Academic literature on the topic 'Raman'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Raman.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Raman"

1

Sinha, Rajeev K. "An Inexpensive Raman, Spectroscopy Setup for Raman, Polarized Raman, and Surface Enhanced Raman, Spectroscopy." Instruments and Experimental Techniques 64, no. 6 (November 2021): 840–47. http://dx.doi.org/10.1134/s002044122106018x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Xian, Qin Zhou, Yu Huang, Zhengcao Li, and Zhengjun Zhang. "The Nanofabrication and Application of Substrates for Surface-Enhanced Raman Scattering." International Journal of Spectroscopy 2012 (December 19, 2012): 1–7. http://dx.doi.org/10.1155/2012/350684.

Full text
Abstract:
Surface-enhanced Raman scattering (SERS) was discovered in 1974 and impacted Raman spectroscopy and surface science. Although SERS has not been developed to be an applicable detection tool so far, nanotechnology has promoted its development in recent decades. The traditional SERS substrates, such as silver electrode, metal island film, and silver colloid, cannot be applied because of their enhancement factor or stability, but newly developed substrates, such as electrochemical deposition surface, Ag porous film, and surface-confined colloids, have better sensitivity and stability. Surface enhanced Raman scattering is applied in other fields such as detection of chemical pollutant, biomolecules, DNA, bacteria, and so forth. In this paper, the development of nanofabrication and application of surface-enhanced Ramans scattering substrate are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Dubessy, Jean. "Preface: Geo-Raman X." European Journal of Mineralogy 25, no. 5 (January 16, 2014): 713. http://dx.doi.org/10.1127/0935-1221/2013/0025-2359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gu, Mingqiang, and James M. Rondinelli. "Coupled Raman-Raman modes in the ionic Raman scattering process." Applied Physics Letters 113, no. 11 (September 10, 2018): 112903. http://dx.doi.org/10.1063/1.5048037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bramhayya, Chakali. "BRICS in the Global Order: Global South View Book Review: Locating BRICS in the Global Order: Perspectives from the Global South. (2023). Ed. by Rajan Kumar, Meeta Keswani Mehra, G. Venkat Raman, Meenakshi Sundriyal. Routledge India. 258 p." Governance and Politics 2, no. 1 (April 28, 2023): 84–89. http://dx.doi.org/10.24833/2782-7062-2023-2-1-84-89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masters, Barry R. "CV Raman and the Raman Effect." Optics and Photonics News 20, no. 2 (February 1, 2009): 26. http://dx.doi.org/10.1364/opn.20.2.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Masters, Barry R. "CV Raman and the Raman Effect." Optics and Photonics News 20, no. 3 (March 1, 2009): 40. http://dx.doi.org/10.1364/opn.20.3.000040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Frey, Gitti L., Reshef Tenne, Manyalibo J. Matthews, M. S. Dresselhaus, and G. Dresselhaus. "Raman and resonance Raman investigation ofMoS2nanoparticles." Physical Review B 60, no. 4 (July 15, 1999): 2883–92. http://dx.doi.org/10.1103/physrevb.60.2883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carey, Paul R. "Resonance Raman labels and Raman labels." Journal of Raman Spectroscopy 29, no. 10-11 (October 1998): 861–68. http://dx.doi.org/10.1002/(sici)1097-4555(199810/11)29:10/11<861::aid-jrs323>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vermeulen, N., C. Debaes, and H. Thienpont. "Coherent anti-Stokes Raman scattering in Raman lasers and Raman wavelength converters." Laser & Photonics Reviews 4, no. 5 (June 7, 2010): 656–70. http://dx.doi.org/10.1002/lpor.200910030.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Raman"

1

Ali, Momenpour. "Raman Biosensors." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36468.

Full text
Abstract:
This PhD thesis focuses on improving the limit of detection (LOD) of Raman biosensors by using surface enhanced Raman scattering (SERS) and/or hollow core photonic crystal fibers (HC-PCF), in conjunction with statistical methods. Raman spectroscopy is a multivariate phenomenon that requires statistical analysis to identify the relationship between recorded spectra and the property of interest. The objective of this research is to improve the performance of Raman biosensors using SERS techniques and/or HC-PCF, by applying partial least squares (PLS) regression and principal component analysis (PCA). I began my research using Raman spectroscopy, PLS analysis and two different validation methods to monitor heparin, an important blood anti-coagulant, in serum at clinical levels. I achieved lower LOD of heparin in serum using the Test Set Validation (TSV) method. The PLS analysis allowed me to distinguish between weak Raman signals of heparin in serum and background noise. I then focused on using SERS to further improve the LOD of analytes, and accomplished simultaneous detection of GLU-GABA in serum at clinical levels using the SERS and PLS models. This work demonstrated the applicability of using SERS in conjunction with PLS to measure properties of samples in blood serum. I also used SERS with HC-PCF configuration to detect leukemia cells, one of the most recurrent types of pediatric cancers. This was achieved by applying PLS regression and PCA techniques. Improving LOD was the next objective, and I was able to achieve this by improving the PLS model to decrease errors and remove outliers or unnecessary variables. The results of the final optimized models were evaluated by comparing them with the results of previous models of Heparin and Leukemia cell detection in previous sections. Finally, as a clinical application of Raman biosensors, I applied the enhanced Raman technique to detect polycystic ovary syndrome (PCOS) disease, and to determine the role of chemerin in this disease. I used SERS in conjunction with PCA to differentiate between PCOS and non-PCOS patients. I also confirmed the role of chemerin in PCOS disease, measured the level of chemerin, a chemoattractant protein, in PCOS and non-PCOS patients using PLS, and further improved LOD with the PLS regression model, as proposed in previous section.
APA, Harvard, Vancouver, ISO, and other styles
2

Kunarajah, Enoch Arumaishanth. "Distributed Raman amplifiers." Thesis, University of Essex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nash, J. "Time resolved Raman scattering in liquid crystals using a Raman microprobe." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tanaka, Tomoyoshi. "Resonance raman and surface enhanced raman studies of hemeproteins and model compounds." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/27678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Delhaye, Caroline. "Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surface." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13927/document.

Full text
Abstract:
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal
This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel
APA, Harvard, Vancouver, ISO, and other styles
6

Cazayous, Maximilien. "Interférences Raman et Nanostructures." Phd thesis, Université Paul Sabatier - Toulouse III, 2002. http://tel.archives-ouvertes.fr/tel-00001850.

Full text
Abstract:
Les structurations de la matière à l'échelle nanométrique ont ouvert de larges champs d'étude. L'analyse des propriétés structurales des nanostructures, de leur degré d'organisation ainsi que leur influence sur les propriétés électroniques représentent actuellement un défi de première importance. Pour accéder à ces informations, il est souvent nécessaire de faire appel à un ensemble de techniques expérimentales et numériques souvent complexes dans leur mise en oeuvre. Dans cette contribution, nous étudions l'organisation et le confinement électronique dans des multiplans de boîtes quantiques, en nous appuyant à la fois sur une étude expérimentale et un travail de modélisation. Les interférences Raman, observées dans la gamme des phonons acoustiques, résultent de l'interaction entre ces derniers et les états électroniques localisés dans les nanostructures. Parce qu'ils explorent une gamme allant de quelques nanomètres à plusieurs centaines de nanomètres, les phonons acoustiques représentent une sonde particulièrement efficace pour l'étude des nanosystèmes. Les interférences Raman utilisent leur sensibilité pour la mesure des propriétés structurales et électroniques. Elles permettent de mesurer les effets de corrélation verticale et latérale dans les multiplans de boîtes quantiques. Nous avons développé un modèle général dont le domaine d'application s'étend des systèmes contenant quelques plans au super-réseaux. En utilisant l'analyse de Fourier des interférences, on détermine la fonction d'auto-corrélation de la densité de probabilité électronique selon l'axe de croissance. Sensible à la taille et à la forme de la densité électronique, les interférences Raman ouvrent la voie à une imagerie optique de la densité électronique.
APA, Harvard, Vancouver, ISO, and other styles
7

Wiley, James Hugh. "Raman spectra of celluloses." Diss., Georgia Institute of Technology, 1986. http://hdl.handle.net/1853/5748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hagen, Johannes. "Spektral beherrschter Raman-Faserlaser /." Aachen : Shaker, 2008. http://d-nb.info/988549115/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Grantier, David Raymond. "Chemically induced raman scattering." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/30321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Yun-Thai. "Tip-enhanced Raman spectroscopy." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609992.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Raman"

1

Si︠a︡dni︠o︡ŭ, Maseĭ. Raman Korzi︠u︡k: Raman. Nʹi︠u︡ I︠o︡rk: [publisher not identified], 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duras, Marguerite. Raman =: L'amant. Tōkyō: Kawade Shobō Shinsha, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

I︠a︡kavenka, Vasilʹ T︠s︡imafeevich. Nadlom: Raman. Minsk: Bellitfond, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pestrak, Pilip. Seradzybor: Raman. Minsk: "Mastatskai͡a︡ litaratura", 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zoubir, Arnaud, ed. Raman Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Savitski, Alesʹ. Verasy: Raman. Minsk: "Mastatskai͡a︡ lit-ra", 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Levanovich, Leanid. Shchygly: Raman. Minsk: Mastatskai︠a︡ litaratura, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dalidovich, Henrykh. Pabudz͡h︡anyi͡a︡: Raman. Minsk: "Mastatskai͡a︡ lit-ra", 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Krumkach: Raman. Minsk: Mastatskai︠a︡ litaratura, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chorny, Kuzʹma. Zi͡a︡mli͡a︡: Raman. Minsk: "Belaruskai͡a︡ ėntsyklapedyi͡a︡", 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Raman"

1

Clark, Robin J. H. "Raman, Resonance Raman and Electronic Raman Spectroscopy." In Vibronic Processes in Inorganic Chemistry, 301–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1029-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berna, Francesco. "Raman." In Encyclopedia of Geoarchaeology, 702–3. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-1-4020-4409-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fan, Fengtao, Zhaochi Feng, and Can Li. "Raman and UV-Raman Spectroscopies." In Characterization of Solid Materials and Heterogeneous Catalysts, 49–87. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527645329.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Esmonde-White, Francis W. L., and Michael D. Morris. "Raman Imaging and Raman Mapping." In Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, 97–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02649-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Eunah. "Imaging Modes." In Raman Imaging, 1–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Georgi, Carsten, Miriam Böhmler, Huihong Qian, Lukas Novotny, and Achim Hartschuh. "Tip-Enhanced Near-Field Optical Microscopy of Carbon Nanotubes." In Raman Imaging, 301–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hashimoto, Mamoru, Taro Ichimura, and Katsumasa Fujita. "CARS Microscopy: Implementation of Nonlinear Vibrational Spectroscopy for Far-Field and Near-Field Imaging." In Raman Imaging, 317–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rigneault, Hervé, and David Gachet. "Background-free Coherent Raman Imaging: The CARS and SRS Contrast Mechanisms." In Raman Imaging, 347–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiberj, Antoine, and Jean Camassel. "Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices." In Raman Imaging, 39–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gouadec, G., L. Bellot-Gurlet, D. Baron, and Ph Colomban. "Raman Mapping for the Investigation of Nano-phased Materials." In Raman Imaging, 85–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28252-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Raman"

1

Vitukhnovsky, A. G. "Optical near-field microscopy methods in biology and medicine." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kazaryan, Airazat M. "Optical biopsy: laser autofluorescent and Raman spectroscopies in tumor diagnostics." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Man'ko, Olga V. "Photon distribution function for stimulated Raman scattering." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bilyi, Mykola U., G. I. Gaididei, and V. P. Sakun. "Raman spectroscopy of vibronic excitations in aqueous solutions." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Drampyan, Raphael K. "Vortex structure in stimulated Raman scattering beam profile." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuznetsova, Tatiana I. "Stimulated Raman scattering in waveguides of subwavelength radius." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Barille, Regis, Anna D. Kudryavtseva, Genevieve Rivoire, Albina I. Sokolovskaya, and Nicolaii V. Tcherniega. "Statistical properties of SRS excited in acetone." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bukalov, Sergey S., and Larissa A. Leites. "Raman study of order-disorder phase transitions in polydialkylmetallanes of the type [R2M]n: organometallic polymers with the main chain consisting entirely of either Si, or Ge, or Sn atoms." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Slobodyanyuk, Alexander V., and S. G. Garasevich. "Peculiarities of Raman scattering in gyrotropic crystals." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gorelik, Vladimir S., Alexandr L. Karuzskii, Yurii V. Klevkov, Alexander V. Kvit, Sergey A. Medvedev, Anatolii V. Perestoronin, and Pavel P. Sverbil. "Raman scattering and anti-Stokes luminescence in wide-gap semiconductors." In Raman Scattering, edited by Vladimir S. Gorelik and Anna D. Kudryavtseva. SPIE, 2000. http://dx.doi.org/10.1117/12.378108.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Raman"

1

SEDLACEK, III, A. J. FINFROCK,C. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS. Office of Scientific and Technical Information (OSTI), September 2002. http://dx.doi.org/10.2172/15006636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Author, Not Given. (Hadamard Raman imaging). Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5090154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carter, J. Chance, David H. Chambers, Paul T. Steele, Peter Haugen, and Don Heller. UV Excited Photoacoustic Raman. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1113407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Polk, Donald. Raman Spectra of Glasses. Fort Belvoir, VA: Defense Technical Information Center, November 1986. http://dx.doi.org/10.21236/ada203343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Newsom, RK. Raman Lidar (RL) Handbook. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/1020561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Edwards, D. F. Raman scattering in crystals. Office of Scientific and Technical Information (OSTI), September 1988. http://dx.doi.org/10.2172/7032252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guenther, B. D. Snapshot Raman Spectral Imager. Fort Belvoir, VA: Defense Technical Information Center, March 2010. http://dx.doi.org/10.21236/ada522778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Azuma, Y., T. LeBrun, M. MacDonald, and S. H. Southworth. Auger resonant Raman spectroscopy. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/166503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Shiv K., Anupam K. Misra, Ava C. Dykes, and Lori E. Kamemoto. Biomedical Applications of Micro-Raman and Surface-Enhanced Raman Scattering (SERS) Technology. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada581577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GENERAL PHYSICS INST MOSCOW (USSR). Solid State Raman Materials Characterization and Raman Shifting Of 1.3 Micron Laser Radiation. Fort Belvoir, VA: Defense Technical Information Center, June 2000. http://dx.doi.org/10.21236/ada400129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography