Academic literature on the topic 'Raman spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raman spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Raman spectroscopy"

1

SAKAMOTO, Kenji, and Sukekatsu USHIODA. "Raman Spectroscopy." Hyomen Kagaku 13, no. 2 (1992): 79–87. http://dx.doi.org/10.1380/jsssj.13.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gerrard, D. L., and J. Birnie. "Raman spectroscopy." Analytical Chemistry 62, no. 12 (June 15, 1990): 140–50. http://dx.doi.org/10.1021/ac00211a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gerrard, D. L., and H. J. Bowley. "Raman spectroscopy." Analytical Chemistry 60, no. 12 (June 15, 1988): 368–77. http://dx.doi.org/10.1021/ac00163a023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mulvaney, Shawn P., and Christine D. Keating. "Raman Spectroscopy." Analytical Chemistry 72, no. 12 (June 2000): 145–58. http://dx.doi.org/10.1021/a10000155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lyon, L. Andrew, Christine D. Keating, Audrey P. Fox, Bonnie E. Baker, Lin He, Sheila R. Nicewarner, Shawn P. Mulvaney, and Michael J. Natan. "Raman Spectroscopy." Analytical Chemistry 70, no. 12 (June 1998): 341–62. http://dx.doi.org/10.1021/a1980021p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gerrard, D. L., and J. Birnie. "Raman spectroscopy." Analytical Chemistry 64, no. 12 (June 15, 1992): 502–13. http://dx.doi.org/10.1021/ac00036a026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gerrard, D. L. "Raman Spectroscopy." Analytical Chemistry 66, no. 12 (June 1994): 547–57. http://dx.doi.org/10.1021/ac00084a020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gerrard, Donald L., and Heather J. Bowley. "Raman spectroscopy." Analytical Chemistry 58, no. 5 (April 1986): 6–13. http://dx.doi.org/10.1021/ac00296a002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vandenabeele, Peter. "Raman spectroscopy." Analytical and Bioanalytical Chemistry 397, no. 7 (June 12, 2010): 2629–30. http://dx.doi.org/10.1007/s00216-010-3872-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williams, Adrian C., and Brian W. Barry. "Raman spectroscopy." Journal of Toxicology: Cutaneous and Ocular Toxicology 20, no. 4 (January 2001): 497–511. http://dx.doi.org/10.1081/cus-120001872.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Raman spectroscopy"

1

Li, Yun-Thai. "Tip-enhanced Raman spectroscopy." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patil, Raj. "Deep UV Raman Spectroscopy." Thesis, The University of Arizona, 2016. http://hdl.handle.net/10150/613378.

Full text
Abstract:
This thesis examines the performance of a custom built deep UV laser (257.5nm) for Raman spectroscopy and the advantages of Raman spectroscopy with a laser in the deep UV over a laser in the visible range (532 nm). It describes the theory of resonance Raman scattering, the experimental setup for Raman spectroscopy and a few Raman spectroscopy measurements. The measurements were performed on biological samples oak tree leaf and lactobacillus acidophilus and bifidobacteria from probotioc medicinal capsules. Fluorescence free Raman spectra were acquired for the two samples with 257.5 nm laser. The Raman spectra for the two samples with a 532nm laser was masked with fluorescence. Raman measurements for an inorganic salt sodium nitrate showed a resonance Raman effect with 257.5 nm laser which led to enhancement in the Raman intensity as compared to that with 532 nm laser. Therefore we were able to demonstrate two advantages of deep UV Raman spectroscopy. First one is the possibility of acquiring fluorescence free spectra for biological samples. Second is the possibility of gaining enhancement in Raman intensity due to resonance Raman effect. It was observed that 257.5 nm laser requires optimization to reduce the bandwidth of the laser to get better resolution. The 257.5 nm laser also needs to be optimized to obtain higher power to get better signal to noise ratio. The experimental setup can also be further improved to obtain better resolution. If the improvements required in the setup are implemented, the deep UV Raman setup will become an important tool for spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
3

Nathaniel, Todd. "Spatial heterodyne Raman spectroscopy." Thesis, University of Surrey, 2011. http://epubs.surrey.ac.uk/810642/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bergqvist, Saga. "Raman spectroscopy in neurosurgery." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78665.

Full text
Abstract:
Brain tumors or brain cancer is a disease than affects people of all ages. The median age of a person living with a brain tumor is 60 years, it is however a disease that affects children and young adults in high grade. Brain cancer is the second most common type of cancer among children and is also the most common cause of cancer related death among this group. To ensure that the damages on the brain is as small as possible, it is important that a tumor can be diagnosed and removed as early as possible. Previous methods of diagnosis is based on biopsy where a part of the tumor is removed and examinated by a pathologist. This is a time consuming process that also is biased by the human factor, there is therefore a need for a method that can be used \textit{in situ} with an unbiased result. One method that have shown great promise is photensitation with 5-Aminolevoluic acid (5-ALA). However, this method have shown to only work properly on tumors of high malignancy in adults. As a comlpiment to photosentisation, Raman spectroscopy have shown good promise in previous studies.  This study was conducted to investigate the use of Raman spectroscopy as a tool for \textit{in situ} brain tumor diagnostics. The use of Raman spectroscopy was tested by comparing two previously performed studies, where they looked at a number of Raman bands from biological markers that are known to change in cancerous tissue as well as the intensity ratio between some Raman bands.  A measurement system for Raman spectroscopy was designed and built at Luleå University of Technology where the system were evaluated on tissue samples from conventional meat i.e. pork and beef to ensure that is was possible to achieve spectroscopic information of protein and lipid content in tissue. The measurement system was then transported to Linköpings University where the measurements on six brain tissue samples where performed. The samples came from five different tumors of which one tumor was thought to come from a high malignant tumor based on preliminary histopathological analysis and four from low malignant or benign tumors. Two samples where obtained from the high malignant tumor that was photosentisized with 5-Aminolevoluic acid and one of the samples where illuminated with blue light prior to the Raman spectroscopic measurements.  The spectroscopic data was pre-processed before analysis using conventional methods. The analysed spectra from the brain tissue samples showed presence of the Raman bands associated with brain tissue. It was also possible to see Raman bands associated with 5-ALA in the samples that had been photosentisized, however when the tissue had been illuminated with blue light it was also possible to see distinct Raman bands associated with brain tissue. One tissue sample also showed presence of reduced Neuroglobin (NGB). The composition of NGB is also known to change in tumorous tissue and could therefore be used in future work as a biological marker for brain tumors. When comparing the results obtained in this study with the two previously performed, one of the studies showed that two samples were from a tumor of high malignancy and the other from low malignant or benign tumors. This result was in accordance with the preliminary histopathological assessment of the brain tissue samples. When comparing the results to the other study, the results where contradictory and indicated that all tissue samples where from low malignant or benign tumors.  The conclusion of this work is that Raman spectroscopy is possible to use as a tool for brain tumor diagnostics. It would be desirable to use this method in combination with 5-ALA staining since the Raman bands from brain tissue could be resolved when the tissue had been illuminated with blue light.
Hjärntumörer kan drabba människor i alla åldrar, medelåldern för människor som lever med en hjärntumör är 60 år, men det är ett tillstånd som även drabbar barn och unga i stor utsträckning. Hjärntumörer är den näst vanligaste cancerformen hos barn och är även den främsta orsaken till cancerrelaterad död i den åldergruppen. För att minimera skadorna på hjärnan är det viktigt att en tumör kan lokaliseras och tas bort så tidigt som möjligt. De metoder som används idag bygger framför allt på biopsi, där en del av tumören tas bort och undersöks av en histopatalog. Det är en process som tar lång tid och även påverkas av den mänskliga faktorn, det finns därmed ett behov av en metod som kan avändas \textit{in situ} som ger ett resultat som inte påverkas av den mänskliga faktorn. En metod som har visat lovande resultat är fotosensibilisering med 5-Aminolevulinsyra (5-ALA). Desvärre har den metoden bara visat sig fungera bra för högmaligna tumörer hos vuxna. Som ett komplement till fotosensibilisering har Ramanspektroskopi visat lovande resultat i tidigare genomförda studier.  Det här arbetet genomfördes för att undersöka användningen av Ramanspektroskopi som ett verktyg för diagnostisering av hjärntumörer. Som grund användes två tidigare genomförda studier där de undersökte Ramanband från biologiska markörer i hjärnvävnad som ändras i cancerogen vävnad. De undersökte även hur den biokemiska sammansättningen av hjärnvävnaden ändrades genom att jämföra intensiteten av olika Ramanband.  Ett mätsystem för Ramanspektroskopi designades och byggdes upp på Luleå Tekniska Universitet där det även testades på vävnad från kött (fläsk och biff). Därefter transporterades mätsystemet till Linköpings Universitet för att genomföra mätningar på sex olika vävnadsprov från fem hjärntumörer av olika malignitet. Baserat på en preliminär histopatalogisk bedömning var en av tumörerna högmalignt och de fyra andra tumörerna var antingen lågmalignta eller benigna. Två av proverna som undersöktes kom från den högmalignta tumören som även var fotosensibilierad med 5-Aminolevulinsyra, varav ett av proverna var belyst med blått ljus innan de Ramanspektroskopiska mätningarna genomfördes.  Innan resultatet från Ramanspektroskopiska mätningarna analyserades behandlades datan med konventionella metoder i MatLab. I de resulterade spektrumen gick det att se tydliga Ramanband associerade med hjärnvävnad. Det gick även att se Ramanband associerade med 5-ALA i de två prover som var fotosensibiliserade och i det provet som var belyst med blått ljus innan de spektroskopiska mätningarna gjordes gick det även att se tydliga Ramanband associerade med hjärnvävnad. När resultatet analyserades gick det även att se spektra associerat med reducerat Neuroglobin (NGB) i ett av proverna. Sammansättningen av NGB är också någonting som ändras i cancerogen vävnad och skulle därför också kunna användas som en bilogisk markör för hjärntumörer i framtida studier.  När resultaten från den här studien jämfördes med de tidigare studierna indikerade den ena studien att två av vävnadsproverna kom från en högmalignt tumör och att de resterande fyra från lågmaligna eller benigna tumörer, vilket stämmer överens med den preliminära diagnosticeringen av tumörerna. När resultatet istället jämfördes med den andra studien stämde inte resultatet lika bra med den preliminära diagnosticeringen av tumörerna. Metoden presenterad av Zhou m.fl. indikerade att alla tumörer kom från lågmaligna eller benigna tumörer.  Slutsaten av det här arbetet är att Ramanspektroskopi skulle kunna användas som en metod för diagnosticering av hjärntumörer. Metoden skulle även fungera bra som ett komplement till fotosensibilisering med 5-ALA eftersom att det var möjligt att se Ramanband associerade med hjärnvävnad när vävnaden hade belysts med blått ljus.
APA, Harvard, Vancouver, ISO, and other styles
5

Cancado, Luiz Gustavo de Oliveira Lopes. "Raman spectroscopy of nanographites." Universidade Federal de Minas Gerais, 2006. http://hdl.handle.net/1843/IACO-6W8NYM.

Full text
Abstract:
This work presents the application of the Raman spectroscopy for the study and characterization of nanographite systems. We report the ¯rst detection of nanographite ribbons on a highly oriented pyrolytic graphite substrate by Raman spectroscopy. We found a way to di®erentiate the Raman signal of the ribbon from that of the substrate, the Raman signal of the ribbon having the same order of magnitude as the one of the substrate, despite the much smaller number of illuminated carbon atoms (»10¡3). The results show that these structures present van Hove singularities in the electronic density of states due to quantum con¯nement into their 1D structure. In another experiment, we use micro-Raman scattering to determine the arrangement of carbon atoms in a graphite edge. Theedge of a semi-in¯nite plane can be considered as a one-dimensional defect, leading to unusual defect-induced Raman scattering that turns out to be structurally selective. In this case, Raman scattering can be used to de¯ne the orientation of the carbon hexagons with respect to the edge of a graphite plane, in the so called armchair and zigzag arrange-ments. These two experiments involve the ¯rst detection of the anisotropy in the optical absorption of graphite, giving strong support to previous theoretical predictions. We also present a systematic study of the ratio between the integrated intensities of the disorder- induced D band and the ¯rst-order allowed G band (ID=IG) in the Raman spectra of nanographite samples with di®erent crystallite sizes (La) and using di®erent excitation laser energies (wavelengths). The crystallite size La of the nanographite samples were obtained both by X-ray di®raction using synchrotron radiation and directly from scan- ning tunneling microscopy images. A general equation for the determination of La using any laser energy in the visible range is obtained. Moreover, we performed measurements of the absolute intensities of individual features in the Raman spectra of nanographites,showing the dependence of these features on the excitation laser energy and crystallite size.
Resumo: No presente trabalho investigamos alguns efeitos físicos que acontecem na estrutura e evolução estelar. Focalizamos nossa atenção em estrelas de baixa massa na pré-sequência principal. Incluímos alguns efeitos físicos no código de estrutura e evolução estelar ATON2.3, escrito pelo Dr. Ítalo Mazzitelli (1989) e posteriormente modificado pelo Dr. Luiz Themystokliz Sanctos Mendes (1999b) para adicionar os efeitos de rotação e redistribuição interna de momento angular. Com o objetivo de economizar tempo computacional, introduzimos o mecanismo de parada de controle (checkpoint), que permite iniciar uma dada execução em um estágio de evolução intermideário, desde que os passos iniciais tenham sido devidamente registrados. Essas modificações foram feitas juntamente com um controle completo de variáveis não inicializadas, precisão e reestruturação do programa, visando futuramente paralelizar o código. Introduzimos efeitos combinados de rotação e forças de maré na configuração de equilíbrio das estrelas. Estes efeitos perturbadores, contidos na função potencial total, desviam a forma da estrela da aproximação esfericamente simétrica. Usamos o método de Kippenhahn & Thomas (1970), posteriormente aperfeiçoado por Enda & Sofia (1976). À função potencial obtida por estes autores, adicionamos termosrelacionados à forças de maré e àqueles relacionados à parte não simétrica do potencial gravitacional devido à distorção que tais forças causam na figura da estrela. Seguindo esta aproximação, corrigimos as equações constitutivas a fim de obter uma configuração estrutural de uma estrela distorcida. Cálculos de constantes de estrutura interna e raios de giração foram incluídos no código. Várias trilhas evolutivas foram geradas com os novos modelos, incluindo as quantidades mencionadas acima. Os novos modelos foram testados através de dados observacionais das dimensões absolutas, taxa de movimento apsidal e abundância de lítio das componentes do sistema binário eclipsante EK Cephei. No presente trabalho, também apresentamos estimativas teóricas do convective turnover time, Tc   e Números de Rossby, Ro,   para estrelas com massas semelhantes à massa solar, com rotação e na pré-sequência principal. Ro está relacionado com a força magnética na teoria do dínamo e, pelo menos para estrelas na seqüência principal, observa-se uma correlação entre rotação e atividade estelar. Incluímos também a possibilidade de utilizar modelos de atmosferas não cinza, com o objetivo de seguir a evolução estelar de estrelas de baixa massa desde estágiosbem iniciais, caracterizados por baixa gravidade. Adotamos os modelos NextGen e ATLAS9 de atmosferas estelares. Usando os nossos novos modelos não-cinza, geramos vários conjuntos de trilhas evolutivas, partindo da pré-sequência principal. Tais trilhas foram usadas para investigar algumas propriedades físicas e rotacionais de estrelas jovens na Nebulosa de Orion. Comparações entre resultados teóricos e dados observacionais, permitiram-nos obter informações sobre esta classe de objetos, principalmente no que diz respeito à distribuição inicial de momento angular. A interpretação dos dados depende fortemente das considerações físicas feitas no modelos, sendo a eficiência da convecção a mais importante. Nossa análise indica que um segundo parâmentro é necessário para descrever a convecção na pré-sequência principal. Tal parâmetro está possivelmente relacionado ao efeito estrutural de um campo magnético gerado por efeito dínamo.
APA, Harvard, Vancouver, ISO, and other styles
6

SPEISER, EUGEN. "Raman spectroscopy on nanostructures." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/566.

Full text
Abstract:
One of the most current and also most promising fields of research in solid state physics is that of nano-structured materials. In particular, there is a great interest in nanostructured semiconductors, thanks to the latest developments in preparation techniques. These techniques allow to prepare nano-sized semiconductors with excellent crystalline structure and most often also with epitaxially determined orientations with respect to a template. The interest in nano-structures is triggered by the discovery that their physical properties (electronic, optical, thermodynamical) are different from those of the corresponding bulk material due to confinement. Consequently, the size becomes a new design parameter for new electronic and optoelectronic devices, for example. The goal of this work is to study nano-structures by optical methods, especially by Raman spectroscopy. 1-dimensional nano-structures are the main focus because of their recently intensively investigated and improved growth mechanisms. This research enables the synthesis of nano-materials of high crystalline quality, controlled orientation and size. To obtain measurements from 1- dimensional (quantum wires, nanorods, nanotubes) and 0-dimensional nanostructures (quantum dots)—in contrast to well-investigated 2- dimensional quantum wells—an additional requirement for the measurement technique is that the probe must provide lateral resolution in the nanometer range. This requirement excludes or limits many of the standard surface science techniques and is especially true for the standard optical tools with diffraction limited spatial resolution in the sub-micrometer range. If possible, samples with modified growth process parameters are chosen in order to reduce the spatial density of the nanostructures in a way that only one structure is contained in the probing area. The goal is to exclude averaging of their properties by summing contributions from different structures. This is achieved also by using confocal microscopy spectroscopy providing diffraction limited spatial resolution in the micrometer range (~ 1μm). Confocal micro Raman measurements are performed on low dimensional semiconductor structures such as Si, GaAs, AlGaAs, SnO2 and ZnO nanowires. Another important goal of this work is to design and build a new experimental set-up in order to extend the spatial resolution to the nanometer range, exploiting near field optics in combination with scanning probe microscopy (Scanning Tunnelling Microscopy and Atomic Force Microscopy). This enables simultaneous measurements of topography and spectroscopy, thus permitting direct correlation of morphological and optical properties. Moreover the internal structure of nano-samples can be made accessible by optical spectroscopy. For this purpose an apertureless scanning near field optical microscope (a-SNOM) set-up was developed. Scanning Probe Microscopy (SPM) equipment was integrated into a confocal Raman spectroscopy apparatus and preliminary test measurements are performed.
APA, Harvard, Vancouver, ISO, and other styles
7

McGoverin, Cushla Maree, and n/a. "Raman spectroscopy of complex mixtures." University of Otago. Department of Chemistry, 2008. http://adt.otago.ac.nz./public/adt-NZDU20081103.112612.

Full text
Abstract:
This thesis presents several Raman spectroscopic studies of bovine milk-derived products (skim and whole milk powder, anhydrous milk fat, processed cheese and soy cheese made from milk protein). Raman spectroscopy, unlike infrared spectroscopy (both mid- and near-infrared), has not been widely used as an analytical tool within the dairy industry. The purpose of this project was to assess the utility of Raman spectroscopy in several dairy industry relevant problems. FT-Raman spectroscopy coupled with partial least squares (PLS) reliably predicted the concentration of fat and protein within whole milk and protein within skim milk powders as evidenced by ratios of prediction to deviation in excess of three. It was shown that sample geometry did not significantly affect the calculated predictive models, thereby allowing the simplest, quickest method of sample presentation to be utilised without harming quantification model efficacy. The fat fraction of milk was further investigated, and it was shown that Raman spectra collected from anhydrous milk fat samples were a good basis for solid fat content (SFC) determination. Such spectra were collected when the samples were held at 40 �C, pretreated by baselining and area normalisation, and analysed using PLS with modified jack-knifing (PLS1-JK). Triacylglycerol class concentrations were also well predicted by PLS1-JK models developed from Raman spectroscopic data. Resonance enhancement of β-carotene within fat was shown to have little effect on the reliability of the optimal prediction model when compared to SFC Raman quantification. Raman microscopic mapping for heterogeneity description of processed cheese and soy cheese mimics was examined. The FT-Raman milk powder constituents study had shown fat and protein Raman spectra within complex dairy mixtures could be distinguished, hence this utility was applied to mapping of cheese systems. Univariate, principal components analysis and multivariate curve resolution methods of analyses were compared; as expected the more complex samples required multivariate methods of analyses. Raman microscopic mapping was not a time efficient method in comparison to the standard method of confocal laser scanning microscopy. However, Raman spectroscopic mapping is a more universal technique which allowed the presence of an unexpected localised constituent within the soy cheese mimics to be observed. It was proposed that this constituent was a crystalline form of a short saturated fatty acid.
APA, Harvard, Vancouver, ISO, and other styles
8

Castillo, Carolina Graciela. "Biological applications of raman spectroscopy." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/30414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

O'Grady, Noelle Antoinette. "Raman spectroscopy of fluorescent samples." Thesis, Queen's University Belfast, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thomson, Grant. "Forensic applications of Raman spectroscopy." Thesis, University of Leeds, 2002. http://etheses.whiterose.ac.uk/395/.

Full text
Abstract:
The forensic applications of Raman spectroscopy have been explored and extended using the development of novel sampling techniques and task-specific instrumentation described in this thesis. The phenomenon of Raman scattering, enhanced Raman scattering and their relevance in forensic investigations was reviewed. Particular emphasis was placed on current applications, experimental considerations relevant to in-situ Raman sampling and the deficiencies of instrumentation commercially available at the time. It was concluded that the development of novel, optimised instrumentation was essential in the application of Raman spectroscopy to portable forensic applications. The feasibility of achieving molecularly-specific and sensitive detection of TNT vapour using waveguide-enhanced, surface-enhanced resonance Raman spectroscopy was investigated using reference spectra measured using a calibrated optical system provided by a collaborator. Improvements in signal-to-noise ratio afforded by employing waveguide-enhanced sampling, higher excitation power, long integration times and an improved spectrometer design were modelled, experimentally verified, and used to predict a detection limit of 10-16g for saturated vapour-phase TNT. The theoretical performance of the optical instrument is described and verified using experimentally measured data. The feasibility of conducting specific and sensitive long-range stand-off covert observation operations against unsuspecting targets in compliance with the UK Regulation of Investigative Powers act was established using a task-optimised laboratory simulation. Using a 5mW visible excitation, short integration times (under 20s) and multiplex detection it was possible to detect and identify a tagged object from a range of up to 50m. The feasibility study yielded a robust prototype handheld system comprising a modified telephoto camera with the integrated capability of sample discrimination using Raman spectroscopy. The instrument design is described.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Raman spectroscopy"

1

Singh, Dheeraj Kumar, Ashish Kumar Mishra, and Arnulf Materny, eds. Raman Spectroscopy. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marowsky, Gerd, and Valery V. Smirnov, eds. Coherent Raman Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77194-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gardiner, Derek J., and Pierre R. Graves, eds. Practical Raman Spectroscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74040-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ferraro, John R. Introductory Raman spectroscopy. 2nd ed. Amsterdam: Academic Press, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

G, Grasselli Jeanette, and Bulkin Bernard J, eds. Analytical Raman spectroscopy. New York: Wiley, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferraro, John R. Introductory Raman spectroscopy. Boston: Academic Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stencel, John M. Raman spectroscopy for catalysis. New York: Van Nostrand Reinhold, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prochazka, Marek. Surface-Enhanced Raman Spectroscopy. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23992-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schrader, Bernhard, ed. Infrared and Raman Spectroscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1995. http://dx.doi.org/10.1002/9783527615438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schlücker, Sebastian, ed. Surface Enhanced Raman Spectroscopy. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Raman spectroscopy"

1

Gupta, Preeti, S. S. Das, and N. B. Singh. "Raman Spectroscopy." In Spectroscopy, 229–43. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003412588-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mazza, Francesco, Leonardo Castellanos, Dmitrii Kliukin, and Alexis Bohlin. "Coherent Anti-Stokes Raman Spectroscopy (CARS)." In Raman Spectroscopy, 309–48. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Karlo, Jiro, Ashish Kumar Dhillon, Syed S. Razi, Soumik Siddhanta, and S. P. Singh. "Imaging Based Raman Spectroscopy." In Raman Spectroscopy, 349–75. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rai, Nilesh Kumar. "Hyper and Stimulated Raman Spectroscopy." In Raman Spectroscopy, 291–308. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ray, Bhumika, and Saurabh Raj. "Optical Tweezers in Raman Spectroscopy." In Raman Spectroscopy, 123–44. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Das, Moumita, Andrii Kurochka, Petr Bouř, and Debraj Gangopadhyay. "Chirality Revealed by Raman Optical Activity: Principles, Applications, Recent Developments and Future Prospects." In Raman Spectroscopy, 145–66. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Murugasenapathi, N. K., and Tamilarasan Palanisamy. "Electrochemical Surface-Enhanced Raman Spectroscopy (EC-SERS): Techniques, Applications, and Future Perspectives." In Raman Spectroscopy, 199–214. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tehrani, Alireza Mazaheri, Faezeh Mohaghegh, and Arnulf Materny. "Surface-Enhanced Raman Spectroscopy (SERS)." In Raman Spectroscopy, 167–98. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prakash, Om. "Surface-Enhanced Raman Excitation Spectroscopy: An Overview." In Raman Spectroscopy, 215–32. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Deepu, and Pradeep Kumar. "Resonant and Non-resonant Raman Spectroscopy." In Raman Spectroscopy, 17–51. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1703-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Raman spectroscopy"

1

Bilyi, Mykola U., G. I. Gaididei, and V. P. Sakun. "Raman spectroscopy of vibronic excitations in aqueous solutions." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Santosh, Yehong Li, Tianhang Huo, Henry Du, and Yuping Huang. "Raman Spectroscopy with Single Photon Counting." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jm7a.120.

Full text
Abstract:
We demonstrate a time-resolved photon counting Raman spectroscopy. A direct comparison among a traditional spectroscope, SERS, and AOTF-selective SPD are presented. Superior performance of later can find application in ultra-sensitive Raman-based sensing and imaging.
APA, Harvard, Vancouver, ISO, and other styles
3

Mathies, Richard A., P. M. Champion, and L. D. Ziegler. "Femtosecond Stimulated Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuptsov, Albert N. "Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsuzaki, Korenobu, Rintaro Shimada, Hiro-o. Hamaguchi, P. M. Champion, and L. D. Ziegler. "Simultaneous Raman and Hyper-Raman Microspectroscopic Imaging." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hernández-Vidales, Karen, Alejandra Loyola-Leyva, Kristal Enríquez-Ramos, and Francisco Javier González. "Glyphosate Assessment by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am5m.3.

Full text
Abstract:
We applied Raman and SERS spectroscopy to obtain the fingerprint of glyphosate, a worldwide used dangerous pesticide. We corroborate the utility of gold nanoparticles to improve the Raman scattering, obtaining an enhancement factor of 105.
APA, Harvard, Vancouver, ISO, and other styles
7

Tang, I. N., and K. H. Fung. "Raman spectroscopy of suspended microparticles." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tug1.

Full text
Abstract:
Raman spectroscopy is applied to the physical and chemical characterization of an electrostatically charged single microparticle, which is trapped and suspended in an electrodynamic cell. The microparticle, 10 to 15 pm in diameter and composed of deliquescent salts, such as sulfates and nitrates, is present either as a solid particle or as a solution droplet under controlled humidity conditions. While the chemical composition of the microparticle is characterized by the distinct Raman shifts observed, the physical state is revealed by the Raman bandwidths. Since a solid microparticle under laser illumination is largely free from both the sample inhomogeneity and optical transmission degradation that are normally encountered in a single crystal or crystalline powders, it follows that single particle suspension is a unique experimental method for measuring relative Raman scattering cross-sections for solid compounds. Furthermore, a suspended solution droplet, which evaporates to attain high supersaturations inaccessible with bulk samples, provides an ideal condition for a spectroscopic investigation of solute-solute interactions in concentrated electrolyte solutions. Experimental results are presented, which illustrate the uniqueness and versatility of single particle Raman spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
8

