Academic literature on the topic 'Random dynamic load profile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Random dynamic load profile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Random dynamic load profile"
Buhari, Rosnawati, Munzilah Md Rohani, and Mohd Ezree Abdullah. "Dynamic Load Coefficient of Tyre Forces from Truck Axles." Applied Mechanics and Materials 405-408 (September 2013): 1900–1911. http://dx.doi.org/10.4028/www.scientific.net/amm.405-408.1900.
Full textWang, Zhenyu, Yan Zhao, Fuqiang Li, and Jianqun Jiang. "Extreme Dynamic Responses of MW-Level Wind Turbine Tower in the Strong Typhoon Considering Wind-Rain Loads." Mathematical Problems in Engineering 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/512530.
Full textJiang, Wei, Jieyun Wang, Qianlong Wang, Song Xu, Seiji Hashimoto, and Zhong Liu. "Design and Implementation of a Low-Power Low-Cost Digital Current-Sink Electronic Load ‡." Energies 12, no. 13 (July 7, 2019): 2611. http://dx.doi.org/10.3390/en12132611.
Full textNassif, Hani H., and Ming Liu. "Analytical Modeling of Bridge-Road-Vehicle Dynamic Interaction System." Journal of Vibration and Control 10, no. 2 (February 2004): 215–41. http://dx.doi.org/10.1177/1077546304033950.
Full textPodrubalov, V. K., M. V. Podrubalov, and A. N. Nikitenko. "Applicability of different models of wheel tractor dynamic system for the calculation assessment of its vibration load." Traktory i sel hozmashiny 81, no. 1 (January 15, 2014): 20–25. http://dx.doi.org/10.17816/0321-4443-65657.
Full textGarcía, Eduardo Martínez, Marcos García Alberti, and Antonio Alfonso Arcos Álvarez. "Measurement-While-Drilling Based Estimation of Dynamic Penetrometer Values Using Decision Trees and Random Forests." Applied Sciences 12, no. 9 (April 30, 2022): 4565. http://dx.doi.org/10.3390/app12094565.
Full textSathishkumar, Palanisamy, Jeyaraj Jancirani, John Dennie, and B. Arun. "Controller Design for Convoluted Air Spring System Controlled Suspension." Applied Mechanics and Materials 592-594 (July 2014): 1025–29. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.1025.
Full textCai, Chun Sheng, Wei Zhang, Lu Deng, and Miao Xia. "Performance Evaluation of Existing Bridges under Vehicle Dynamic Effects." Advanced Materials Research 639-640 (January 2013): 42–53. http://dx.doi.org/10.4028/www.scientific.net/amr.639-640.42.
Full textKropáč, Oldřich, and Peter Múčka. "Classification Scheme for Random Longitudinal Road Unevenness Considering Road Waviness and Vehicle Response." Shock and Vibration 16, no. 3 (2009): 273–89. http://dx.doi.org/10.1155/2009/935858.
Full textFadel Miguel, Letícia Fleck, and Guilherme Piva dos Santos. "Optimization of Multiple Tuned Mass Dampers for Road Bridges Taking into Account Bridge-Vehicle Interaction, Random Pavement Roughness, and Uncertainties." Shock and Vibration 2021 (April 20, 2021): 1–17. http://dx.doi.org/10.1155/2021/6620427.
Full textDissertations / Theses on the topic "Random dynamic load profile"
Zuo, Jian. "Développement de stratégies de gestion conjointe de la détérioration et de de l'énergie pour un système multi-piles à combustible PEM." Electronic Thesis or Diss., Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALT077.
