Journal articles on the topic 'Random Forest, Questionnaire, Cardiovascular diseases'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Random Forest, Questionnaire, Cardiovascular diseases.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Butkevičiūtė, Eglė, Liepa Bikulčienė, and Aušra Žvironienė. "Physiological State Evaluation in Working Environment Using Expert System and Random Forest Machine Learning Algorithm." Healthcare 11, no. 2 (January 11, 2023): 220. http://dx.doi.org/10.3390/healthcare11020220.
Full textBasnet, Til Bahadur, Srijana G. C., Rajesh Basnet, and Bidusha Neupane. "Dietary nutrients of relative importance associated with coronary artery disease: Public health implication from random forest analysis." PLOS ONE 15, no. 12 (December 10, 2020): e0243063. http://dx.doi.org/10.1371/journal.pone.0243063.
Full textR., Vasanthi,, and Tamilselvi, J. "Heart Disease Prediction Using Random Forest Algorithm." CARDIOMETRY, no. 24 (November 30, 2022): 982–88. http://dx.doi.org/10.18137/cardiometry.2022.24.982988.
Full textSrınıvasa Rao, B. "A New Ensenble Learning based Optimal Prediction Model for Cardiovascular Diseases." E3S Web of Conferences 309 (2021): 01007. http://dx.doi.org/10.1051/e3sconf/202130901007.
Full textWorachartcheewan, Apilak, Watshara Shoombuatong, Phannee Pidetcha, Wuttichai Nopnithipat, Virapong Prachayasittikul, and Chanin Nantasenamat. "Predicting Metabolic Syndrome Using the Random Forest Method." Scientific World Journal 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/581501.
Full textBhatt, Chintan M., Parth Patel, Tarang Ghetia, and Pier Luigi Mazzeo. "Effective Heart Disease Prediction Using Machine Learning Techniques." Algorithms 16, no. 2 (February 6, 2023): 88. http://dx.doi.org/10.3390/a16020088.
Full textYekkala, Indu, and Sunanda Dixit. "Prediction of Heart Disease Using Random Forest and Rough Set Based Feature Selection." International Journal of Big Data and Analytics in Healthcare 3, no. 1 (January 2018): 1–12. http://dx.doi.org/10.4018/ijbdah.2018010101.
Full textSun, Weicheng, Ping Zhang, Zilin Wang, and Dongxu Li. "Prediction of Cardiovascular Diseases based on Machine Learning." ASP Transactions on Internet of Things 1, no. 1 (May 29, 2021): 30–35. http://dx.doi.org/10.52810/tiot.2021.100035.
Full textOsemeobo, Gbadebo Jonathan. "Can Food Crop Medicine Reduce Pressure on Forest Harvest in Nigeria?" Dutse Journal of Pure and Applied Sciences 7, no. 3a (January 3, 2022): 23–31. http://dx.doi.org/10.4314/dujopas.v7i3a.3.
Full textNavarrete, Jean Paul, Jose Pinto, Rosa Liliana Figueroa, Maria Elena Lagos, Qing Zeng, and Carla Taramasco. "Supervised Learning Algorithm for Predicting Mortality Risk in Older Adults Using Cardiovascular Health Study Dataset." Applied Sciences 12, no. 22 (November 14, 2022): 11536. http://dx.doi.org/10.3390/app122211536.
Full textAskari, GholamReza, Mohammad Hossein Rouhani, and Mohammad Sattari. "Prediction of Length of Hospital Stay of COVID-19 Patients Using Gradient Boosting Decision Tree." International Journal of Biomaterials 2022 (September 16, 2022): 1–4. http://dx.doi.org/10.1155/2022/6474883.
Full textYoon, Taeyoung, and Daesung Kang. "Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases." Journal of Personalized Medicine 13, no. 2 (February 20, 2023): 373. http://dx.doi.org/10.3390/jpm13020373.
Full textWang, Zhizhong, Hongyi Li, Chuang Han, Songwei Wang, and Li Shi. "Arrhythmia Classification Based on Multiple Features Fusion and Random Forest Using ECG." Journal of Medical Imaging and Health Informatics 9, no. 8 (October 1, 2019): 1645–54. http://dx.doi.org/10.1166/jmihi.2019.2798.
Full textAlqahtani, Abdullah, Shtwai Alsubai, Mohemmed Sha, Lucia Vilcekova, and Talha Javed. "Cardiovascular Disease Detection using Ensemble Learning." Computational Intelligence and Neuroscience 2022 (August 16, 2022): 1–9. http://dx.doi.org/10.1155/2022/5267498.
Full textGulfam Ahmad, Hafiz, and Muhammad Jasim Shah. "PREDICTION OF CARDIOVASCULAR DISEASES (CVDS) USING MACHINE LEARNING TECHNIQUES IN HEALTH CARE CENTERS." Azerbaijan Journal of High Performance Computing 4, no. 2 (December 31, 2021): 267–79. http://dx.doi.org/10.32010/26166127.2021.4.2.267.279.
Full textDayana, Ms, K. Keerthika, E. Bibilin Manuela, and J. Julie Christina. "Prediction of Cardiovascular Disease Using PySpark Techniques." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1228–33. http://dx.doi.org/10.22214/ijraset.2022.44018.
Full textMoskaleva, Natalia E., Ksenia M. Shestakova, Alexey V. Kukharenko, Pavel A. Markin, Maria V. Kozhevnikova, Ekaterina O. Korobkova, Alex Brito, et al. "Target Metabolome Profiling-Based Machine Learning as a Diagnostic Approach for Cardiovascular Diseases in Adults." Metabolites 12, no. 12 (November 27, 2022): 1185. http://dx.doi.org/10.3390/metabo12121185.
Full textArsyan, Athalla Rizky, and Wikky Fawwaz Al Maki. "Classification of Glaucoma Using Invariant Moment Methods on K-Nearest Neighbor and Random Forest Models." Building of Informatics, Technology and Science (BITS) 3, no. 4 (March 31, 2022): 466–72. http://dx.doi.org/10.47065/bits.v3i4.1244.
Full textHarami, Roya Vaziri, Pegah Seif, Ali Kheradmand, and Saharnaz Vaziri Harami. "The Role of Sleep Quality and Mental Health in Cardiovascular Disease." Pakistan Journal of Medical and Health Sciences 15, no. 7 (July 30, 2021): 2082–86. http://dx.doi.org/10.53350/pjmhs211572082.
Full textKim, Joung Ouk (Ryan), Yong-Suk Jeong, Jin Ho Kim, Jong-Weon Lee, Dougho Park, and Hyoung-Seop Kim. "Machine Learning-Based Cardiovascular Disease Prediction Model: A Cohort Study on the Korean National Health Insurance Service Health Screening Database." Diagnostics 11, no. 6 (May 25, 2021): 943. http://dx.doi.org/10.3390/diagnostics11060943.
Full textParajuli, Samikshya, and Tulsi Ram Bhandari. "Prevalence of Risk Factors of Non-Communicable Diseases and Screening of Possible Cardiovascular Diseases among Adults in Devchuli Municipality of Nawalpur District, Nepal." Journal of Health and Allied Sciences 9, no. 2 (December 31, 2019): 14–18. http://dx.doi.org/10.37107/jhas.121.
Full textHanumegowda, Pradeep Kumar, and Sakthivel Gnanasekaran. "Prediction of Work-Related Risk Factors among Bus Drivers Using Machine Learning." International Journal of Environmental Research and Public Health 19, no. 22 (November 17, 2022): 15179. http://dx.doi.org/10.3390/ijerph192215179.
Full textHu, Wei-Syun, Meng-Hsuen Hsieh, and Cheng-Li Lin. "A novel atrial fibrillation prediction model for Chinese subjects: a nationwide cohort investigation of 682 237 study participants with random forest model." EP Europace 21, no. 9 (April 23, 2019): 1307–12. http://dx.doi.org/10.1093/europace/euz036.
Full textNirmala, M., and V. Saravanan. "Clinical Implication of Machine Learning Based Cardiovascular Disease Prediction Using IBM Auto AI Service." International Journal for Research in Applied Science and Engineering Technology 10, no. 8 (August 31, 2022): 124–44. http://dx.doi.org/10.22214/ijraset.2022.46087.
Full textMorell Miranda, Pedro, Francesca Bertolini, and Haja N. Kadarmideen. "Investigation of gut microbiome association with inflammatory bowel disease and depression: a machine learning approach." F1000Research 7 (June 5, 2018): 702. http://dx.doi.org/10.12688/f1000research.15091.1.
Full textMorell Miranda, Pedro, Francesca Bertolini, and Haja N. Kadarmideen. "Investigation of gut microbiome association with inflammatory bowel disease and depression: a machine learning approach." F1000Research 7 (April 17, 2019): 702. http://dx.doi.org/10.12688/f1000research.15091.2.
Full textStavem, Knut, Henrik Schirmer, and Amund Gulsvik. "Respiratory symptoms and cardiovascular causes of deaths: A population-based study with 45 years of follow-up." PLOS ONE 17, no. 10 (October 20, 2022): e0276560. http://dx.doi.org/10.1371/journal.pone.0276560.
Full textRIYAZ, Lubna, Muheet Ahmed BUTT, and Majid ZAMAN. "IMPROVING CORONARY HEART DISEASE PREDICTION BY OUTLIER ELIMINATION." Applied Computer Science 18, no. 1 (March 30, 2022): 70–88. http://dx.doi.org/10.35784/acs-2022-6.
Full textNastenko, Ievgen, Vitaliy Maksymenko, Sergiy Potashev, Volodymyr Pavlov, Vitalii Babenko, Sergiy Rysin, Oleksandr Matviichuk, and Vasil Lazoryshinets. "Random Forest Algorithm Construction for the Diagnosis of Coronary Heart Disease Based on Echocardiography Video Data Streams." Innovative Biosystems and Bioengineering 5, no. 1 (April 6, 2021): 61–69. http://dx.doi.org/10.20535/ibb.2021.5.1.225794.
Full textImran Farooqui, Sumaira, Amna Aamir Khan, Aqsa Sajjad, Kinza Mannal, and Farzana Amir. "PREVALENCE OF PERIPHERAL ARTERIAL DISEASE (PAD) ASSOCIATED WITH FAST FOOD CONSUMPTION, USING ANKLE- BRACHIAL INDEX IN UNIVERSITY STUDENTS." Pakistan Journal of Rehabilitation 4, no. 2 (July 1, 2015): 7–14. http://dx.doi.org/10.36283/pjr.zu.4.2/004.
Full textEl Massari, Hakim, Noreddine Gherabi, Sajida Mhammedi, Hamza Ghandi, Mohamed Bahaj, and Muhammad Raza Naqvi. "The Impact of Ontology on the Prediction of Cardiovascular Disease Compared to Machine Learning Algorithms." International Journal of Online and Biomedical Engineering (iJOE) 18, no. 11 (August 31, 2022): 143–57. http://dx.doi.org/10.3991/ijoe.v18i11.32647.
Full textBaashar, Yahia, Gamal Alkawsi, Hitham Alhussian, Luiz Fernando Capretz, Ayed Alwadain, Ammar Ahmed Alkahtani, and Malek Almomani. "Effectiveness of Artificial Intelligence Models for Cardiovascular Disease Prediction: Network Meta-Analysis." Computational Intelligence and Neuroscience 2022 (February 24, 2022): 1–12. http://dx.doi.org/10.1155/2022/5849995.
Full textV. Ramalingam, V., Ayantan Dandapath, and M. Karthik Raja. "Heart disease prediction using machine learning techniques : a survey." International Journal of Engineering & Technology 7, no. 2.8 (March 19, 2018): 684. http://dx.doi.org/10.14419/ijet.v7i2.8.10557.
Full textDubey, A. K., A. K. Sinhal, and R. Sharma. "An Improved Auto Categorical PSO with ML for Heart Disease Prediction." Engineering, Technology & Applied Science Research 12, no. 3 (June 6, 2022): 8567–73. http://dx.doi.org/10.48084/etasr.4854.
Full textHossen, M. D. Amzad, Tahia Tazin, Sumiaya Khan, Evan Alam, Hossain Ahmed Sojib, Mohammad Monirujjaman Khan, and Abdulmajeed Alsufyani. "Supervised Machine Learning-Based Cardiovascular Disease Analysis and Prediction." Mathematical Problems in Engineering 2021 (December 10, 2021): 1–10. http://dx.doi.org/10.1155/2021/1792201.
Full textMayya, A., and H. Solieman. "Machine Learning System for Predicting Cardiovascular Disorders in Diabetic Patients." Journal of the Russian Universities. Radioelectronics 25, no. 4 (September 29, 2022): 116–22. http://dx.doi.org/10.32603/1993-8985-2022-25-4-116-122.
Full textKhan, Arsalan, Moiz Qureshi, Muhammad Daniyal, and Kassim Tawiah. "A Novel Study on Machine Learning Algorithm-Based Cardiovascular Disease Prediction." Health & Social Care in the Community 2023 (February 20, 2023): 1–10. http://dx.doi.org/10.1155/2023/1406060.
Full textChumachenko, Dmytro, Mykola Butkevych, Daniel Lode, Marcus Frohme, Kurt J. G. Schmailzl, and Alina Nechyporenko. "Machine Learning Methods in Predicting Patients with Suspected Myocardial Infarction Based on Short-Time HRV Data." Sensors 22, no. 18 (September 17, 2022): 7033. http://dx.doi.org/10.3390/s22187033.
Full textJiang, Lili, Sirong Chen, Yuanhui Wu, Da Zhou, and Lihua Duan. "Prediction of coronary heart disease in gout patients using machine learning models." Mathematical Biosciences and Engineering 20, no. 3 (2022): 4574–91. http://dx.doi.org/10.3934/mbe.2023212.
Full textAshraf, M. Usman, Farwa Akram, and Sardar Usman. "Comparative Analysis of Machine Learning Techniques for Predicting Air Pollution." Lahore Garrison University Research Journal of Computer Science and Information Technology 6, no. 2 (June 26, 2022): 40–54. http://dx.doi.org/10.54692/lgurjcsit.2022.0602270.
Full textKhan, Asfandyar, Abdullah Khan, Muhammad Muntazir Khan, Kamran Farid, Muhammad Mansoor Alam, and Mazliham Bin Mohd Su’ud. "Cardiovascular and Diabetes Diseases Classification Using Ensemble Stacking Classifiers with SVM as a Meta Classifier." Diagnostics 12, no. 11 (October 26, 2022): 2595. http://dx.doi.org/10.3390/diagnostics12112595.
Full textTsygankova, D. P., E. B. Shapovalova, S. A. Maksimov, and G. V. Artamonova. "PROSPECTIVE STUDY OF DEVELOPMENT OF CARDIOVASCULAR EVENTS IN RELATION WITH CARDIOVASCULAR RISK (ESSE-RF IN KEMEROVSKAYA REGION)." Russian Journal of Cardiology, no. 6 (July 11, 2018): 141–46. http://dx.doi.org/10.15829/1560-4071-2018-6-141-146.
Full textALNohair, Sultan, Nahla Babiker, Dalal Al-Ahmari, Dalal Al-Mutairi, Khozama Al-Matroudi, Zakiyah Al-Mutairi, Rawan Al-Ahmdi, Layan Al-Mufadhi, Alhanouf Al-Wahiby, and Turki Alharbi. "Cross-sectional Study of Cardiovascular Risk Factors among Male and Female Medical Students in Qassim University – College of Medicine Saudi Arabia." Open Access Macedonian Journal of Medical Sciences 8, E (June 25, 2020): 439–45. http://dx.doi.org/10.3889/oamjms.2020.4501.
Full textOsman, Maisarah, and Norhasmah Mohd Zain. "Knowledge and Practices of Cardiovascular Diseases Prevention Among Patients With Type 2 Diabetes Mellitus at Hospital Universiti Sains Malaysia." INTERNATIONAL JOURNAL OF CARE SCHOLARS 4, no. 1 (January 31, 2021): 18–28. http://dx.doi.org/10.31436/ijcs.v4i1.163.
Full textGavrilov, D. V., T. Yu Kuznetsova, M. A. Druzhilov, I. N. Korsakov, and A. V. Gusev. "Predicting the subclinical carotid atherosclerosis in overweight and obese patients using a machine learning model." Russian Journal of Cardiology 27, no. 4 (February 2, 2022): 4871. http://dx.doi.org/10.15829/29/1560-4071-2022-4871.
Full textGavrilov, D. V., T. Yu Kuznetsova, M. A. Druzhilov, I. N. Korsakov, and A. V. Gusev. "Predicting the subclinical carotid atherosclerosis in overweight and obese patients using a machine learning model." Russian Journal of Cardiology 27, no. 4 (February 2, 2022): 4871. http://dx.doi.org/10.15829/1560-4071-2022-4871.
Full textTelesca, Vito, Gianfranco Castronuovo, Gianfranco Favia, Cristina Marranchelli, Vito Alberto Pizzulli, and Maria Ragosta. "Effects of Meteo-Climatic Factors on Hospital Admissions for Cardiovascular Diseases in the City of Bari, Southern Italy." Healthcare 11, no. 5 (February 26, 2023): 690. http://dx.doi.org/10.3390/healthcare11050690.
Full textKhadka, M. "Knowledge Regarding Modifiable Risk Factors of Coronary Atherosclerosis Heart Diseases in Kathmandu Municipality." Nepalese Heart Journal 9, no. 1 (July 21, 2013): 37–42. http://dx.doi.org/10.3126/njh.v9i1.8347.
Full textHasan, Ruby. "Comparative Analysis of Machine Learning Algorithms for Heart Disease Prediction." ITM Web of Conferences 40 (2021): 03007. http://dx.doi.org/10.1051/itmconf/20214003007.
Full textLiu, Jimin, Xueyu Dong, Huiqi Zhao, and Yinhua Tian. "Predictive Classifier for Cardiovascular Disease Based on Stacking Model Fusion." Processes 10, no. 4 (April 13, 2022): 749. http://dx.doi.org/10.3390/pr10040749.
Full text