Guicheteau, Jason, Steven Christesen, Ashish Tripathi, Erik Emmons, Darren Emge, Phillip Wilcox, Augustus W. Fountain, P. M. Champion, and L. D. Ziegler. "Raman and Surface-Enhanced Raman for Military Applications." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ren, Bin, Zheng Liu, Xiang Wang, Zhi-Lin Yang, Zhong-Qun Tian, P. M. Champion, and L. D. Ziegler. "Electromagnetic Coupling Effect for Surface-enhanced Raman Spectroscopy and Tip-enhanced Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gordeyev, Sergey A., G. Y. Nikolaeva, Kirill A. Prokhorov, and Pavel P. Pashinin. "Analysis of macromolecule orientation in hot drawn polyethylene by polarized Raman spectroscopy." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378137.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Raman spectroscopy"

1

Azuma, Y., T. LeBrun, M. MacDonald, and S. H. Southworth. Auger resonant Raman spectroscopy. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henderson, Kevin. FM Raman Spectroscopy Temperature Sensor. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1214633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Winkelman, W. D., and S. J. Eberlein. Raman spectroscopy peer review report. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10183046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cowan, P. L., T. LeBrun, and R. D. Deslattes. X-ray resonant Raman spectroscopy. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ziegler, K. E. Fiber-Optic Laser Raman Spectroscopy Sensor. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/815181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vo-Dinh, Tuan. (Luminescence and Raman spectroscopy for biological analysis). Office of Scientific and Technical Information (OSTI), June 1990. http://dx.doi.org/10.2172/6783376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Out!, Scientists. Raman spectroscopy for cultivated meat research - ScientistsOut! ResearchHub Technologies, Inc., March 2024. http://dx.doi.org/10.55277/researchhub.r45b7qtu.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clausen, Jay, Richard Hark, Russ Harmon, John Plumer, Samuel Beal, and Meghan Bishop. A comparison of handheld field chemical sensors for soil characterization with a focus on LIBS. Engineer Research and Development Center (U.S.), February 2022. http://dx.doi.org/10.21079/11681/43282.

Full text
Abstract:
Commercially available handheld chemical analyzers for forensic applications have been available for over a decade. Portable systems from multiple vendors can perform X-ray fluorescence (XRF) spectroscopy, Raman spectroscopy, Fourier transform infrared(FTIR) spectroscopy, and recently laser-induced breakdown spectroscopy (LIBS). Together, we have been exploring the development and potential applications of a multisensor system consisting of XRF, Raman, and LIBS for environmental characterization with a focus on soils from military ranges. Handheld sensors offer the potential to substantially increase sample throughput through the elimination of transport of samples back to the laboratory and labor-intensive sample preparation procedures. Further, these technologies have the capability for extremely rapid analysis, on the order of tens of seconds or less. We have compared and evaluated results from the analysis of several hundred soil samples using conventional laboratory bench top inductively coupled plasma atomic emission spectroscopy (ICP-AES) for metals evaluation and high-performance liquid chromatography (HPLC) and Raman spectroscopy for detection and characterization of energetic materials against handheld XRF, LIBS, and Raman analyzers. The soil samples contained antimony, copper, lead, tungsten, and zinc as well as energetic compounds such as 2,4,6-trinitrotoluene(TNT), hexahydro-1,3,5-triazine (RDX), nitroglycerine (NG), and dinitrotoluene isomers (DNT). Precision, accuracy, and sensitivity of the handheld field sensor technologies were compared against conventional laboratory instrumentation to determine their suitability for field characterization leading to decisional outcomes.
APA, Harvard, Vancouver, ISO, and other styles
9

Meyer, Matthew W. Scanning angle Raman spectroscopy: Investigation of Raman scatter enhancement techniques for chemical analysis. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1082977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huser, T. R. Surface-Enhanced Raman Spectroscopy with High Spatial Resolution. Office of Scientific and Technical Information (OSTI), February 2003. http://dx.doi.org/10.2172/15007309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography