Academic literature on the topic 'Raman scattering'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raman scattering.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Raman scattering"

1

Simon, Albert. "Raman scattering." Canadian Journal of Physics 64, no. 8 (August 1, 1986): 956–60. http://dx.doi.org/10.1139/p86-164.

Full text
Abstract:
Observations of Raman scattered light from inhomogeneous laser-produced plasma have shown characteristics quite different from the simple predictions for the stimulated Raman scattering instability. An alternative explanation in terms of enhanced scattering, produced by bursts of hot electrons arising at the quarter-critical or critical surface, is described. Comparison is made between the predictions of this theory and four experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Chencheng, Xianglong Cai, Youbao Sang, Tiancheng Zheng, Zhonghui Li, Dong Liu, Wanfa Liu, and Jingwei Guo. "Investigation of multispectral SF6 stimulated Raman scattering laser." Chinese Optics Letters 18, no. 5 (2020): 051402. http://dx.doi.org/10.3788/col202018.051402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yashchuk, V. P. "Stimulated Raman scattering of Rhodamine 6G in polymer samples enclosed in scattering cover." Functional materials 22, no. 1 (April 20, 2015): 57–60. http://dx.doi.org/10.15407/fm22.01.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kusakabe, K., H. Kuroe, A. Oosawa, T. Sekine, M. Fujisawa, and H. Tanaka. "Raman scattering of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 1365–67. http://dx.doi.org/10.1016/j.jmmm.2006.10.388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuroe, H., A. Oosawa, T. Sekine, Y. Nishiwaki, and T. Kato. "Raman scattering in." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 1303–5. http://dx.doi.org/10.1016/j.jmmm.2006.10.475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mitch, Michael G., and Jeffrey S. Lannin. "Raman scattering inK4C60andRb4C60fullerenes." Physical Review B 51, no. 10 (March 1, 1995): 6784–87. http://dx.doi.org/10.1103/physrevb.51.6784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li, and Zhengjun Zhang. "The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering." International Journal of Spectroscopy 2012 (December 19, 2012): 1–7. http://dx.doi.org/10.1155/2012/350684.

Full text
Abstract:
Surface-enhanced Raman scattering (SERS) was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Cui, Sishan, Shuo Zhang, and Shuhua Yue. "Raman Spectroscopy and Imaging for Cancer Diagnosis." Journal of Healthcare Engineering 2018 (June 7, 2018): 1–11. http://dx.doi.org/10.1155/2018/8619342.

Full text
Abstract:
Raman scattering has long been used to analyze chemical compositions in biological systems. Owing to its high chemical specificity and noninvasive detection capability, Raman scattering has been widely employed in cancer screening, diagnosis, and intraoperative surgical guidance in the past ten years. In order to overcome the weak signal of spontaneous Raman scattering, coherent Raman scattering and surface-enhanced Raman scattering have been developed and recently applied in the field of cancer research. This review focuses on innovative studies of the use of Raman scattering in cancer diagnosis and their potential to transition from bench to bedside.
APA, Harvard, Vancouver, ISO, and other styles
9

Adams, Mark A., Stewart F. Parker, Felix Fernandez-Alonso, David J. Cutler, Christopher Hodges, and Andrew King. "Simultaneous Neutron Scattering and Raman Scattering." Applied Spectroscopy 63, no. 7 (July 2009): 727–32. http://dx.doi.org/10.1366/000370209788701107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wu, Yu Deng, and Guang Jun Ren. "Study of Enhanced Surface Raman Scattering on Nano-Particle in Terahertz Range." Advanced Materials Research 977 (June 2014): 108–11. http://dx.doi.org/10.4028/www.scientific.net/amr.977.108.

Full text
Abstract:
Researched the surface-enhanced Raman scattering on nanoparticle in terahertz range, and proved the existence of the same phenomenon-Raman enhancements in the terahertz band. By studying the electromagnetic enhancement principle of surface-enhanced Raman scattering, proposed to using finite difference time-domain to simulate the surface-enhanced Raman scattering of nanoparticles in the terahertz irradiated. Simulation results show that the FDTD method can effectively simulate the scattering of nanoparticles in terahertz band, resulting in surface-enhanced Raman scattering from the visible and infrared bands extended to the terahertz band, and the result provides basis for terahertz waves and surface-enhanced Raman scattering the combined application.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Raman scattering"

1

Grantier, David Raymond. "Chemically induced raman scattering." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maher, Robert Christopher. "Surface enhanced Raman scattering." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/7843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Petrak, Benjamin James. "Microcavity Enhanced Raman Scattering." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6354.

Full text
Abstract:
Raman scattering can accurately identify molecules by their intrinsic vibrational frequencies, but its notoriously weak scattering efficiency for gases presents a major obstacle to its practical application in gas sensing and analysis. This work explores the use of high finesse (50 000) Fabry-Pérot microcavities as a means to enhance Raman scattering from gases. A recently demonstrated laser ablation method, which carves out a micromirror template on fused silica--either on a fiber tip or bulk substrates-- was implemented, characterized, and optimized to fabricate concave micromirror templates ~10 µm diameter and radius of curvature. The fabricated templates were coated with a high-reflectivity dielectric coating by ion-beam sputtering and were assembled into microcavities ~10 µm long and with a mode volume ~100 µm3. A novel gas sensing technique that we refer to as Purcell enhanced Raman scattering (PERS) was demonstrated using the assembled microcavities. PERS works by enhancing the pump laser's intensity through resonant recirculation at one longitudinal mode, while simultaneously, at a second mode at the Stokes frequency, the Purcell effect increases the rate of spontaneous Raman scattering by a change to the intra-cavity photon density of states. PERS was shown to enhance the rate of spontaneous Raman scattering by a factor of 107 compared to the same volume of sample gas in free space scattered into the same solid angle subtended by the cavity. PERS was also shown capable of resolving several Raman bands from different isotopes of CO2 gas for application to isotopic analysis. Finally, the use of the microcavity to enhance coherent anti-Stokes Raman scattering (CARS) from CO2 gas was demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
4

Mohammed, Abdelsalam. "Theoretical Studies of Raman Scattering." Doctoral thesis, KTH, Teoretisk kemi (stängd 20110512), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-28332.

Full text
Abstract:
Different theoretical approaches have been presented in this thesis to study the Raman scattering effect. The first one is response theory applied up to third order of polarization, where the determination of α, β and γ is used to calculate linear Raman scattering (resonance Raman scattering (RRS) and normal Raman scattering (NRS)), hyper Raman scattering (HRS) and coherent anti-Stokes Raman scattering (CARS), respectively. The response theory refers to adiabatic time-dependent density functional theory in the complex domain with applications on RRS and NRS, and to a recently developed methodology (Thorvaldsen et al. [105, 106]) for the analytic calculation of frequency-dependentpolarizability gradients of arbitrary order, here with applications on CARSand HRS. Various systems have been studied with the response theory, such as explosive substances (DNT, TNT, RDX and H2O2), optical power limiting materials (platinum(II) acetylide molecules), DNA bases (methylguanine-methylcytosine) and other systems (Trans-1,3,5-hexatriene and Pyridine). We have explored the dependency of the calculated spectra on parametrization in terms of exchange-correlation functionals and basis sets, and on geometrica loptimization. The second approach refers to time-dependent wave packet methodology for RRS and its time-independent counterpart in the Kramers-Heisenberg equation for the scattering cross section, which reduces the calculation of the RRS amplitude to computation of matrix elements of transition dipole moments between vibrational wave functions. The time-dependent theory has been used to examine RRS as a dynamical process where particular attention is paid to the notion of fast scattering in which the choice of photon frequency controls the scattering time and the nuclear dynamics. It is shown that a detuning from resonance causes a depletion of the RRS spectrum from overtones and combination bands, a situation which is verified in experimental spectra. The cross section of NRS has been predicted for the studied molecules to be in the order of 10−30 cm2/sr. A further increase in sensitivity with a signal enhancement up to 104 to 105 is predicted for the RRS technique, while CARS conditions imply an overall increase of the intensity by several orders of magnitude over NRS. In contrast to RRS and CARS, the HRS intensity is predicted to be considerably weaker than NRS, by about four orders of magnitude. However, silent modes in NRS can be detected by HRS which in turncan provide essential spectroscopic information and become complementary to NRS scattering. With the above mention methodological development for NRS, RRS, CARS and HRS, we have at our disposal a powerful set of modelling tools for the four different Raman techniques. They have complementary merits and limitations which facilitate the use of these spectroscopes in applications of Raman scattering for practical applications, for instance stand-off detection of foreign substances.
QC 20110112
APA, Harvard, Vancouver, ISO, and other styles
5

Thomas, Chapman. "Autoresonance in Stimulated Raman Scattering." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00674111.

Full text
Abstract:
La diffusion Raman Stimulée (DRS) est étudiée dans le contexte des plasmas qui sont pertinents pour la Fusion par Confinement Inertielle (FCI). Dans un plasma inhomogène le processus d'auto-résonance de l'onde Langmuir, générée par DRS, peut se produire dans le régime cinétique (k_L*lambda_D>0.25) et conduire à des amplitudes au delà du niveau de l'amplification attendue due à l'inhomogénéité selon Rosenbluth [M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972)]. On démontre que des effets cinétiques faibles, comme le piégeage d'électrons donnent lieu à un décalage de fréquence non-linéaire (dépendant de l'amplitude), et peuvent compenser le déphasage de la résonance de DRS des trois ondes, observé dans les plasmas inhomogènes. Un modèle analytique du processus d'auto-résonance décrivant à la fois la croissance, la saturation et la phase des ondes de Langmuir a été développé. Ce modèle est en excellent accord avec les résultats des simulations cinétiques (particle-in-cell) pour des paramètres proches des conditions des plasmas des expériences de la fusion laser (Laser Mégajoule, National Ignition Facility). Une application possible de l'autorésonance est proposée sous la forme d'un amplificateur de Raman.
APA, Harvard, Vancouver, ISO, and other styles
6

Narula, Rohit. "Resonant Raman scattering in graphene." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/118567.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, February 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 131-144).
In this thesis we encounter the formulation of a rigorous theory of resonant Raman scattering in graphene, the calculation of the so-obtained Raman matrix element K2f,1o for the 2D Raman mode with the full inclusion of the matrix elements and a physically appealing bridge between theory and experiment by eschewing the problematic ascription of graphene with a finite thickness. Finally, we elucidate an experimental study of the Raman D and G modes of graphene and highly-defected pencil graphite over the visible range of laser radiation. Marking a departure from the usual practice for light scattering in semiconductors of including only the dynamics of the electrons and holes separately, we show via fourth-order quantum mechanical perturbation theory using a Fock state basis that for resonant Raman scattering in graphene the processes to leading order are those that involve the simultaneous action of the electrons and holes. Such processes are indeed an order of magnitude stronger than those prevalent in the literature under the double resonance [1, 2, 3] moniker. We translate our perturbation theoretic analysis into simple rules for constructing Feynman diagrams for processes to leading order and we thereby enumerate the 2D and D modes. Using expressions for the terms to leading order obtained from our theoretical treatment we proceed to evaluate the Raman matrix element [4] for the Raman 2D mode by using state-of-the-art electronic [5] and iTO phonon dispersions [6] fit to ab initio GW calculations. For the first time in the literature we include the variation of the light-matter and electron-phonon interaction matrix elements calculated via an ab initio density functional theory (DFT) calculation under the local density approximation (LDA) for the electronic wavefunctions. Our results for the peak structure, position and intensity dependence are in excellent agreement with experiments [7, 8, 9, 10]. Strikingly, our results show that depending on the combination of the input (polarizer) and output (analyzer) polarization of the laser radiation, very different regions of the phonon dispersion are accessed. This has a direct impact on the dominant electronic transitions according to the pseudo-momentum conservation condition satisfied by the scattering of an electron by a phonon ki = kf + q. Using sample substitution [11] we deconvolve the highly wavelength dependent response of the spectrometer from the Raman spectra of graphene suspended on an SiO2 - Si substrate and graphite for the D and G modes in the visible range. We derive a model that considers graphene suspended on an arbitrary stratified medium while sidestepping its problematic ascription as an object of finite thickness and calculate the absolute Raman response of graphene (and graphite) via its explicitly frequency independent Raman matrix element [K'2f10]2 vs. laser frequency. For both graphene and graphite the [K'2f10]2 per graphene layer vs. laser frequency rises rapidly for the G mode and less so for the D mode over the visible range. We find a dispersion of the D mode position with laser frequency for both graphene and graphite of 41 cm-YeV and 35 cm-YeV respectively, in good agreement with Narula and Reich 131 assuming constant matrix elements, the observed intensity follows the joint density states of the electronic bands of graphene. Finally, we show the sensitivity of our calculation to the variation in thickness of the underlying SiO2 layer for graphene.
by Rohit Narula.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Nagata, Shinobu. "Raman Scattering in GaN and ZnO." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kroeger, Felix. "Stimulated Raman Scattering in Semiconductor Nanostructures." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00561176.

Full text
Abstract:
The PhD dissertation is organized in two parts. In the first part, we present an experimental study of stimulated Raman scattering in a silicon-on-insulator (SOI) nanowire. We demonstrate that the Raman amplification of a narrow-band Stokes wave experiences a saturation effect for high pump intensities because of self phase modulation of the pump beam. Moreover, an analytical model is presented that describes the experimental results remarkably well. The model furthermore provides an estimation of the Raman gain coefficient γR of silicon. The second part is devoted to the experimental study of stimulated Raman scattering in a doubly resonant planar GaAs microcavity. The nonlinear measurements clearly show some totally unexpected results. We experimentally demonstrate that the relaxation of the electrons in the conduction band of GaAs is significantly modified through the interaction with coherently excited Raman phonons.
APA, Harvard, Vancouver, ISO, and other styles
9

Huttner, Sabina Helena. "Raman scattering properties of carbon dioxide." Thesis, Cranfield University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Wan-Ing. "Enhanced Raman scattering of molecular monolayers." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17758.

Full text
Abstract:
Um hochsensitive räumliche Auflösung zu erreichen, wurden oberflächenverstärkte Raman-Spektroskopie (SERS) und spitzenverstärkte Raman-Spektroskopie (TERS) weiterentwickelt. Das grundlegende Funktionsprinzip ist jedoch noch nicht vollständig verstanden und auch Experimente dazu fehlen teilweise. In dieser Arbeit habe ich zuerst Gap-mode TERS eingesetzt, bei welcher ein starkes elektromagnetisches Feld es ermöglicht, dünne Schichten von sehr schwach streuenden Molekülen zu untersuchen. Mit der Nanometerauflösung von TERS konnte ein auf der Goldoberfläche spontan phasen-getrennten, gemischtes Thiolsystem räumlich aufgelöst werden, während STM die Nanodomänen nicht über ihre Höhenunterschiede erkennen konnte. Neue Studien deuten auf eine Raman-Verstärkung durch Graphen und Flachgold aufgrund eines chemischen Mechanismus hin. Kupfer Phthalocyanin (CuPc)-Moleküle zwischen Graphen und einer flachen Goldoberfläche erlauben Elektronenübertragungen in beide Richtungen und damit stellt sich die Frage, ob chemische Verstärkungen von SERS zueinander addiert werden können. Die Ergebnisse deuten auf eine Kopplung von den zwei einzelnen Oberflächen hin. Es wurde eine 68-fache Verstärkung von geschichtetem CuPc zwischen Graphen und Gold beobachtet, jeweils bezogen auf CuPc auf Glimmer. Zuletzt wurde mittels TERS diese Schichtstruktur untersucht. Moleküle, die sich auf der Goldoberfläche selbstanordnen und mit Graphen bedeckt worden sind, fungieren als optische Sensoren, bei welchen die Graphenverkapselung die Moleküle beschützt. Außerdem kann eine sehr hohe Raman-Verstärkung mit großer lokaler Auflösung aufgrund der kombinierten Effekte von SERS und TERS herbeigeführt werden. Die Ergebnisse zeigen, dass eine Spitze, die Graphen-verstärkte Raman-Streuung (GERS) zusätzlich um vier Größenordnungen verbessern kann, aber Gap-mode TERS abschirmt.
The quest to achieve ultrahigh sensitivity, surface specificity and high spatial resolution has led to the development of plasmon- and chemically- enhanced Raman spectroscopy, including techniques such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). However, a lack of fundamentally experimental demonstrations still remains. In this thesis, I firstly used gap-mode TERS, which allows studying even molecularly thin layers of very weakly scattering molecules. With the nanoscale spatial resolution provided by TERS, the spontaneous segregation in a mixed thiol system on a gold surface could be resolved, while scanning tunneling microscopy (STM) could not discern the nanodomains via their apparent height difference. Furthermore, since graphene and a flat gold surface both were known to provide some Raman enhancement through mainly a chemical mechanism, sandwiching copper phthalocyanine (CuPc) molecules between graphene and a flat gold surface allowed electrons to be transferred in both directions, and thereby to address the question whether chemical enhancements with different origins in SERS can add to each other. The results suggest that the chemical enhancements were influenced by the two individual surfaces, and a 68-fold enhancement of sandwiched CuPc between graphene and gold was observed, as compared to CuPc on mica. Last, TERS was applied to study this sandwiched structure. Molecules self-assembled on a gold surface and covered by transferred graphene acted as optical probes. Such an arrangement has interesting properties in the sense that molecules are protected and encapsulated by graphene. Also, a possible ultrahigh Raman enhancement together with localized spatial resolution may be achieved due to the combined effects from SERS and TERS. The results showed that a tip can improve graphene-enhanced Raman scattering (GERS) further by 4 orders of magnitude, but graphene exerts some shielding effect to gap-mode TERS.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Raman scattering"

1

Cheng, Ji-Xin, and Xiaoliang Sunney Xie. Coherent Raman scattering microscopy. Boca Raton: CRC Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weber, Willes H., and Roberto Merlin, eds. Raman Scattering in Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04221-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weber, Willes H. Raman Scattering in Materials Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1942-, Weber Willes H., and Merlin R. 1950-, eds. Raman scattering in materials science. Berlin: Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozaki, Yukihiro, Katrin Kneipp, and Ricardo Aroca, eds. Frontiers of Surface-Enhanced Raman Scattering. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118703601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Milton, Kerker, ed. Selected papers on surface-enhanced raman scattering. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biswas, Nandita. Development of a Raman Spectrometer to study surface enhanced Raman Scattering. Mumbai: Bhabha Atomic Research Centre, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suto, Ken. Semiconductor Raman lasers. Boston: Artech House, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Polubotko, A. M. The dipole-quadrupole theory of surface enhanced Raman scattering. Hauppauge, N.Y: Nova Science Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

S, Gorelik V., Kudryavtseva Anna D, Society of Photo-optical Instrumentation Engineers., Rossiĭskai͡a︡ akademii͡a︡ nauk, and Rossiĭskiĭ fond fundamentalʹnykh issledovaniĭ, eds. Raman scattering: 16-19 November 1998, Moscow, Russia. Bellingham, Wash: SPIE, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Raman scattering"

1

Erasmus, R. M., and J. D. Comins. "Raman Scattering." In Handbook of Advanced Non-Destructive Evaluation, 1–54. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-30050-4_29-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Erasmus, Rudolph M., and J. Darrell Comins. "Raman Scattering." In Handbook of Advanced Nondestructive Evaluation, 541–94. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-26553-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Strube, Gernoth. "Raman Scattering." In Heat and Mass Transfer, 173–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56443-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaltenegger, Lisa. "Raman Scattering." In Encyclopedia of Astrobiology, 1431. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schneider, Thomas. "Raman Scattering." In Nonlinear Optics in Telecommunications, 239–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08996-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kaltenegger, Lisa. "Raman Scattering." In Encyclopedia of Astrobiology, 2147. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Weik, Martin H. "Raman scattering." In Computer Science and Communications Dictionary, 1410. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gregora, I. "Raman scattering." In International Tables for Crystallography, 314–28. Chester, England: International Union of Crystallography, 2006. http://dx.doi.org/10.1107/97809553602060000640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gregora, I. "Raman scattering." In International Tables for Crystallography, 334–48. Chester, England: International Union of Crystallography, 2013. http://dx.doi.org/10.1107/97809553602060000913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strube, G. "Raman Scattering." In Optical Measurements, 215–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-02967-1_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Raman scattering"

1

Vitukhnovsky, A. G. "Optical near-field microscopy methods in biology and medicine." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kazaryan, Airazat M. "Optical biopsy: laser autofluorescent and Raman spectroscopies in tumor diagnostics." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Man'ko, Olga V. "Photon distribution function for stimulated Raman scattering." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bilyi, Mykola U., G. I. Gaididei, and V. P. Sakun. "Raman spectroscopy of vibronic excitations in aqueous solutions." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drampyan, Raphael K. "Vortex structure in stimulated Raman scattering beam profile." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuznetsova, Tatiana I. "Stimulated Raman scattering in waveguides of subwavelength radius." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barille, Regis, Anna D. Kudryavtseva, Genevieve Rivoire, Albina I. Sokolovskaya, and Nicolaii V. Tcherniega. "Statistical properties of SRS excited in acetone." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bukalov, Sergey S., and Larissa A. Leites. "Raman study of order-disorder phase transitions in polydialkylmetallanes of the type [R2M]n: organometallic polymers with the main chain consisting entirely of either Si, or Ge, or Sn atoms." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slobodyanyuk, Alexander V., and S. G. Garasevich. "Peculiarities of Raman scattering in gyrotropic crystals." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorelik, Vladimir S., Alexandr L. Karuzskii, Yurii V. Klevkov, Alexander V. Kvit, Sergey A. Medvedev, Anatolii V. Perestoronin, and Pavel P. Sverbil. "Raman scattering and anti-Stokes luminescence in wide-gap semiconductors." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378108.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Raman scattering"

1

Edwards, D. F. Raman scattering in crystals. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/7032252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barker, C. E., R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. E. Ehrlich, and N. D. Nielsen. Transverse stimulated Raman scattering in KDP. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/161526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaup, D. J. Stimulated Raman Scattering: The Nonlinear Theory. Fort Belvoir, VA: Defense Technical Information Center, July 1993. http://dx.doi.org/10.21236/ada272183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

G. Shvets and X. Li. Raman Forward Scattering in Plasma Channels. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/768664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sharma, Shiv K., Anupam K. Misra, Ava C. Dykes, and Lori E. Kamemoto. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smith, W., and F. Milanovich. Stimulated RAMAN Scattering Inside KDP Crystal Segments. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1165816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karr, T. J. Model for transient stimulated molecular Raman scattering. Office of Scientific and Technical Information (OSTI), February 1989. http://dx.doi.org/10.2172/5823058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

B.P. LeBlanc. Thomson Scattering Density Calibration by Rayleigh and Rotational Raman Scattering on NSTX. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/958411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, W., F. Milanovich, and M. Henesian. Stimulated Raman Scattering Inside KDP Crystal Segments - II. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1165793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Williams, G. M. Resonance electronic Raman scattering in rare earth crystals. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6343820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography