To see the other types of publications on this topic, follow the link: Randall's plaque.

Journal articles on the topic 'Randall's plaque'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Randall's plaque.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Abrol, N., and N. S. Kekre. "Revisiting Randall's plaque." African Journal of Urology 20, no. 4 (December 2014): 174–79. http://dx.doi.org/10.1016/j.afju.2014.06.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khan, S. R. "Randall's plaque and renal injury." Kidney International 71, no. 1 (January 2007): 83. http://dx.doi.org/10.1038/sj.ki.5001890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Evan, A. P., F. Coe, and J. E. lingeman. "Response to ‘Randall's plaque and cell injury’." Kidney International 71, no. 1 (January 2007): 83–84. http://dx.doi.org/10.1038/sj.ki.5001894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, S., and B. Canales. "POD-08.01: Randall's Plaque and Papillary Injury." Urology 74, no. 4 (October 2009): S24. http://dx.doi.org/10.1016/j.urology.2009.07.1129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Evan, A., J. Lingeman, F. L. Coe, and E. Worcester. "Randall's plaque: Pathogenesis and role in calcium oxalate nephrolithiasis." Kidney International 69, no. 8 (April 2006): 1313–18. http://dx.doi.org/10.1038/sj.ki.5000238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abaterusso, C., A. Lupo, and G. Gambaro. "Randall's plaque, calcium-sensing receptor, and idiopathic calcium nephrolithiasis." Kidney International 71, no. 1 (January 2007): 83. http://dx.doi.org/10.1038/sj.ki.5001953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, Nicole L. "The Origin and Significance of Randall's Plaque in Nephrolithiasis." Journal of Urology 186, no. 3 (September 2011): 783–84. http://dx.doi.org/10.1016/j.juro.2011.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borofsky, Michael S., James C. Williams, Casey A. Dauw, Andrew Cohen, Andrew C. Evan, Fredric L. Coe, Elaine Worcester, and James E. Lingeman. "Association Between Randall's Plaque Stone Anchors and Renal Papillary Pits." Journal of Endourology 33, no. 4 (April 2019): 337–42. http://dx.doi.org/10.1089/end.2018.0589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ciudin, Alexandru, Maria Pilar Luque Galvez, Rafael Salvador Izquierdo, Mihai Gabriel Diaconu, Agustin Franco de Castro, Vlad Constantin, Jose Ricardo Alvarez-Vijande, Carlos Nicolau, and Antonio Alcaraz Asensio. "Validation of Randall's Plaque Theory Using Unenhanced Abdominal Computed Tomography." Urology 81, no. 2 (February 2013): 246–50. http://dx.doi.org/10.1016/j.urology.2012.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

KIM, SAMUEL C., FREDRIC L. COE, WILLIAM W. TINMOUTH, RAMSAY L. KUO, RYAN F. PATERSON, JOAN H. PARKS, LARRY C. MUNCH, ANDREW P. EVAN, and JAMES E. LINGEMAN. "STONE FORMATION IS PROPORTIONAL TO PAPILLARY SURFACE COVERAGE BY RANDALL'S PLAQUE." Journal of Urology 173, no. 1 (January 2005): 117–19. http://dx.doi.org/10.1097/01.ju.0000147270.68481.ce.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Carpentier, Xavier, Dominique Bazin, Christelle Combes, Aurélie Mazouyes, Stephan Rouzière, Pierre Antoine Albouy, Eddy Foy, and Michel Daudon. "High Zn content of Randall's plaque: A μ-X-ray fluorescence investigation." Journal of Trace Elements in Medicine and Biology 25, no. 3 (July 2011): 160–65. http://dx.doi.org/10.1016/j.jtemb.2011.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ciudin, A., M. P. Luque, R. Salvador, M. G. Diaconu, J. B. Alcover, J. R. Alvarez-Vijande, and A. Alcaraz. "943 Validation of Randall's plaque theory by using the unenhanced abdominal CT." European Urology Supplements 11, no. 1 (February 2012): e943-e943a. http://dx.doi.org/10.1016/s1569-9056(12)60940-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chopra, Samarth, Erik K. Mayer, R. Daron Smith, and Anup Patel. "THE PREVALENCE OF RANDALL'S PLAQUE IN STONE FORMERS VS. NON-STONE FORMERS." Journal of Urology 179, no. 4S (April 2008): 562. http://dx.doi.org/10.1016/s0022-5347(08)61652-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kuo, Ramsay L., James E. Lingeman, Andrew P. Evan, Ryan F. Paterson, Joan H. Parks, Sharon B. Bledsoe, Larry C. Munch, and Fredric L. Coe. "Urine calcium and volume predict coverage of renal papilla by Randall's plaque." Kidney International 64, no. 6 (December 2003): 2150–54. http://dx.doi.org/10.1046/j.1523-1755.2003.00316.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Evan, Andrew P., Fredric L. Coe, James E. Lingeman, Youzhi Shao, Andre J. Sommer, Sharon B. Bledsoe, Jennifer C. Anderson, and Elaine M. Worcester. "Mechanism of Formation of Human Calcium Oxalate Renal Stones on Randall's Plaque." Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology 290, no. 10 (2007): 1315–23. http://dx.doi.org/10.1002/ar.20580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hsi, Ryan S., Krishna Ramaswamy, Sunita P. Ho, and Marshall L. Stoller. "The origins of urinary stone disease: upstream mineral formations initiate downstream Randall's plaque." BJU International 119, no. 1 (July 14, 2016): 177–84. http://dx.doi.org/10.1111/bju.13555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Stoller, Marshall L., Roger K. Low, Gina S. Shami, Vincent D. McCormick, and Russell L. Kerschmann. "High Resolution Radiography of Cadaveric Kidneys: Unraveling the Mystery of Randall's Plaque Formation." Journal of Urology 156, no. 4 (October 1996): 1263–66. http://dx.doi.org/10.1016/s0022-5347(01)65565-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bouderlique, Elise, Ellie Tang, Joëlle Perez, Amélie Coudert, Dominique Bazin, Marie-Christine Verpont, Christophe Duranton, et al. "Vitamin D and Calcium Supplementation Accelerates Randall's Plaque Formation in a Murine Model." American Journal of Pathology 189, no. 11 (November 2019): 2171–80. http://dx.doi.org/10.1016/j.ajpath.2019.07.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bazin, Dominique, Emmanuel Letavernier, Chantal Jouanneau, Pierre Ronco, Christophe Sandt, Paul Dumas, Guy Matzen, et al. "New insights into the presence of sodium hydrogen urate monohydrate in Randall's plaque." Comptes Rendus Chimie 19, no. 11-12 (November 2016): 1461–69. http://dx.doi.org/10.1016/j.crci.2015.02.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Taguchi, K., A. Okada, S. Hamamoto, R. Unno, H. Kamisawa, T. Naiki, R. Ando, et al. "919 The role of M1/M2 macrophages for CaOx stone and Randall's plaque formation." European Urology Supplements 15, no. 3 (March 2016): e919. http://dx.doi.org/10.1016/s1569-9056(16)60921-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cohen, Andrew J., Michael S. Borofsky, Blake B. Anderson, Casey A. Dauw, Daniel L. Gillen, Glenn S. Gerber, Elaine M. Worcester, Fredric L. Coe, and James E. Lingeman. "Endoscopic Evidence That Randall's Plaque is Associated with Surface Erosion of the Renal Papilla." Journal of Endourology 31, no. 1 (January 2017): 85–90. http://dx.doi.org/10.1089/end.2016.0537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Darves-Bornoz, Anne, Tracy Marien, John Thomas, Gabriel Fiscus, John Brock, Douglass Clayton, and Nicole L. Miller. "Renal Papillary Mapping and Quantification of Randall's Plaque in Pediatric Calcium Oxalate Stone Formers." Journal of Endourology 33, no. 10 (October 1, 2019): 863–67. http://dx.doi.org/10.1089/end.2019.0377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Xiangling, Amy E. Krambeck, James C. Williams, Xiaojing Tang, Andrew D. Rule, Fang Zhao, Eric Bergstralh, et al. "Distinguishing Characteristics of Idiopathic Calcium Oxalate Kidney Stone Formers with Low Amounts of Randall's Plaque." Clinical Journal of the American Society of Nephrology 9, no. 10 (August 4, 2014): 1757–63. http://dx.doi.org/10.2215/cjn.01490214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khan, S. R. "468 RANDALL'S PLAQUE AS METASTATIC CALCIFICATION IN RENAL PAPILLARY INTERSTITIUM, EVIDENCE FROM AN EXPERIMENTAL ANIMAL MODEL." European Urology Supplements 9, no. 2 (April 2010): 166. http://dx.doi.org/10.1016/s1569-9056(10)60462-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Canela, Victor Hugo, Keegan A. Steele, Sharon Bledsoe, Elaine Worceste, James C. Williams, and James E. Lingeman. "Micro-CT Analysis of Renal Papillae Shows That Randall's Plaque Formation Occurs Independently of Ductal Plugging." American Journal of Pharmaceutical Education 87, no. 8 (August 2023): 100189. http://dx.doi.org/10.1016/j.ajpe.2023.100189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Carpentier, Xavier, Dominique Bazin, Paul Jungers, Solenn Reguer, Dominique Thiaudière, and Michel Daudon. "The pathogenesis of Randall's plaque: a papilla cartography of Ca compounds through anex vivoinvestigation based on XANES spectroscopy." Journal of Synchrotron Radiation 17, no. 3 (March 18, 2010): 374–79. http://dx.doi.org/10.1107/s0909049510003791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mosapour, E., H. Mombeini, M. A. Hosseini, M. Jassemi Zergani, and D. Khazaeli. "696 SEVERITY OF PAPILLARY INVOLVEMENT BY RANDALL'S PLAQUE IS PROPORTIONAL TO 3-YEAR STONE RECURRENCE IN IDIOPATHIC CALCIUM OXALATE STONE FORMERS." European Urology Supplements 10, no. 2 (March 2011): 223. http://dx.doi.org/10.1016/s1569-9056(11)60684-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miller, Nicole L., James C. Williams, Mitchell R. Humphreys, Sharon B. Bledsoe, Shelly E. Handa, Molly E. Jackson, Andrew P. Evan, and James E. Lingeman. "IN COMMON CALCIUM OXALATE STONE FORMERS, UNATTACHED STONES SHOW EVIDENCE OF HAVING ORIGINATED AS ATTACHED STONES ON RANDALL'S PLAQUE: A MICRO CT STUDY." Journal of Urology 179, no. 4S (April 2008): 587–88. http://dx.doi.org/10.1016/s0022-5347(08)61723-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mohod, Priya. "Homeopathy as a saviour for urolithiasis: A narrative review shading light on pathophysiology of renal stones and homeopathy drugs." Journal of Preventive Medicine and Holistic Health 8, no. 2 (January 15, 2023): 57–65. http://dx.doi.org/10.18231/j.jpmhh.2022.013.

Full text
Abstract:
Kidney stone disease is a crystal concretion formed generally within the kidneys. It is an accumulative urological disorder of human health, affecting about 12% of the world population. Higher risk of kidney failure which has been associated with end stage renal failure. Calcium oxalate, which forms at Randall's plaque on the renal papillary surfaces, is the most common type of kidney stone. Stone formation is highly prevalent, with rates of up to 14.8% and increasing, and a recurrence rate of up to 50% within the first 5 years of the initial stone incident. The formation of the stone is a complex process which results from numerous physiochemical events such as, super saturation, nucleation, growth, aggregation, and retention of urinary stone constituents within tubular cells. Several therapies are being performed for kidney stone treatment, including thiazide diuretics, allopurinol, painkillers, dietary changes, shock-wave treatment, ureterenooscopic and percutaneous nephrolithotomy, and ureterenooscopic and percutaneous nephrolithotomy in severe cases. However, the side effects that these treatments possess and reoccurrence of the disease have motivated researchers to search for better and safer options. Homeopathic drugs as well as several medicinal plants display antiurolithiatic activity and thus perform an important role in treatment of kidney stone disease. Therefore, the present review thereby wants to bring to the attention the wonderful results that homeopathy is offering in cases of urolithiasis in a very non-invasive and economical way which is not yet popularized.
APA, Harvard, Vancouver, ISO, and other styles
30

Bergsland, Kristin J., Elaine M. Worcester, and Fredric L. Coe. "Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria." American Journal of Physiology-Renal Physiology 305, no. 4 (August 15, 2013): F592—F599. http://dx.doi.org/10.1152/ajprenal.00116.2013.

Full text
Abstract:
The most common metabolic abnormality found in calcium (Ca) kidney stone formers is idiopathic hypercalciuria (IH). Using endogenous lithium (Li) clearance, we previously showed that in IH, there is decreased proximal tubule sodium absorption, and increased delivery of Ca into the distal nephron. Distal Ca reabsorption may facilitate the formation of Randall's plaque (RP) by washdown of excess Ca through the vasa recta toward the papillary tip. Elevated Ca excretion leads to increased urinary supersaturation (SS) with respect to calcium oxalate (CaOx) and calcium phosphate (CaP), providing the driving force for stone growth on RP. Thiazide (TZ) diuretics reduce Ca excretion and prevent stone recurrence, but the mechanism in humans is unknown. We studied the effect of chronic TZ administration on renal mineral handling in four male IH patients using a fixed three meal day in the General Clinical Research Center. Each subject was studied twice: once before treatment and once after 4–7 mo of daily chlorthalidone treatment. As expected, urine Ca fell with TZ, along with fraction of filtered Ca excreted. Fraction of filtered Li excreted also fell sharply with TZ, as did distal delivery of Ca. Unexpectedly, TZ lowered urine pH. Together with reduced urine Ca, this led to a marked fall in CaP SS, but not CaOx SS. Since CaOx stone formation begins with an initial CaP overlay on RP, by lowering urine pH and decreasing distal nephron Ca delivery, TZ might diminish stone risk both by reducing CaP SS, as well as slowing progression of RP.
APA, Harvard, Vancouver, ISO, and other styles
31

Reid, David G., Graham J. Jackson, Melinda J. Duer, and Allen L. Rodgers. "Apatite in Kidney Stones is a Molecular Composite With Glycosaminoglycans and Proteins: Evidence From Nuclear Magnetic Resonance Spectroscopy, and Relevance to Randall's Plaque, Pathogenesis and Prophylaxis." Journal of Urology 185, no. 2 (February 2011): 725–30. http://dx.doi.org/10.1016/j.juro.2010.09.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lokeshwar, Soum D., Alexander Randall V, Thomas E. Dykes, Zachary Klaassen, Durwood E. Neal, Martha K. Terris, and Robert Marcovich. "Dr. Alexander Randall III and the Discovery of Randall's Plaques." Urology 146 (December 2020): 15–18. http://dx.doi.org/10.1016/j.urology.2020.09.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Letavernier, Emmanuel, Gilles Kauffenstein, Léa Huguet, Nastassia Navasiolava, Elise Bouderlique, Ellie Tang, Léa Delaitre, et al. "ABCC6 Deficiency Promotes Development of Randall Plaque." Journal of the American Society of Nephrology 29, no. 9 (July 10, 2018): 2337–47. http://dx.doi.org/10.1681/asn.2017101148.

Full text
Abstract:
BackgroundPseudoxanthoma elasticum (PXE) is a genetic disease caused by mutations in the ABCC6 gene that result in low pyrophosphate levels and subsequent progressive soft tissue calcifications. PXE mainly affects the skin, retina, and arteries. However, many patients with PXE experience kidney stones. We determined the prevalence of this pathology in patients with PXE and examined the possible underlying mechanisms in murine models.MethodsWe conducted a retrospective study in a large cohort of patients with PXE and analyzed urine samples and kidneys from Abcc6−/− mice at various ages. We used Yasue staining, scanning electron microscopy, electron microscopy coupled to electron energy loss spectroscopy, and Fourier transform infrared microspectroscopy to characterize kidney calcifications.ResultsAmong 113 patients with PXE, 45 (40%) had a past medical history of kidney stones. Five of six computed tomography scans performed showed evidence of massive papillary calcifications (Randall plaques). Abcc6−/− mice spontaneously developed kidney interstitial apatite calcifications with aging. These calcifications appeared specifically at the tip of the papilla and formed Randall plaques similar to those observed in human kidneys. Compared with controls, Abcc6−/− mice had low urinary excretion of pyrophosphate.ConclusionsThe frequency of kidney stones and probably, Randall plaque is extremely high in patients with PXE, and Abcc6−/− mice provide a new and useful model in which to study Randall plaque formation. Our findings also suggest that pyrophosphate administration should be evaluated for the prevention of Randall plaque and kidney stones.
APA, Harvard, Vancouver, ISO, and other styles
34

Sethmann, I., B. Grohe, and H. J. Kleebe. "Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation." Mineralogical Magazine 78, no. 1 (February 2014): 91–100. http://dx.doi.org/10.1180/minmag.2014.078.1.07.

Full text
Abstract:
AbstractKidney stones consisting predominantly of whewellite (calcium oxalate monohydrate, COM) are often found attached to hydroxylapatite (HA) plaques that form in the soft tissue of kidneys, cause lesions and become exposed to urine. Although the processes of stone formation are not entirely known, it is an established view that so-called Randall’s plaques serve as substrates for COM crystal nucleation and growth from correspondingly supersaturated urine. However, the results presented here suggest an additional mineral replacement process is involved. In an experimental approach, HA was reacted in 0.25 mM, 0.5 mM and 1.0 mM oxalate solutions with pH ranging from 4.5 to 7.5, simulating normal to harsh conditions encountered in urine. Extremely acidic solutions induce dissolution of HA crystals coupled with re-precipitation of the released Ca2+ ions as COM on the HA surface. When, instead, bone was used as a substrate, being more similar to the pathological plaque (aggregated HA nanocrystals within an organic matrix), the HA-COM mineral-replacement reaction is induced even under much milder fluid conditions, commonly found in urine. Hence, a process of COM partly replacing and encrusting Randall’s plaque may take place in the urinary tract of idiopathic stone formers, representing a potential starting event for nephrolithiasis.
APA, Harvard, Vancouver, ISO, and other styles
35

Chughtai, Bilal, and Mark White. "HISTORY OF RANDALL'S PLAQUES." Journal of Urology 179, no. 4S (April 2008): 307. http://dx.doi.org/10.1016/s0022-5347(08)60897-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lokeshwar*, Soum, Thomas Dykes, Zachary Klaassen, Durwood Neal, Martha Terris, and Robert Marcovich. "FR01-14 RANDALLʼS PLAQUES." Journal of Urology 203 (April 2020): e289. http://dx.doi.org/10.1097/ju.0000000000000850.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Delatte, Luis Cifuentes, Jose Miñón Cifuentes, and Jose A. Medina. "Randall and his plaque." Urology 48, no. 3 (September 1996): 343–46. http://dx.doi.org/10.1016/s0090-4295(96)00214-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Evan, Andrew P., Fredric L. Coe, James Lingeman, Sharon Bledsoe, and Elaine M. Worcester. "Randall’s plaque in stone formers originates in ascending thin limbs." American Journal of Physiology-Renal Physiology 315, no. 5 (November 1, 2018): F1236—F1242. http://dx.doi.org/10.1152/ajprenal.00035.2018.

Full text
Abstract:
Randall’s plaque, an attachment site over which calcium oxalate stones form, begins in the basement membranes of thin limbs of the loop of Henle. The mechanism of its formation is unknown. Possibly, enhanced delivery of calcium out of the proximal tubule, found in many stone formers, increases reabsorption of calcium from the thick ascending limb into the interstitium around descending vasa recta, which convey that calcium into the deep medulla, and raises supersaturations near thin limbs (“vas washdown”). According to this hypothesis, plaque should form preferentially on ascending thin limbs, which do not reabsorb water. We stained serial sections of papillary biopsies from stone-forming patients for aquaporin 1 (which is found in the descending thin limb) and the kidney-specific chloride channel ClC-Ka (which is found in the ascending thin limb). Plaque (which is detected using Yasue stain) colocalized with ClC-Ka, but not with aquaporin 1 (χ2 = 464, P < 0.001). We conclude that plaque forms preferentially in the basement membranes of ascending thin limbs, fulfilling a critical prediction of the vas washdown theory of plaque pathogenesis. The clinical implication is that treatments such as a low-sodium diet or thiazide diuretics that raise proximal tubule calcium reabsorption may reduce formation of plaque as well as calcium kidney stones.
APA, Harvard, Vancouver, ISO, and other styles
39

Williams, James C., James E. Lingeman, Fredric L. Coe, Elaine M. Worcester, and Andrew P. Evan. "Micro-CT imaging of Randall’s plaques." Urolithiasis 43, S1 (August 6, 2014): 13–17. http://dx.doi.org/10.1007/s00240-014-0702-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Matlaga, Brian R., James C. Williams, Samuel C. Kim, Ramsay L. Kuo, Andrew P. Evan, Sharon B. Bledsoe, Fredric L. Coe, Elaine M. Worcester, Larry C. Munch, and James E. Lingeman. "Endoscopic Evidence of Calculus Attachment to Randall’s Plaque." Journal of Urology 175, no. 5 (May 2006): 1720–24. http://dx.doi.org/10.1016/s0022-5347(05)01017-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hugo Canela*, Victor, Sharon B. Bledsoe, Glenn S. Gerber, Elaine M. Worcester, James E. Lingeman, Tarek M. El-Achkar, and James C. Williams. "MP10-19 MATURE RANDALL’S PLAQUE CONTAINS CELL NUCLEI." Journal of Urology 203 (April 2020): e133. http://dx.doi.org/10.1097/ju.0000000000000830.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Matlaga, Brian R., and James E. Lingeman. "Re: Endoscopic Evidence of Calculus Attachment to Randall’s Plaque." Journal of Urology 176, no. 3 (September 2006): 1254–55. http://dx.doi.org/10.1016/j.juro.2006.04.105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Khan, Saeed R., and Giovanni Gambaro. "Role of Osteogenesis in the Formation of Randall's Plaques." Anatomical Record 299, no. 1 (October 30, 2015): 5–7. http://dx.doi.org/10.1002/ar.23275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Daudon, Michel, Dominique Bazin, and Emmanuel Letavernier. "Randall’s plaque as the origin of calcium oxalate kidney stones." Urolithiasis 43, S1 (August 7, 2014): 5–11. http://dx.doi.org/10.1007/s00240-014-0703-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Letavernier, Emmanuel, Dominique Bazin, and Michel Daudon. "Randall’s plaque and kidney stones: Recent advances and future challenges." Comptes Rendus Chimie 19, no. 11-12 (November 2016): 1456–60. http://dx.doi.org/10.1016/j.crci.2014.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Delatte, Luis Cifuentes, José L. R. Miñón-Cifuentes, and José A. Medina. "Papillary Stones: Calcified Renal Tubules in Randall’s Plaques." Journal of Urology 133, no. 3 (March 1985): 490–94. http://dx.doi.org/10.1016/s0022-5347(17)49039-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

LOW, ROGER K., MARSHALL L. STOLLER, and CHRISTOPHER K. SCHREIBER. "Metabolic and Urinary Risk Factors Associated with Randall's Papillary Plaques." Journal of Endourology 14, no. 6 (August 2000): 507–10. http://dx.doi.org/10.1089/end.2000.14.507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wong, MichaelY C., Ruth Strakosha, and Manoj Monga. "The relevance of Randall′s plaques." Indian Journal of Urology 30, no. 1 (2014): 49. http://dx.doi.org/10.4103/0970-1591.124207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Daudon, M., and D. Bazin. "When the Synchrotron radiations highlight the Randall's plaques and kidney concretions." Journal of Physics: Conference Series 425, no. 2 (March 22, 2013): 022006. http://dx.doi.org/10.1088/1742-6596/425/2/022006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bouchireb, K., O. Boyer, C. Pietrement, H. Nivet, H. Martelli, O. Dunand, F. Nobili, et al. "Papillary stones with Randall's plaques in children: clinicobiological features and outcome." Nephrology Dialysis Transplantation 27, no. 4 (August 3, 2011): 1529–34. http://dx.doi.org/10.1093/ndt/gfr439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography