Academic literature on the topic 'Raman resonance'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raman resonance.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Raman resonance"

1

Kitagawa, Teizo. "Resonance Raman spectroscopy." Journal of Porphyrins and Phthalocyanines 06, no. 04 (April 2002): 301–2. http://dx.doi.org/10.1142/s1088424602000361.

Full text
Abstract:
The main topics in resonance Raman spectroscopy presented at ICPP-2 in Kyoto are briefly discussed. These include: (i) coherent spectroscopy and low frequency vibrations of ligand-photodissociated heme proteins, (ii) vibrational relaxation revealed by time-resolved anti-Stokes Raman spectroscopy, (iii) electron transfer in porphyrin arrays, (iv) vibrational assignments of tetraazaporphyrins and (v) resonance Raman spectra of an NO storing protein, nitrophorin.
APA, Harvard, Vancouver, ISO, and other styles
2

Yannoni, C. S., R. D. Kendrick, and P. K. Wang. "Raman magnetic resonance." Physical Review Letters 58, no. 4 (January 26, 1987): 345–48. http://dx.doi.org/10.1103/physrevlett.58.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robert, Bruno. "Resonance Raman spectroscopy." Photosynthesis Research 101, no. 2-3 (July 1, 2009): 147–55. http://dx.doi.org/10.1007/s11120-009-9440-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raser, Lydia N., Stephen V. Kolaczkowski, and Therese M. Cotton. "RESONANCE RAMAN AND SURFACE-ENHANCED RESONANCE RAMAN SPECTROSCOPY OF HYPERICIN." Photochemistry and Photobiology 56, no. 2 (August 1992): 157–62. http://dx.doi.org/10.1111/j.1751-1097.1992.tb02142.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frey, Gitti L., Reshef Tenne, Manyalibo J. Matthews, M. S. Dresselhaus, and G. Dresselhaus. "Raman and resonance Raman investigation ofMoS2nanoparticles." Physical Review B 60, no. 4 (July 15, 1999): 2883–92. http://dx.doi.org/10.1103/physrevb.60.2883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carey, Paul R. "Resonance Raman labels and Raman labels." Journal of Raman Spectroscopy 29, no. 10-11 (October 1998): 861–68. http://dx.doi.org/10.1002/(sici)1097-4555(199810/11)29:10/11<861::aid-jrs323>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

LI, YUANZUO, XIUMING ZHAO, YONGQING LI, PENG SONG, YONG DING, LILI JI, XIAOGUANG LU, and MAODU CHEN. "INTERMOLECULAR CHARGE TRANSFER ENHANCED RESONANCE RAMAN SCATTERING OF CHARGE TRANSFER COMPLEX." Journal of Theoretical and Computational Chemistry 11, no. 02 (April 2012): 273–82. http://dx.doi.org/10.1142/s0219633612500186.

Full text
Abstract:
Intermolecular charge transfer (ICT) enhanced resonance Raman scattering of charge transfer complex is investigated experimentally and theoretically. The evidence for intermolecular charge transfer on resonance electronic transition is visualized with charge difference density. The resonant Raman spectra reveal that the intensity of Raman peaks are strongly enhanced on the order of 104, by comparing with the normal Raman scattering spectrum. ICT complexes can be used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules. These strong charge-transfer Raman peaks would enable discrimination of important target molecules from interferants that is normal Raman scattering for the isolated target molecules.
APA, Harvard, Vancouver, ISO, and other styles
8

An, Xuhong, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, Ting Zheng, Yueying Cui, Xueyong Yuan, Junpeng Lu, and Zhenhua Ni. "Resonance Raman scattering on graded-composition WxMo1–xS2 alloy with tunable excitons." Applied Physics Letters 120, no. 17 (April 25, 2022): 172104. http://dx.doi.org/10.1063/5.0086278.

Full text
Abstract:
Exciton–phonon interactions strongly affect photocarrier dynamics in two-dimensional materials. Here we report on resonant Raman experiments based on a graded composition W xMo1– xS2 alloy with tunable exciton energy without changing the energy of excitation laser. The intensities of the four most pronounced Raman features in the alloy are dramatically enhanced due to the resonance derived from the energy of B exciton shifting to the vicinity of the energy of excitation laser with an increase in W composition x. Specifically, through the resonance peak shift, absorption spectra and PL emission spectra under different excitation power, we conclude the resonance Raman is related to the exciton emission process. Our study extends the resonant Raman study of two-dimensional materials, which is expected to obtain deeper understanding of the excitonic effects in two-dimensional semiconductor materials.
APA, Harvard, Vancouver, ISO, and other styles
9

An, Xuhong, Weiwei Zhao, Yuanfang Yu, Wenhui Wang, Ting Zheng, Yueying Cui, Xueyong Yuan, Junpeng Lu, and Zhenhua Ni. "Resonance Raman scattering on graded-composition WxMo1–xS2 alloy with tunable excitons." Applied Physics Letters 120, no. 17 (April 25, 2022): 172104. http://dx.doi.org/10.1063/5.0086278.

Full text
Abstract:
Exciton–phonon interactions strongly affect photocarrier dynamics in two-dimensional materials. Here we report on resonant Raman experiments based on a graded composition W xMo1– xS2 alloy with tunable exciton energy without changing the energy of excitation laser. The intensities of the four most pronounced Raman features in the alloy are dramatically enhanced due to the resonance derived from the energy of B exciton shifting to the vicinity of the energy of excitation laser with an increase in W composition x. Specifically, through the resonance peak shift, absorption spectra and PL emission spectra under different excitation power, we conclude the resonance Raman is related to the exciton emission process. Our study extends the resonant Raman study of two-dimensional materials, which is expected to obtain deeper understanding of the excitonic effects in two-dimensional semiconductor materials.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Yanli, Xifeng Yang, Dunjun Chen, Hai Lu, Rong Zhang, and Youdou Zheng. "Determination of Temperature-Dependent Stress State in Thin AlGaN Layer of AlGaN/GaN HEMT Heterostructures by Near-Resonant Raman Scattering." Advances in Condensed Matter Physics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/918428.

Full text
Abstract:
The temperature-dependent stress state in the AlGaN barrier layer of AlGaN/GaN heterostructure grown on sapphire substrate was investigated by ultraviolet (UV) near-resonant Raman scattering. Strong scattering peak resulting from the A1(LO) phonon mode of AlGaN is observed under near-resonance condition, which allows for the accurate measurement of Raman shifts with temperature. The temperature-dependent stress in the AlGaN layer determined by the resonance Raman spectra is consistent with the theoretical calculation result, taking lattice mismatch and thermal mismatch into account together. This good agreement indicates that the UV near-resonant Raman scattering can be a direct and effective method to characterize the stress state in thin AlGaN barrier layer of AlGaN/GaN HEMT heterostructures.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Raman resonance"

1

Liu, Xiaohua. "Resonance raman studies of hemoproteins." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/27170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Weigel, Alexander. "Femtosecond stimulated resonance Raman spectroscopy." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2011. http://dx.doi.org/10.18452/16302.

Full text
Abstract:
Femtosekundenaufgelöste Ramanspektroskopie ist ein leistungsfähiges Werkzeug, um die Schwingungsentwicklung eines angeregten Chromophors in Echtzeit zu studieren. In dieser Arbeit wurde ein durchstimmbares Ramanspektrometer mit 10 cm-1 spektraler und 50--100 fs zeitlicher Auflösung entwickelt und für eine Anwendung auf flavinbasierte Photorezeptoren optimiert. Es wird der Einfluß der Resonanzbedingungen auf das transientes Ramanspektrum charakterisiert. Die Dynamik des angeregten Zustandes wird zuerst für den Modellphotoschalter Stilben untersucht, ausgehend sowohl vom cis-, als auch vom trans-Isomer. Intensitätsabnahme, spektrale Verschiebung und Bandenverschmälerung liefern Einblicke in die Schwingungsrelaxation des angeregten Chromophors. Wellenpaketbewegung und anharmonische Kopplung werden als Oszillationen beobachtet. Für das "Mutter"-Cyanin 1,1''-Diethyl-2,2''-pyridocyaniniodid wird die Isomerisierung bis in den Grundzustand verfolgt. Ramanspektren des Franck-Condon-Zustandes, des intermediär gebildeten heissen Grundzustandes und der Isomerisierungsprodukte werden erhalten. Als Grundlage für Experimente an Flavoproteinen werden die Eigenschaften des angeregten Flavinchromophors in Lösung untersucht. Transiente Absorptions- und Fluoreszenzexperimente weisen auf den Einfluss dynamischer polarer Solvatation hin. Es werden Ramanspektren des angeregten Zustandes von Flavin aufgenommen und die Schwingungsbanden zugeordnet. Populationsverminderung durch den Ramanimpuls wird als potentielles Artefakt in zeitaufgelösten Messungen identifiziert; der Effekt wird aber auch genutzt, um Wellenpaketbewegung im angeregten Zustand zu markieren. Die Photorezeptormutanten BlrB-L66F und Slr1694-Y8F werden mit transienter Absorption studiert. Dabei wird die Bildung des Signalzustandes und Flavinreduktion durch ein Tryptophan beobachtet. Die Anwendung des entwickelten Ramanspektrometers auf biologische Proben wird in einem ersten Experiment an Glucose Oxidase demonstriert.
Femtosecond stimulated Raman spectroscopy is a powerful tool that allows to study the structural relaxation of an excited chromophore directly in time. In this work a tunable Raman spectrometer with 10 cm-1 spectral and 50-100 fs temporal resolution was developed, and the technique was advanced towards applications to flavin-based proteins. With this device the influence of resonance conditions on the transient Raman spectrum is characterized. Excited-state dynamics is first investigated for the model photoswitch stilbene, starting from both the cis and the trans isomers. Decay, spectral shift, and narrowing of individual bands provide insight into the vibrational relaxation of the excited chromophore. Wavepacket motion and anharmonic coupling is seen as oscillations. Isomerization is followed to the ground state for the "parent" cyanine 1,1''-diethyl-2,2''-pyrido cyanine iodide. From a global analysis, Raman spectra for the Franck-Condon region, the intermediately populated hot ground state, and the isomerization products are obtained. As a basis for experiments on flavoproteins, the excited-state properties of the pure flavin chromophore are studied in solution. Transient absorption and fluorescence experiments suggest an influence of dynamic polar solvation on the electronic properties of the excited state. Raman spectra from the flavin excited state are recorded and the vibrational bands assigned. Population depletion by the Raman pulse is identified as a potential artefact, but the effect is also used to mark wavepacket motion in the excited state. The photoreceptor mutants BlrB-L66F and Slr1694-Y8F are studied by transient absorption; signaling state formation and flavin reduction by a semiconserved tryptophan are seen, respectively. The application of femtosecond Raman spectroscopy to biological samples is demonstrated in a first experiment on glucose oxidase.
APA, Harvard, Vancouver, ISO, and other styles
3

Hernandez-Santana, Aaron. "Surface-enhanced resonance Raman coded beads." Thesis, University of Strathclyde, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Susan James. "A resonance Raman and surface enhanced resonance Raman study of cytochrome P450s and their substrate/inhibitor interactions." Thesis, University of Strathclyde, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feng, Sibo. "Resonance raman studies of some dye molecules." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/27432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Behnke, Shelby Lee. "Resonance Raman Investigations of [NiFe] Hydrogenase Models." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1479728987893667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sullivan, Ann Marie G. "Resonance Raman spectra of chloroperoxidase reaction intermediates." VCU Scholars Compass, 1992. https://scholarscompass.vcu.edu/etd/5610.

Full text
Abstract:
Chloroperoxidase is an enzyme that exhibits spectroscopic and structural properties similar to cytochrome P-450. Chloroperoxidase is studied using resonance Raman spectroscopy to characterize the reaction intermediates of the physiological mechanism, known as compounds I and II. Compound I is formed by a two electron oxidation of the resting enzyme and contains an Fe(IV) porphyrin ℼ cation radical. A one electron reduction of compound I produces the compound II intermediate which contains an oxy-ferryl [Fe(IV)=O] iron heme. Chloroperoxidase is a heme enzyme of substantial interest because of its structural similarity to cytochrome P-450 and because of its diverse reactivity. Chloroperoxidase can function as a peroxidase, catalase, haloperoxidase and to some extent as a monooxygenase. Chloroperoxidase is excreted by the mold, Caldariomyces fumago and contains the iron protoporphyrin IX prosthetic group. From previous spectroscopic data, it has been determined that native chloroperoxidase is a penta-coordinate heme with a cysteine thiolate axial ligand. The reaction intermediates of chloroperoxidase, compounds I and II, are among the least stable of the known peroxidase intermediates. However, they can be stabilized somewhat by avoiding the use of hydrogen peroxide as the oxidant. Because of catalase activity of this enzyme, hydrogen peroxide can act as both oxidant and substrate causing the rapid turnover of the enzyme. For the generation of the chloroperoxidase intermediates, the enzyme is mixed with an equal volume of oxidant in a Ballou four jet mixer fed by two 100 ml syringes which produces a continuous jet of newly formed intermediate. Compound I was formed by mixing the enzyme with a 15 fold excess of peracetic acid and compound II was formed by premixing the enzyme with a 100 fold excess of a substrate, ascorbic acid, then mixing with a 30 fold excess of peracetic acid. The observed resonance Raman frequencies of the chloroperoxidase intermediates are similar to those observed for horseradish peroxidase, however there are a number of reproducible differences in frequencies due to differences in ground state symmetry or axial ligation. The in-plane skeletal modes in the resonance Raman spectrum of compound II can be assigned as follows: v10 at 1645 cm^-¹, v₃₇ at 1606 cm^-¹, v₂ at 1582 cm^-¹, v₃₈ or v¹₁₁ at 1554 cm^-¹, v₃ at 1511 cm^-¹, v₂₈ at 1476 cm^-¹, vinyl =CH₂ wags at 1345 and 1434 cm^-¹, v₂₀ or v₂₉ at 1396 cm^-¹, and v₄ at 1374 cm^-¹. These assignments are close to those previously reported for horseradish peroxidase compound II. Band assignments for compound I are v₁₀ at 1647 cm^-¹, v37 at 1619 cm^-¹, v₂ at 1589 cm^-¹ and v₄ at 1358 cm^-¹. The band at 1647 cm^-¹ is depolarized, whereas, the bands at 1619 and 1589 cm^-¹ are polarized. The oxy ferryl [Fe(IV)=O] frequency has been observed at approximately 790 cm-¹ in horseradish peroxidase. In chloroperoxidase, two bands at 790 and 753 cm^-¹ are present in both compounds I and II resonance Raman spectra. Upon ¹⁸O-substitution these bands shift approximately 30 cm^-¹ as predicted by simple force constant calculations.
APA, Harvard, Vancouver, ISO, and other styles
8

Tanaka, Tomoyoshi. "Resonance raman and surface enhanced raman studies of hemeproteins and model compounds." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/27678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Short, Billy Joe. "Ultraviolet resonance Raman enhancements in the detection of explosives." Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://edocs.nps.edu/npspubs/scholarly/theses/2009/Jun/09Jun%5FShort.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, June 2009.
Thesis Advisor(s): Smith, Craig F. "June 2009." Description based on title screen as viewed on 14 July 2009. Author(s) subject terms: Raman spectroscopy, standoff detection, high explosives, explosive detection, inelastic scattering, resonance Raman. Includes bibliographical references (p. 77-80). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
10

Rwere, Freeborn. "Resonance Raman studies of isotopically labeled heme proteins." [Milwaukee, Wis.] : e-Publications@Marquette, 2009. http://epublications.marquette.edu/dissertations_mu/22.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Raman resonance"

1

1935-, Spiro Thomas G., ed. Resonance Raman spectra of Heme and metalloproteins. New York: Wiley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1935-, Spiro Thomas G., ed. Resonance Raman spectra of polyenes and aromatics. New York: Wiley, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Derner, Harald. Untersuchungen über den Resonanz-Ramaneffekt an Anthracen, Naphthalin und p-nitro-p-dimethylamino-azobenzol. Freiburg [im Breisgau]: Hochschulverlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bugay, David E. Pharmaceutical excipients: Characterization by IR, Raman, and NMR spectroscopy. New York: M. Dekker, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bigioni, Terry Paul. CdS band gap measurement of bulk and nanowires using resonance Raman spectroscopy. Ottawa: National Library of Canada, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

United States. National Aeronautics and Space Administration., ed. Semi-annual progress report ... entitled Resonance fluorescence in atmospheric gases, for the period September 16, 1985 - March 15, 1986. [College Park, MD]: Institute for Physical Science and Technology, University of Maryland, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vo-Dinh, Tuan, and Joseph R. Lakowicz. Plasmonics in biology and medicine VIII: 23-24 January 2011, San Francisco, California, United States. Bellingham, Wash: SPIE, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vo-Dinh, Tuan, and Joseph R. Lakowicz. Plasmonics in biology and medicine VII: 25 and 27-28 January 2010, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vo-Dinh, Tuan, and Joseph R. Lakowicz. Plasmonics in biology and medicine IX: 22-24 January 2012, San Francisco, California, United States. Edited by SPIE (Society). Bellingham, Washington: SPIE, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tuan, Vo-Dinh, Lakowicz Joseph R, and Society of Photo-optical Instrumentation Engineers., eds. Plasmonics in biology and medicine IV: 23 January 2007, San Jose, California, USA. Bellingham, Wash: SPIE, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Raman resonance"

1

Clark, Robin J. H. "Raman, Resonance Raman and Electronic Raman Spectroscopy." In Vibronic Processes in Inorganic Chemistry, 301–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1029-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Jiang, and Teizo Kitagawa. "Resonance Raman Spectroscopy." In Methods in Molecular Biology, 377–400. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0452-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fabelinskii, V. I., L. Holz, V. V. Smirnov, and K. A. Vereschagin. "Time-Resolved Double Raman-Raman Resonance." In Springer Proceedings in Physics, 31–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-85060-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Chengli, Emanual Margoliash, and Therese M. Cotton. "Resonance Raman and Surface-Enhanced Resonance Raman Spectroscopy of Cytochrome C Mutants." In Spectroscopy of Biological Molecules, 253–56. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0371-8_114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Esherick, P., and A. Owyoung. "Ionization-Raman Double-Resonance Spectroscopy." In Springer Series in Optical Sciences, 192–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-540-39664-2_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wilbrandt, Robert, Niels-Henrik Jensen, C. Houée-Levin, and R. V. Bensasson. "Time-Resolved Resonance Raman Spectroscopy." In Primary Photo-Processes in Biology and Medicine, 93–109. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-1224-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kuzmany, H., E. M. Genies, and A. Syed. "Resonance Raman Scattering from Polyaniline." In Springer Series in Solid-State Sciences, 223–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82569-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stevenson, Ross, Karen Faulds, and Duncan Graham. "Quantitative DNA Analysis Using Surface-Enhanced Resonance Raman Scattering." In Surface Enhanced Raman Spectroscopy, 241–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632756.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Majoube, M., Ph Millié, P. Lagant, and G. Vergoten. "Resonance Raman Enhancement for Guanine Residue." In Fifth International Conference on the Spectroscopy of Biological Molecules, 91–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1934-4_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Loehr, Thomas M. "Recent Advances in Resonance Raman Spectroscopy." In ACS Symposium Series, 136–53. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0692.ch007.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Raman resonance"

1

Merten, Christian, Honggang Li, Xuefang Lu, A. Hartwig, Laurence A. Nafie, P. M. Champion, and L. D. Ziegler. "Observation Of Resonance Electronic And Non-Resonance Enhanced Vibrational Natural Raman Optical Activity." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wert, Jonathan, Sanford A. Asher, P. M. Champion, and L. D. Ziegler. "UV Resonance Raman Spectroscopy Of Ethylguanidine." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pimenta, Marcos, P. M. Champion, and L. D. Ziegler. "Resonance Raman Spectroscopy in Carbon Nanostructures." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hobro, Alison J., Bernhard Zachhuber, Bernhard Lendl, P. M. Champion, and L. D. Ziegler. "Towards Stand-Off Resonance Raman Spectroscopy." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Asher, Sanford A. "Ultraviolet resonance Raman studies of monocyclic and polycyclic aromatic hydrocarbons." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.tue1.

Full text
Abstract:
UV resonance Raman studies of benzene have demonstrated that the Raman intensities are dominated by vacuum UV transitions. Because of the weak oscillator strengths and the significant homogeneous linewidths in the condensed phase, little Raman enhancement iscontributed by the ~240-260-nm B2 u transition. In the gas phase, however, the smaller homogeneous linewidth results in resonance enhancement. We show experimentally the distinction between resonance Raman scattering and single vibrational level fluorescence. Raman studies of substituted benzene derivatives illustrate that the resonance enhanced vibrational modes are those which distort the nuclear framework and electron density and the bond lengths in a fashion characteristic of the transition moment to the resonant excited state. Raman excitation profile studies of polycyclic aromatic hydrocarbons such as pyrene clearly show the underlying Franck Condon substructure of the diffuse absorption bands. The strong resonance enhancements permit studies of polycyclic aromatic hydro-carbons at ppb concentrations. The analytical utility of UV Raman spectroscopy is illustrated by studies of polycyclic aromatic hydrocarbons in coal liquid samples and in biological matrices.
APA, Harvard, Vancouver, ISO, and other styles
6

Tuschel, David D., Aleksandr V. Mikhonin, Brian E. Lemoff, Sanford A. Asher, P. M. Champion, and L. D. Ziegler. "Deep Ultraviolet Resonance Raman Spectroscopy of Explosives." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mak, Piotr J., James R. Kincaid, Ilia G. Denisov, Stephen G. Sligar, Haoming Zhang, Paul F. Hollenberg, P. M. Champion, and L. D. Ziegler. "Resonance Raman Studies On Mammalian Cytochromes P450." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Getty, James D., Xianming Liu, and Peter B. Kelly. "Resonance Raman study of the allyl radical excited states." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thi4.

Full text
Abstract:
The characterization of the ground and excited electronic states of the allyl radical is important to the understanding of free radical chemistry. Resonance Raman spectroscopy can provide detailed information on the allyl radical excited state dynamics through the intensities of the ground state normal modes. Previous resonance Raman studies have examined the promotion of the valence a 2 electron to the valence b1 orbital, the 2A2 → 2B1 transition. The intensities of the Raman spectra at 224 nm indicate initial excited state dynamics consistent with a disrotary photoisomerization of the allyl radical to form the cyclopropyl radical. Resonance Raman spectroscopy has been utilized to examine the nature of the weakly allowed transitions between 235 nm and 250 nm. Rydberg states have been predicted to lie in this energy range. Analysis of the Raman spectra revealed enhancement in the fundamental, overtones, and combinations of the non-totally symmetric modes v9 and v12. Intensity in the fundamentals of these non-totally symmetric modes is evidence for B-term Raman scattering and hence vibronic coupling. The sharp resonances in the enhancement of the Raman spectra simplify the assignment of the overtone and combination tones ground state vibrational frequencies. Schemes for the observed vibronic coupling and ground state anharmonic couplings will be presented.
APA, Harvard, Vancouver, ISO, and other styles
9

Nafie, Laurence A., P. M. Champion, and L. D. Ziegler. "Resonance Raman Optical Activity: Past, Present and Future." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hildebrandt, Peter. "Cytochrome c at charged interfaces studied by resonance Raman and surface-enhanced resonance Raman spectroscopy." In Moscow - DL tentative, edited by Sergei A. Akhmanov and Marina Y. Poroshina. SPIE, 1991. http://dx.doi.org/10.1117/12.57305.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Raman resonance"

1

Zheng, Junwei. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants. Office of Scientific and Technical Information (OSTI), November 1999. http://dx.doi.org/10.2172/754842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Williams, G. M. Resonance electronic Raman scattering in rare earth crystals. Office of Scientific and Technical Information (OSTI), November 1988. http://dx.doi.org/10.2172/6343820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barletta, R. E., and J. T. Veligdan. Resonance Raman spectroscopy of volatile organics -- Carbon tetrachloride. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10185780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, C. L., D. L. Heglund, M. D. Ray, D. Harder, R. Dobert, K. P. Leung, M. Wu, and A. Sedlacek. Application of resonance Raman LIDAR for chemical species identification. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/495732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sedlacek, A. J., C. L. Chen, and D. R. Dougherty. Proliferation detection using a remote resonance Raman chemical sensor. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10179119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Derry, Robert. Characterization of Zinc-containing Metalloproteins by Resonance Raman Spectroscopy. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barrett, T. W. Inverse Faraday Effect in Hemoglobin Detected by Raman Spectroscopy: An Example of Magnetic Resonance Raman Activity. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada159806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bocarsly, A. B. [Resonance Raman spectroscopy of metalloporphyrins and photoreaction centers]. Final report. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10141437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kincaid, J. Resonance Raman and photophysical studies of polypyridine complexes of ruthenium (II). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6816606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hug, William F., T. Moustakas, R. Treece, J. Smith, A. Bhattacharyya, R. Reid, J. Pankove, C. Brown, and W. Nelson. Deep Ultraviolet Laser Diode for UV-Resonance Enhanced Raman Identification of Biological Agents. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada468910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography