Journal articles on the topic 'Raman scattering'

To see the other types of publications on this topic, follow the link: Raman scattering.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Raman scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Simon, Albert. "Raman scattering." Canadian Journal of Physics 64, no. 8 (August 1, 1986): 956–60. http://dx.doi.org/10.1139/p86-164.

Full text
Abstract:
Observations of Raman scattered light from inhomogeneous laser-produced plasma have shown characteristics quite different from the simple predictions for the stimulated Raman scattering instability. An alternative explanation in terms of enhanced scattering, produced by bursts of hot electrons arising at the quarter-critical or critical surface, is described. Comparison is made between the predictions of this theory and four experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Chencheng, Xianglong Cai, Youbao Sang, Tiancheng Zheng, Zhonghui Li, Dong Liu, Wanfa Liu, and Jingwei Guo. "Investigation of multispectral SF6 stimulated Raman scattering laser." Chinese Optics Letters 18, no. 5 (2020): 051402. http://dx.doi.org/10.3788/col202018.051402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yashchuk, V. P. "Stimulated Raman scattering of Rhodamine 6G in polymer samples enclosed in scattering cover." Functional materials 22, no. 1 (April 20, 2015): 57–60. http://dx.doi.org/10.15407/fm22.01.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kusakabe, K., H. Kuroe, A. Oosawa, T. Sekine, M. Fujisawa, and H. Tanaka. "Raman scattering of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 1365–67. http://dx.doi.org/10.1016/j.jmmm.2006.10.388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuroe, H., A. Oosawa, T. Sekine, Y. Nishiwaki, and T. Kato. "Raman scattering in." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 1303–5. http://dx.doi.org/10.1016/j.jmmm.2006.10.475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitch, Michael G., and Jeffrey S. Lannin. "Raman scattering inK4C60andRb4C60fullerenes." Physical Review B 51, no. 10 (March 1, 1995): 6784–87. http://dx.doi.org/10.1103/physrevb.51.6784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li, and Zhengjun Zhang. "The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering." International Journal of Spectroscopy 2012 (December 19, 2012): 1–7. http://dx.doi.org/10.1155/2012/350684.

Full text
Abstract:
Surface-enhanced Raman scattering (SERS) was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Cui, Sishan, Shuo Zhang, and Shuhua Yue. "Raman Spectroscopy and Imaging for Cancer Diagnosis." Journal of Healthcare Engineering 2018 (June 7, 2018): 1–11. http://dx.doi.org/10.1155/2018/8619342.

Full text
Abstract:
Raman scattering has long been used to analyze chemical compositions in biological systems. Owing to its high chemical specificity and noninvasive detection capability, Raman scattering has been widely employed in cancer screening, diagnosis, and intraoperative surgical guidance in the past ten years. In order to overcome the weak signal of spontaneous Raman scattering, coherent Raman scattering and surface-enhanced Raman scattering have been developed and recently applied in the field of cancer research. This review focuses on innovative studies of the use of Raman scattering in cancer diagnosis and their potential to transition from bench to bedside.
APA, Harvard, Vancouver, ISO, and other styles
9

Adams, Mark A., Stewart F. Parker, Felix Fernandez-Alonso, David J. Cutler, Christopher Hodges, and Andrew King. "Simultaneous Neutron Scattering and Raman Scattering." Applied Spectroscopy 63, no. 7 (July 2009): 727–32. http://dx.doi.org/10.1366/000370209788701107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Yu Deng, and Guang Jun Ren. "Study of Enhanced Surface Raman Scattering on Nano-Particle in Terahertz Range." Advanced Materials Research 977 (June 2014): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amr.977.108.

Full text
Abstract:
Researched the surface-enhanced Raman scattering on nanoparticle in terahertz range, and proved the existence of the same phenomenon-Raman enhancements in the terahertz band. By studying the electromagnetic enhancement principle of surface-enhanced Raman scattering, proposed to using finite difference time-domain to simulate the surface-enhanced Raman scattering of nanoparticles in the terahertz irradiated. Simulation results show that the FDTD method can effectively simulate the scattering of nanoparticles in terahertz band, resulting in surface-enhanced Raman scattering from the visible and infrared bands extended to the terahertz band, and the result provides basis for terahertz waves and surface-enhanced Raman scattering the combined application.
APA, Harvard, Vancouver, ISO, and other styles
11

Tukhvatullin, F. H., U. N. Tashkenbaev, А. Jumabaev, H. Hushvaktov, А. Absanov, B. Hudoyberdiev, and B. Kuyliev. "Raman Scattering Spectra of Liquid Bromoform and Its Solutions." Ukrainian Journal of Physics 60, no. 9 (September 2015): 876–79. http://dx.doi.org/10.15407/ujpe60.09.0876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Li, Ying-Sing, and Yu Wang. "Chemically Prepared Silver/Alumina Substrate for Surface-Enhanced Raman Scattering." Applied Spectroscopy 46, no. 1 (January 1992): 142–46. http://dx.doi.org/10.1366/0003702924444506.

Full text
Abstract:
A new silver-coated alumina/glass substrate was prepared by a chemical reduction method at room temperature. The substrate was found to exhibit strong surface-enhanced scatterings for crystal violet (CV), p-nitrophenol (PNP), p-nitrobenzoic acid (PNBA), and pyrene. Optimization of silver deposition time was achieved by using CV as an analyte. Lower limits of detection were determined for these compounds to demonstrate the analytical potential of the new substrate. Enhancement factors of ∼106 and ∼107 were determined from comparisons of the surface-enhanced Raman scattering (SERS) intensities of mono-molecular layers with the normal Raman intensities for PNP and PNBS, respectively. Three different methods of sample applications were adapted and tested. The reusability of the substrates was tested by recording the surface-enhanced resonance Raman scattering (SERRS) spectra of CV at different conditions.
APA, Harvard, Vancouver, ISO, and other styles
13

Minamimoto, Hiro, Fumiya Kato, Fumika Nagasawa, Mai Takase, and Kei Murakoshi. "Electrochemical control of strong coupling states between localized surface plasmons and molecule excitons for Raman enhancement." Faraday Discussions 205 (2017): 261–69. http://dx.doi.org/10.1039/c7fd00126f.

Full text
Abstract:
The intensity of Raman scattering from dye molecules strongly coupled with localized surface plasmons of metal nanostructures was controlled by the electrochemical potential. Through in situ electrochemical extinction and surface-enhanced Raman scattering measurements, it is found that the redox state of the molecules affects the coupling strength, leading to the change in the intensity of the Raman scattering. Analysis of the Raman spectrum provides information on the molecules in strong coupling states showing effective enhancement of Raman scattering.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li, and Zhengjun Zhang. "The Regulation of Surface-Enhanced Raman Scattering Sensitivity of Silver Nanorods by Silicon Sections." Journal of Nanomaterials 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/128254.

Full text
Abstract:
Vertically aligned silver nanorods were good substrates for surface-enhanced Raman scattering. The surface-enhanced Raman scattering sensitivity of nanorods can be regulated through the method that the silver nanorod is divided into four uniform silver sections using five uniform silicon sections. And the length of silicon sections is the key factor in regulating the surface-enhanced Raman scattering sensitivity. In the regulation, the best surface-enhanced Raman scattering performance is about 4 times as large as the worst performance. The study provides an effective way to regulate the surface-enhanced Raman scattering sensitivity of silver nanorods and its possible explanation about mechanism.
APA, Harvard, Vancouver, ISO, and other styles
15

Попов, В. Г., В. Г. Криштоп, C. А. Тарелкин, and И. И. Корель. "Комбинационное рассеяние света квазиоднофотонных импульсов в оптоволокне с накачкой." Физика и техника полупроводников 54, no. 8 (2020): 812. http://dx.doi.org/10.21883/ftp.2020.08.49631.07.

Full text
Abstract:
Processes of Raman scattering of quasi-single-photon pulses in a single-mode optical fiber with pumping are theoretically considered. The peculiarity of the scattering is that the pumping creates non-equilibrium molecular vibrations, which significantly increases the probability of Raman scattering in the optical fiber. Non-equilibrium vibrations are expected to be when the stimulated Raman scattering takes place for the pump pulse. As a result, the length of the optical fiber has been estimated where the probability of the Raman scattering is increased
APA, Harvard, Vancouver, ISO, and other styles
16

Горелик, В. С., Dongxue Bi, Ю. П. Войнов, А. И. Водчиц, В. А. Орлович, and А. И. Савельева. "Спонтанное и вынужденное комбинационное рассеяние света в протиевой и дейтериевой воде -=SUP=-*-=/SUP=-." Журнал технической физики 126, no. 6 (2019): 765. http://dx.doi.org/10.21883/os.2019.06.47771.51-19.

Full text
Abstract:
Comparison of Raman scattering spectra for different samples of protium and deuterium water has been done. Registration of spectra was held with the help of fiber optics technique and BWS465-785H small sized spectrometer. For excitation of spontaneous Raman scattering spectra the continuously working laser (λ=785 nm) has been used. The essential differences of low frequency Raman scattering spectra for different water samples have been observed. Such differences have been explained by the presence of structural defects and imperfections in analyzed water. Stimulated Raman scattering spectra in protium and deuterium water have been observed with excitation by picosecond laser pulses with wavelength 532 nm. Low frequency Raman satellites in Stimulated Raman scattering spectra have been recorded, related to clusters of several water molecules.
APA, Harvard, Vancouver, ISO, and other styles
17

Egawa, Mariko. "Raman microscopy for skin evaluation." Analyst 146, no. 4 (2021): 1142–50. http://dx.doi.org/10.1039/d0an02039g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hastings, Simon P., Pattanawit Swanglap, Zhaoxia Qian, Ying Fang, So-Jung Park, Stephan Link, Nader Engheta, and Zahra Fakhraai. "Quadrupole-Enhanced Raman Scattering." ACS Nano 8, no. 9 (August 26, 2014): 9025–34. http://dx.doi.org/10.1021/nn5022346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kondow, Masahiko, Shigekazu Minagawa, and Shin Satoh. "Raman scattering from AlGaInP." Applied Physics Letters 51, no. 24 (December 14, 1987): 2001–3. http://dx.doi.org/10.1063/1.98273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bailo, Elena, and Volker Deckert. "Tip-enhanced Raman scattering." Chemical Society Reviews 37, no. 5 (2008): 921. http://dx.doi.org/10.1039/b705967c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Grodecki, K., K. Murawski, K. Michalczewski, B. Budner, and P. Martyniuk. "Raman scattering of InAsSb." AIP Advances 9, no. 2 (February 2019): 025107. http://dx.doi.org/10.1063/1.5081775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kneipp, Katrin. "Surface-enhanced Raman scattering." Physics Today 60, no. 11 (November 2007): 40–46. http://dx.doi.org/10.1063/1.2812122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Çulha, Mustafa, Nickolay Lavrik, Brian M. Cullum, and Simion Astilean. "Surface-Enhanced Raman Scattering." Journal of Nanotechnology 2012 (2012): 1–2. http://dx.doi.org/10.1155/2012/413156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Atanassova, Y. K., V. G. Hadjiev, P. Karen, and A. Kjekshus. "Raman scattering fromYBa2Fe3O8+δ." Physical Review B 50, no. 1 (July 1, 1994): 586–89. http://dx.doi.org/10.1103/physrevb.50.586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Goryainov, S. V., A. Yu Likhacheva, and N. N. Ovsyuk. "Raman Scattering in Lonsdaleite." Journal of Experimental and Theoretical Physics 127, no. 1 (July 2018): 20–24. http://dx.doi.org/10.1134/s1063776118070051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schilbe, Peter. "Raman scattering in VO2." Physica B: Condensed Matter 316-317 (May 2002): 600–602. http://dx.doi.org/10.1016/s0921-4526(02)00584-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rho, H., S. L. Cooper, S. Nakatsuji, H. Fukazawa, and Y. Maeno. "Raman scattering studies of." Physica B: Condensed Matter 359-361 (April 2005): 1270–72. http://dx.doi.org/10.1016/j.physb.2005.01.353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Scagliotti, M., M. Jouanne, M. Balkanski, G. Ouvrard, and G. Benedek. "Raman scattering in antiferromagneticFePS3andFePSe3crystals." Physical Review B 35, no. 13 (May 1, 1987): 7097–104. http://dx.doi.org/10.1103/physrevb.35.7097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Udagawa, Masayuki, Hiroaki Aoki, Norio Ogita, Osamu Fujita, Akio Sohma, Atsuyuki Ogihara, and Jun Akimitsu. "Raman Scattering of CuGeO3." Journal of the Physical Society of Japan 63, no. 11 (November 15, 1994): 4060–64. http://dx.doi.org/10.1143/jpsj.63.4060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hasegawa, T., Y. Takasu, T. Kondou, N. Ogita, M. Udagawa, T. Yamaguchi, T. Watanabe, Y. Nemoto, and T. Goto. "Raman scattering on La3Pd20X6." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 984–86. http://dx.doi.org/10.1016/j.jmmm.2006.10.407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ogita, N., Y. Tsunezumi, H. Aoki, M. Udagawa, O. Fujita, A. Ogihara, and J. Akimitsu. "Raman scattering of CuGeO3." Physica B: Condensed Matter 219-220 (April 1996): 107–9. http://dx.doi.org/10.1016/0921-4526(95)00665-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Boerio, F. J. "Surface-enhanced raman scattering." Thin Solid Films 181, no. 1-2 (December 1989): 423–33. http://dx.doi.org/10.1016/0040-6090(89)90511-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Williams, G. M., P. C. Becker, J. G. Conway, N. Edelstein, M. M. Abraham, and L. A. Boatner. "Electronic Raman scattering in." Journal of the Less Common Metals 126 (December 1986): 302. http://dx.doi.org/10.1016/0022-5088(86)90307-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Brolo, Alexandre G., Erin Arctander, Reuven Gordon, Brian Leathem, and Karen L. Kavanagh. "Nanohole-Enhanced Raman Scattering." Nano Letters 4, no. 10 (October 2004): 2015–18. http://dx.doi.org/10.1021/nl048818w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Campion, Alan, and Patanjali Kambhampati. "Surface-enhanced Raman scattering." Chemical Society Reviews 27, no. 4 (1998): 241. http://dx.doi.org/10.1039/a827241z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

FUTAMATA, Masayuki. "Surface Enhanced Raman Scattering." Hyomen Kagaku 33, no. 4 (2012): 216–22. http://dx.doi.org/10.1380/jsssj.33.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bahns, John T., Funing Yan, Dengli Qiu, Rong Wang, and Liaohai Chen. "Hole-Enhanced Raman Scattering." Applied Spectroscopy 60, no. 9 (September 2006): 989–93. http://dx.doi.org/10.1366/000370206778397326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kneipp, Katrin, and Harald Kneipp. "Single Molecule Raman Scattering." Applied Spectroscopy 60, no. 12 (December 2006): 322A—334A. http://dx.doi.org/10.1366/000370206779321418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bando, H., T. Hasegawa, N. Ogita, M. Udagawa, and F. Iga. "Raman Scattering of YB6." Journal of the Physical Society of Japan 80, Suppl.A (January 2, 2011): SA053. http://dx.doi.org/10.1143/jpsjs.80sa.sa053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mitch, Michael G., and Jeffrey S. Lannin. "Intermolecular Raman scattering inA3C60." Physical Review B 48, no. 21 (December 1, 1993): 16192–95. http://dx.doi.org/10.1103/physrevb.48.16192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yoshida, M., S. Gotoh, T. Takata, N. Koshizuka, and S. Tanaka. "Phonon Raman scattering ofNbBa2Cu3OyandNd1.6Ba1.4Cu3Oy." Physical Review B 41, no. 16 (June 1, 1990): 11689–92. http://dx.doi.org/10.1103/physrevb.41.11689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Menyuk, Curtis R., and Thomas I. Seidman. "Transient Stimulated Raman Scattering." SIAM Journal on Mathematical Analysis 23, no. 2 (March 1992): 346–63. http://dx.doi.org/10.1137/0523018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lo, Shui-Yin, and Tu-Nan Ruan. "Quantum Stimulated Raman Scattering." Communications in Theoretical Physics 18, no. 4 (December 1992): 457–64. http://dx.doi.org/10.1088/0253-6102/18/4/457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fisher, D. L., and T. Tajima. "Enhanced Raman forward scattering." Physical Review E 53, no. 2 (February 1, 1996): 1844–51. http://dx.doi.org/10.1103/physreve.53.1844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Hasegawa, T., Y. Takasu, N. Ogita, M. Udagawa, J. Yamaura, Y. Nagao, and Z. Hiroi. "Raman scattering on KOs2O6." Journal of Physics: Conference Series 92 (December 1, 2007): 012124. http://dx.doi.org/10.1088/1742-6596/92/1/012124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yoshikawa, M., N. Nagai, M. Matsuki, H. Fukuda, G. Katagiri, H. Ishida, A. Ishitani, and I. Nagai. "Raman scattering fromsp2carbon clusters." Physical Review B 46, no. 11 (September 15, 1992): 7169–74. http://dx.doi.org/10.1103/physrevb.46.7169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Otto, A., I. Mrozek, H. Grabhorn, and W. Akemann. "Surface-enhanced Raman scattering." Journal of Physics: Condensed Matter 4, no. 5 (February 3, 1992): 1143–212. http://dx.doi.org/10.1088/0953-8984/4/5/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

De Andrés, A., and C. Prieto. "Raman scattering in TlH2PO4." Phase Transitions 14, no. 1-4 (February 1989): 3–9. http://dx.doi.org/10.1080/01411598908208075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hayashi, S., and K. Yamamoto. "Raman scattering from microcrystals." Phase Transitions 24-26, no. 2 (August 1990): 641–60. http://dx.doi.org/10.1080/01411599008210247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gachko, G. A., V. K. Zybel't, L. N. Kivach, S. A. Maskevich, and S. G. Podtynchenko. "Automated Raman scattering spectrometer." Journal of Applied Spectroscopy 49, no. 4 (October 1988): 1084–86. http://dx.doi.org/10.1007/bf00657235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography