–68. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619266.
Full textFrieze, Alan. "Random graphs." In the seventeenth annual ACM-SIAM symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1109557.1109663.
Full textFeng, Lijin, and Jackson Barr. "Complete Graphs and Bipartite Graphs in a Random Graph." In 2021 5th International Conference on Vision, Image and Signal Processing (ICVISP). IEEE, 2021. http://dx.doi.org/10.1109/icvisp54630.2021.00054.
Full textMota, Guilherme Oliveira. "Advances in anti-Ramsey theory for random graphs." In II Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2017. http://dx.doi.org/10.5753/etc.2017.3204.
Full textSöderberg, B. "Random Feynman Graphs." In SCIENCE OF COMPLEX NETWORKS: From Biology to the Internet and WWW: CNET 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1985383.
Full textFrieze, Alan, Santosh Vempala, and Juan Vera. "Logconcave random graphs." In the 40th annual ACM symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1374376.1374487.
Full textZhao, Xiangyu, Hanzhou Wu, and Xinpeng Zhang. "Watermarking Graph Neural Networks by Random Graphs." In 2021 9th International Symposium on Digital Forensics and Security (ISDFS). IEEE, 2021. http://dx.doi.org/10.1109/isdfs52919.2021.9486352.
Full textAiello, William, Fan Chung, and Linyuan Lu. "A random graph model for massive graphs." In the thirty-second annual ACM symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/335305.335326.
Full textServetto, Sergio D., and Guillermo Barrenechea. "Constrained random walks on random graphs." In the 1st ACM international workshop. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/570738.570741.
Full textKim, Jeong Han, and Van H. Vu. "Generating random regular graphs." In the thirty-fifth ACM symposium. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/780542.780576.
Full textReports on the topic "Random graphs"
Mesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada567125.
Full textPawagi, Shaunak, and I. V. Ramakrishnan. Updating Properties of Directed Acyclic Graphs on a Parallel Random Access Machine. Fort Belvoir, VA: Defense Technical Information Center, September 1985. http://dx.doi.org/10.21236/ada162954.
Full textMoseman, Elizabeth. Improving the Computational Efficiency of the Blitzstein-Diaconis Algorithm for Generating Random Graphs of Prescribed Degree. National Institute of Standards and Technology, July 2015. http://dx.doi.org/10.6028/nist.ir.8066.
Full textHan, Guang, and Armand M. Makowski. A Strong Zero-One Law for Connectivity in One-Dimensional Geometric Random Graphs With Non-Vanishing Densities. Fort Belvoir, VA: Defense Technical Information Center, April 2007. http://dx.doi.org/10.21236/ada468079.
Full textChandrasekhar, Arun, and Matthew Jackson. Tractable and Consistent Random Graph Models. Cambridge, MA: National Bureau of Economic Research, July 2014. http://dx.doi.org/10.3386/w20276.
Full textCarley, Kathleen M., and Eunice J. Kim. Random Graph Standard Network Metrics Distributions in ORA. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada487516.
Full textShue, Kelly, and Richard Townsend. How do Quasi-Random Option Grants Affect CEO Risk-Taking? Cambridge, MA: National Bureau of Economic Research, January 2017. http://dx.doi.org/10.3386/w23091.
Full textMcCulloh, Ian, Joshua Lospinoso, and Kathleen M. Carley. The Link Probability Model: A Network Simulation Alternative to the Exponential Random Graph Model. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada537329.
Full textYoshida, Masami, Nammon Ruangrit, and Vorasuang Duangchinda. The application of exponential random graph models to online learning networks: a scoping review protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2024. http://dx.doi.org/10.37766/inplasy2024.7.0039.
Full textDoerschuk, Peter C. University LDRD student progress report on descriptions and comparisons of brain microvasculature via random graph models. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055646.
Full text