Full textFuel cell systems offer a sustainable solution to electrical power generation in the transportation sector, even if they still encounter reliability and durability issues. Resorting to Multi-stack Fuel Cells systems (MFC) instead of single fuel cells is a promising solution to overcome these limitations by optimally distributing the power demand among the different stacks while taking into account their state of health, by means of an efficient Energy Management Strategy (EMS). In this work, different strategies have been developed for vehicle applications, with the objective of optimizing the fuel cell system lifetime.The first challenge is to develop a model linking the deterioration trend of each stack with the power delivered by the stack, so as to predict the effect of a load allocation on each stack deterioration, and thus make a relevant post-prognostics decision. Several stochastic deterioration models, from the classical Gamma process model to more complex models with random effects are developed and tailored to the fuel cell specificities. Based on these models, several post-prognostics decision-making strategies for an MFC are proposed and, for each of them, the associated optimization problem is formulated.First, under a constant load profile, taking into consideration both the expected whole fuel consumption and the expected deterioration in the decision-making process, a deterioration-aware energy management strategy is proposed for a three-stack fuel cell system. The multi-objective optimization problem associated to this strategy is solved using an evolutionary algorithm, giving the optimized load allocations among stacks. The average lifetime obtained under the proposed strategy is demonstrated to be larger than those resulting from the classical Average Load and Daisy Chain strategies.Furthermore, under a random dynamic load profile, taking into consideration the deterioration phenomena due to both the load magnitude and the load variations, an event-based decision-making strategy is built for a two-stack fuel cell system. The optimal load allocations are obtained by minimizing the objective function which is estimated based on the prevision of the future system deterioration. An investigation on the influence of the random dynamic loads on the proposed strategy performance shows that the average lifetime obtained with unknown event duration is close to that with known event duration, which proves the robustness of the proposed strategy. Moreover, it is shown that the average system lifetime is increased when compared to the case with an Average Load strategy, on several different stochastic deterioration models.Lastly, a more exploratory study opening research perspectives in the case where the multi-stack system is composed of three stacks, only two of which are operating at the same time. To optimize the lifetime of the stacks, while meeting the load demand, the EMS must also optimize the start and stop of the different stacks. In fact, the optimization of stack replacement is also required for a long-term operation task. Therefore, this study opens the way to maintenance approaches to multi-stack systems
Runtemund, Katrin [Verfasser]. "Output-only measurement-based parameter identification of dynamic systems subjected to random load processes / Katrin Runtemund." Aachen : Shaker, 2014. http://d-nb.info/1049380681/34.
Full textKrasteva, Denitza Tchavdarova Jr. "Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/37035.
Full textMaster of Science
Benítez, Sánchez Ignacio Javier. "Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/59236.
Full text[ES] El sector eléctrico se halla actualmente sometido a un proceso de liberalización y separación de roles, que está siendo aplicado bajo los auspicios regulatorios de cada Estado Miembro de la Unión Europea y, por tanto, con distintas velocidades, perspectivas y objetivos que deben confluir en un horizonte común, en donde Europa se beneficiará de un mercado energético interconectado, en el cual productores y consumidores podrán participar en libre competencia. Este proceso de liberalización y separación de roles conlleva dos consecuencias o, visto de otra manera, conlleva una consecuencia principal de la cual se deriva, como necesidad, otra consecuencia inmediata. La consecuencia principal es el aumento de la complejidad en la gestión y supervisión de un sistema, el eléctrico, cada vez más interconectado y participativo, con conexión de fuentes distribuidas de energía, muchas de ellas de origen renovable, a distintos niveles de tensión y con distinta capacidad de generación, en cualquier punto de la red. De esta situación se deriva la otra consecuencia, que es la necesidad de comunicar información entre los distintos agentes, de forma fiable, segura y rápida, y que esta información sea analizada de la forma más eficaz posible, para que forme parte de los procesos de toma de decisiones que mejoran la observabilidad y controlabilidad de un sistema cada vez más complejo y con más agentes involucrados. Con el avance de las Tecnologías de Información y Comunicaciones (TIC), y las inversiones tanto en mejora de la infraestructura existente de medida y comunicaciones, como en llevar la obtención de medidas y la capacidad de actuación a un mayor número de puntos en redes de media y baja tensión, la disponibilidad de datos sobre el estado de la red es cada vez mayor y más completa. Todos estos sistemas forman parte de las llamadas Smart Grids, o redes inteligentes del futuro, un futuro ya no tan lejano. Una de estas fuentes de información proviene de los consumos energéticos de los clientes, medidos de forma periódica (cada hora, media hora o cuarto de hora) y enviados hacia las Distribuidoras desde los contadores inteligentes o Smart Meters, mediante infraestructura avanzada de medida o Advanced Metering Infrastructure (AMI). De esta forma, cada vez se tiene una mayor cantidad de información sobre los consumos energéticos de los clientes, almacenada en sistemas de Big Data. Esta cada vez mayor fuente de información demanda técnicas especializadas que sepan aprovecharla, extrayendo un conocimiento útil y resumido de la misma. La presente Tesis doctoral versa sobre el uso de esta información de consumos energéticos de los contadores inteligentes, en concreto sobre la aplicación de técnicas de minería de datos (data mining) para obtener patrones temporales que caractericen a los usuarios de energía eléctrica, agrupándolos según estos mismos patrones en un número reducido de grupos o clusters, que permiten evaluar la forma en que los usuarios consumen la energía, tanto a lo largo del día como durante una secuencia de días, permitiendo evaluar tendencias y predecir escenarios futuros. Para ello se estudian las técnicas actuales y, comprobando que los trabajos actuales no cubren este objetivo, se desarrollan técnicas de clustering o segmentación dinámica aplicadas a curvas de carga de consumo eléctrico diario de clientes domésticos. Estas técnicas se prueban y validan sobre una base de datos de consumos energéticos horarios de una muestra de clientes residenciales en España durante los años 2008 y 2009. Los resultados permiten observar tanto la caracterización en consumos de los distintos tipos de consumidores energéticos residenciales, como su evolución en el tiempo, y permiten evaluar, por ejemplo, cómo influenciaron en los patrones temporales de consumos los cambios regulatorios que se produjeron en España en el sector eléctrico durante esos años.
[CAT] El sector elèctric es troba actualment sotmès a un procés de liberalització i separació de rols, que s'està aplicant davall els auspicis reguladors de cada estat membre de la Unió Europea i, per tant, amb distintes velocitats, perspectives i objectius que han de confluir en un horitzó comú, on Europa es beneficiarà d'un mercat energètic interconnectat, en el qual productors i consumidors podran participar en lliure competència. Aquest procés de liberalització i separació de rols comporta dues conseqüències o, vist d'una altra manera, comporta una conseqüència principal de la qual es deriva, com a necessitat, una altra conseqüència immediata. La conseqüència principal és l'augment de la complexitat en la gestió i supervisió d'un sistema, l'elèctric, cada vegada més interconnectat i participatiu, amb connexió de fonts distribuïdes d'energia, moltes d'aquestes d'origen renovable, a distints nivells de tensió i amb distinta capacitat de generació, en qualsevol punt de la xarxa. D'aquesta situació es deriva l'altra conseqüència, que és la necessitat de comunicar informació entre els distints agents, de forma fiable, segura i ràpida, i que aquesta informació siga analitzada de la manera més eficaç possible, perquè forme part dels processos de presa de decisions que milloren l'observabilitat i controlabilitat d'un sistema cada vegada més complex i amb més agents involucrats. Amb l'avanç de les tecnologies de la informació i les comunicacions (TIC), i les inversions, tant en la millora de la infraestructura existent de mesura i comunicacions, com en el trasllat de l'obtenció de mesures i capacitat d'actuació a un nombre més gran de punts en xarxes de mitjana i baixa tensió, la disponibilitat de dades sobre l'estat de la xarxa és cada vegada major i més completa. Tots aquests sistemes formen part de les denominades Smart Grids o xarxes intel·ligents del futur, un futur ja no tan llunyà. Una d'aquestes fonts d'informació prové dels consums energètics dels clients, mesurats de forma periòdica (cada hora, mitja hora o quart d'hora) i enviats cap a les distribuïdores des dels comptadors intel·ligents o Smart Meters, per mitjà d'infraestructura avançada de mesura o Advanced Metering Infrastructure (AMI). D'aquesta manera, cada vegada es té una major quantitat d'informació sobre els consums energètics dels clients, emmagatzemada en sistemes de Big Data. Aquesta cada vegada major font d'informació demanda tècniques especialitzades que sàpiguen aprofitar-la, extraient-ne un coneixement útil i resumit. La present tesi doctoral versa sobre l'ús d'aquesta informació de consums energètics dels comptadors intel·ligents, en concret sobre l'aplicació de tècniques de mineria de dades (data mining) per a obtenir patrons temporals que caracteritzen els usuaris d'energia elèctrica, agrupant-los segons aquests mateixos patrons en una quantitat reduïda de grups o clusters, que permeten avaluar la forma en què els usuaris consumeixen l'energia, tant al llarg del dia com durant una seqüència de dies, i que permetent avaluar tendències i predir escenaris futurs. Amb aquesta finalitat, s'estudien les tècniques actuals i, en comprovar que els treballs actuals no cobreixen aquest objectiu, es desenvolupen tècniques de clustering o segmentació dinàmica aplicades a corbes de càrrega de consum elèctric diari de clients domèstics. Aquestes tècniques es proven i validen sobre una base de dades de consums energètics horaris d'una mostra de clients residencials a Espanya durant els anys 2008 i 2009. Els resultats permeten observar tant la caracterització en consums dels distints tipus de consumidors energètics residencials, com la seua evolució en el temps, i permeten avaluar, per exemple, com van influenciar en els patrons temporals de consums els canvis reguladors que es van produir a Espanya en el sector elèctric durant aquests anys.
Benítez Sánchez, IJ. (2015). Dynamic segmentation techniques applied to load profiles of electric energy consumption from domestic users [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59236
TESIS
Runtemund, Katrin [Verfasser], Gerhard [Akademischer Betreuer] Müller, and Pol D. [Akademischer Betreuer] Spanos. "Output-only measurement-based parameter identification of dynamic systems subjected to random load processes / Katrin Runtemund. Gutachter: Pol D. Spanos ; Gerhard Müller. Betreuer: Gerhard Müller." München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1044680539/34.
Full textIhbal, Abdel-Baset M. I. "Investigation of Energy Demand Modeling and Management for Local Communities. Investigation of the electricity demand modeling and management including consumption behaviour, dynamic tariffs, and use of renewable energy." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5678.
Full textLibyan government
Ihbal, Abdel-Baset Mostafa Imbarek. "Investigation of energy demand modeling and management for local communities : investigation of the electricity demand modeling and management including consumption behaviour, dynamic tariffs, and use of renewable energy." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5678.
Full textBooks on the topic "Random dynamic load profile"
Chinwai, Lee, United States. National Aeronautics and Space Administration., and United States. Army Aviation Systems Command., eds. Influence of linear profile modification and loading conditions on the dynamic tooth load and stress of high contact ration gears. [Washington, D.C.]: NASA, 1990.
Find full textBook chapters on the topic "Random dynamic load profile"
Sanders, Peter. "Asynchronous Random Polling Dynamic Load Balancing." In Algorithms and Computation, 37–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-46632-0_5.
Full textAhlbeck, Donald R. "A Study of Dynamic Impact Load Effects Due to Railroad Wheel Profile Roughness." In The Dynamics of Vehicles on roads and on tracks, 13–16. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210894-2.
Full textCui, Jialin, Lijuan Li, Meng Zhang, Hongbing Liu, and Xianqiang Qu. "Dynamic Response Analysis of Floating Nuclear Power Plant Containment Under Marine Environment." In Springer Proceedings in Physics, 609–23. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_53.
Full textMühlbauer, Matthias, Hubert Würschinger, Dominik Polzer, and Nico Hanenkamp. "Energy Profile Prediction of Milling Processes Using Machine Learning Techniques." In Machine Learning for Cyber Physical Systems, 1–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-62746-4_1.
Full textNguyen-Xuan, Toan, Thuat Dang-Cong, Loan Nguyen-Thi-Kim, and Thao Nguyen-Duy. "Dynamic Impact Factor Analysis of the Prestressed Reinforced Concrete Girder Bridges Subjected to Random Vehicle Load." In Advances in Asian Mechanism and Machine Science, 764–74. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91892-7_73.
Full textNguyen-Xuan, Toan, Thuat Dang-Cong, Loan Nguyen-Thi-Kim, and Thao Nguyen-Duy. "Application of Finite Element Method to Analyze the Vibration and Dynamic Impact Factor of Displacement in I-Girder Bridge with Link Slab Due to Random Vehicle Load." In Advances in Asian Mechanism and Machine Science, 814–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91892-7_78.
Full textSenthilkumar, Sudha S., Brindha K., Nitesh Kumar Agrawal, and Akshat Vaidya. "Dynamic Load Balancing Using Honey Bee Algorithm." In Encyclopedia of Information Science and Technology, Fifth Edition, 98–106. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3479-3.ch008.
Full textBehera, Soudamini, Ajit Kumar Barisal, and Sasmita Behera. "Dynamic Economic Load Dispatch of Hydrothermal System." In Artificial Intelligence. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108052.
Full textMohanty, Subhadarshini, Prashant Kumar Patra, and Subasish Mohapatra. "Dynamic Task Assignment with Load Balancing in Cloud Platform." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 363–85. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-8853-7.ch018.
Full textSingh, Avtar, and Shobhana Kashyap. "Mutation-Based Glow Worm Swarm Optimization for Efficient Load Balancing in Cloud Computing." In Emerging Trends in Cloud Computing Analytics, Scalability, and Service Models, 144–54. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0900-1.ch007.
Full textConference papers on the topic "Random dynamic load profile"
Márialigeti, János, and László Lovas. "Analysis of Load Dependent Dynamic Transmission Error Response of Gears With Random Pitch Error." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21619.
Full textBhirud, Mehul, Bharatkumar Valand, and Ankit Rathod. "Structural Validation of Portable Compressor Trailer Under Dynamic Conditions." In ASME 2023 Gas Turbine India Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gtindia2023-118377.
Full textRodrigues, L. P., R. C. Silva, and A. B. S. Oliveira. "Multibody Dynamic Simulation of a Double ‘A’ Suspension Focusing on the Lower Control Arm Fatigue Life Analysis." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71779.
Full textDua, Dipankar, Quang Le, Anthony Saladino, Deepak Thirumurthy, and Jaskirat Singh. "A Dynamic Systems Based Approach to Estimate Cyclic and Creep Damage of a Power Turbine Blade Subjected to a Random Transient Operation." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59390.
Full textJiang, Zhenyu, Moustafa El-Gindy, and Donald Streit. "Ride Comfort of Five-Axle Tractor/Semi-Trailer." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1202.
Full textMontonen, Jori, Erno Keskinen, Michel Cotsaftis, Juha Miettinen, and Wolfgang Seeman. "Dynamics of Single-Hit Pneumatic Test Drill for Pulse-Shaping Analysis of Impacting Waves." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64835.
Full textSun, Enbo, Yun Wu, Haideng Zhang, Shanzhen Li, and Lifu Zhang. "Efficient Performance Prediction of a one-and-half Stage Axial Compressor based on a Streamline-Curvature Throughflow Method and Stage Characteristics." In GPPS Hong Kong23. GPPS, 2023. http://dx.doi.org/10.33737/gpps23-tc-281.
Full textVelazquez, Antonio, and R. Andrew Swartz. "Operational Risk Assessment of Wind Turbine Structures Using Probabilistic Analysis of Aerodynamically Induced Vibrations." In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5100.
Full textGuangfei Geng, Jiaqi Liang, Ronald G. Harley, and Ruiqian Qu. "Load profile partitioning and dynamic reactive power optimization." In 2010 International Conference on Power System Technology - (POWERCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/powercon.2010.5666514.
Full textLi, Ye, Bei-Bei Yin, Junpeng Lv, and Kai-Yuan Cai. "Approach for Test Profile Optimization in Dynamic Random Testing." In 2015 IEEE 39th Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2015. http://dx.doi.org/10.1109/compsac.2015.257.
Full textReports on the topic "Random dynamic load profile"
Carney, Nancy, Tamara Cheney, Annette M. Totten, Rebecca Jungbauer, Matthew R. Neth, Chandler Weeks, Cynthia Davis-O'Reilly, et al. Prehospital Airway Management: A Systematic Review. Agency for Healthcare Research and Quality (AHRQ), June 2021. http://dx.doi.org/10.23970/ahrqepccer243.
Full text