Academic literature on the topic 'Rainy FL 80 filter'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Rainy FL 80 filter.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Rainy FL 80 filter"

1

Cunha, Cynara De Lourdes da Nóbrega, Ada Cristina Scudelari, Danilo De Oliveira Sant'Ana, Teresa Elane Bezerra Luz, and Mariana Kummer da Rocha Pinheiro. "Effects on circulation and water renewal due to the variations in the river flow and the wind in a Brazilian estuary lagoon complex." Ambiente e Agua - An Interdisciplinary Journal of Applied Science 16, no. 2 (March 29, 2021): 1. http://dx.doi.org/10.4136/ambi-agua.2600.

Full text
Abstract:
The Mundaú-Manguaba Estuary Lagoon Complex is located on the coast of Alagoas state in Northeastern Brazil, and consists of two shallow lagoons, Mundaú and Manguaba, that form a system of choked lagoons which are connected to the Atlantic Ocean by a series of narrow channels with a single outlet which dynamically alters its position. This study uses the Hydrodynamic Environmental System, SisBaHiA® to investigate how variations in river discharge and wind influence hydrodynamic circulation, water renewal, salinity and temperature in the lagoons. The free surface positions, obtained by model, were compared with the free surface positions measured at two points of the complex, showing good agreement. The analyses were carried out for dry and wet seasons and extreme events with very high freshwater discharge. The channel system of the lagoons is an efficient filter in reducing tidal variability inside the lagoons. The tidal ranges in the Manguaba and Mundaú Lagoons are 90% and 80% lower, respectively, as compared with the values in the open boundary. The residence time calculated varied between 11 and 365 days and between 2 and 180 days for the Manguaba and Mundaú Lagoons, respectively, making it possible to identify possible stagnation areas. The results from the salt and heat transport model show a prolonged period with low salt concentrations and slow salinity recovery after the rainy season; the water temperature in the lagoons shows little spatial and temporal variation.
APA, Harvard, Vancouver, ISO, and other styles
2

RAGHAVENDRA, V. K. "Trends and periodicities of rainfall in sub-divisions of Maharashtra State." MAUSAM 25, no. 2 (February 7, 2022): 197–210. http://dx.doi.org/10.54302/mausam.v25i2.5194.

Full text
Abstract:
The Maharashtra State of India is divided into four meteorological sub-divisions, viz., Konkan, Madhya Maharashtra, Marathwada and Vidarbha. Of these, Madhya Maharashtra and Marathwada are prone to droughts. The principal rainy season is the monsoon season of June to September when over 80 per cent of the annual rainfall is received. The coefficient of variation is about 20 per cent for the annual and monsoon rainfall except in Marathwada where it is 25 per cent. The annual and monsoon rainfalls follow the normal distribution for their yearly frequencies. In this region the annual and the monsoon rainfall series are highly correlated. In the loss drought prone sub-division of Konkan, the annual and monsoon rainfalls show a 100 year cycle. In all the sub-divisions the successive years' rainfalls are not dependent. The trend as revealed by fitting of orthogonal polynomials is shown as a quadratic curve for the annual and monsoon rainfalls of Konkan and Madhya, Maharashtra, the sub-divisions on either side of the Western Ghats. The low pass filter and Mann-Kendall test against randomness confirmed the trend in Konkan rainfall. The power spectral analysis of the data indicates the existence of long term trend for monsoon rainfall of Konkan, 60 year cycle for the annual rainfall of Konkan and Madhya Maharashtra, 30.year cycle for the annual and monsoon rainfall or Vidarbha, 20-year cycle for the monsoon rainfall of Marathwada, 15-year cycle for the monsoon rainfall of Madhya Maharashtra, 7.5-year cycle for the annual and monsoon rainfall of Marathwada.
APA, Harvard, Vancouver, ISO, and other styles
3

Paganessi, Laura A., Robin R. Frank, Sucheta Jagan, Reem Karmali, Yan Li, Youping Deng, Cristina L. Fhied, et al. "Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Leukemia (SLL) Exhibit Altered Cytokine Protein Levels in Peripheral Blood Serum." Blood 118, no. 21 (November 18, 2011): 2646. http://dx.doi.org/10.1182/blood.v118.21.2646.2646.

Full text
Abstract:
Abstract Abstract 2646 Introduction: Chronic lymphocytic leukemia (CLL)/Small lymphocytic leukemia (SLL) is one of the most common forms of indolent lymphomas in elderly adults. Currently, CLL is not treated until it develops into later stage disease. An increase in the knowledge of the biology of CLL could aid in the development of new treatment strategies for early stage CLL, thus positively impacting disease progression. We therefore investigated the cytokine levels present in peripheral blood (PB) serum of CLL patients and compared them to levels in healthy donors. Methods: PB was obtained from 25 untreated CLL and 3 untreated SLL patients and 29 normal healthy donors under an IRB approved protocol. Serum was stored at −80°C until analyzed. 86% of the patients were Rai 0/1, 3.5% Rai stage 2, and 10.5% unknown at diagnosis. Risk stratification based on cytogenetics and FISH found of the enrolled patients, 47% good, 25% intermediate, and 14% poor risk. The risk factor was unknown in 14%. β-2 microglobulin and 54 cytokine protein levels in 2 different serum samples per patient (collected at least one year post diagnosis) were measured in duplicate using MILLIPLEX™, a multiplex Luminex based technology. Genespring 11.5.1 software was used to convert the data into base-2 logarithmic values and then apply a median baseline transformation across all samples. Data is grouped according to the source of the sample (CLL or normal PB serum). A Filter on Volcano Plot analysis is then done. This filter analysis performs an unpaired t-test, which yields a p-value as well as computes the fold change of each cytokine. Results: As expected, β-2 microglobulin was significantly higher in CLL patients compared to normal samples (p=5.17×10−7, 1.79 fold). Using a minimum of a 1.5 fold change and p-value≤0.05, 16 cytokines had significantly higher expression and 9 cytokines had significantly lower expression in CLL samples compared to normal samples (see Table 1). Conclusion: These changes in cytokine levels help provide insight to the peripheral blood microenvironment, in which circulating CLL cells reside. Some cytokines were substantially higher in CLL patients; soluble IL-2 receptor alpha (sIL-2Rα) and stem cell factor (SCF). The substantially higher levels of sIL-2Rα have also been observed in follicular lymphoma (FL) and appear to predict which FL patients will have a reduced survival (Yang et al., Blood 2011). Levels of sIL-2Rα correlating to survival may be a phenomenon seen in all B-cell lymphomas. SCF is thought to be important in early B-cell development but its receptor c-kit (CD117) has not been reported to be expressed on B-CLL cells. The chemokine receptors CXCR4, CXCR5 and CCR7 are expressed on B-CLL cells. Interestingly, their corresponding ligands, CXCL12, CXCL13, and CCL21 are significantly higher (Table 1) in the PB serum of CLL patients. It is likely that existing immunomodulatory therapies, such as IMiDs, lenalidomide or thalidomide alter the PB levels of the cytokine milieau. Other successful hematological malignancy therapies involve targeted monoclonal antibodies. Therefore, a deeper understanding of the cytokine microenvironment will provide guidance in the development of future targeted therapies or highlight current therapies for other malignancies that could be promising for CLL. Disclosures: No relevant conflicts of interest to declare.
APA, Harvard, Vancouver, ISO, and other styles
4

Minh, Pham Thi, Bui Thi Tuyet, Tran Thi Thu Thao, and Le Thi Thu Hang. "Application of ensemble Kalman filter in WRF model to forecast rainfall on monsoon onset period in South Vietnam." VIETNAM JOURNAL OF EARTH SCIENCES 40, no. 4 (September 18, 2018): 367–94. http://dx.doi.org/10.15625/0866-7187/40/4/13134.

Full text
Abstract:
This paper presents some results of rainfall forecast in the monsoon onset period in South Vietnam, with the use of ensemble Kalman filter to assimilate observation data into the initial field of the model. The study of rainfall forecasts are experimented at the time of Southern monsoon outbreaks for 3 years (2005, 2008 and 2009), corresponding to 18 cases. In each case, there are five trials, including satellite wind data assimilation, upper-air sounding data assimilation, mixed data (satellite wind+upper-air sounding data) assimilation and two controlled trials (one single predictive test and one multi-physical ensemble prediction), which is equivalent to 85 forecasts for one trial. Based on the statistical evaluation of 36 samples (18 meteorological stations and 18 trials), the results show that Kalman filter assimilates satellite wind data to forecast well rainfall at 48 hours and 72 hours ranges. With 24 hour forecasting period, upper-air sounding data assimilation and mixed data assimilation experiments predicted better rainfall than non-assimilation tests. The results of the assessment based on the phase prediction indicators also show that the ensemble Kalman filter assimilating satellite wind data and mixed data sets improve the rain forecasting capability of the model at 48 hours and 72 hour ranges, while the upper-air sounding data assimilation test produces satisfactory results at the 72 hour forecast range, and the multi-physical ensemble test predicted good rainfall at 24 hour and 48 hour forecasts. The results of this research initially lead to a new research approach, Kalman Filter Application that assimilates the existing observation data into input data of the model that can improve the quality of rainfall forecast in Southern Vietnam and overall country in general.References Bui Minh Tuan, Nguyen Minh Truong, 2013. Determining the onset indexes for the summer monsoon over southern Vietnam using numerical model with reanalysis data. VNU Journal of Science, 29(1S), 187-195.Charney J.G., 1955. The use of the primitive equations of motion in numerical prediction, Tellus, 7, 22.Cong Thanh, Tran Tan Tien, Nguyen Tien Toan, 2015. Assessing prediction of rainfall over Quang Ngai area of Vietnam from 1 to 2 day terms. VNU Journal of Science, 31(3S), 231-237.Courtier P., Talagrand O., 1987. Variational assimilation of meteorological observations with the adjoint vorticity equations, Part II, Numerical results. Quart. J. Roy. Meteor. Soc., 113, 1329.Daley R., 1991. Atmospheric data analysis. Cambridge University Press, Cambridge.Elementi M., Marsigli C., Paccagnella T., 2005. High resolution forecast of heavy precipitation with Lokal Modell: analysis of two case studies in the Alpine area. Natural Hazards and Earth System Sciences, 5, 593-602.Fasullo J. and Webster P.J., 2003. A hydrological definition of India monsoon onset and withdrawal. J. Climate, 16, 3200-3211.Haltiner G.J., Williams R.T., 1982. Numerical prediction and dynamic meteorology, John Wiley and Sons, New York.Hamill T.M., Whitaker J.S., Snyder C., 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776.He J., Yu J., Shen X., and Gao H., 2004. Research on mechanism and variability of East Asia monsoon. J. Trop. Meteo, 20(5), 449-459.Hoang Duc Cuong, 2008. Experimental study on heavy rain forecast in Vietnam using MM5 model. A report on the Ministerial-level research projects on science and technology, 105p.Houtekamer P.L., Mitchell H.L., Pellerin G., Buehner M., Charron M., Spacek L., Hansen B., 2005. Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. Rev., 133, 604.Houtekamer P.L., Mitchell H.L., 2005. Ensemble Kalman filtering, Quart. J. Roy. Meteor. Soc., 131C, 3269-3289.Hunt B.R., Kostelich E., Szunyogh I., 2007. Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D., 230, 112-126.Kalnay E., 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 181.Kalnay et al., 2008. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A, 60(1), 113-130.Kato T., Aranami K., 2009. Formation Factors of 2004 Niigata-Fukushima and Fukui Heavy Rainfalls and Problems in the Predictions using a Cloud-Resolving Model. SOLA. 10, doi:10.2151/sola.Kieu C.Q., 2010. Estimation of Model Error in the Kalman Filter by Perturbed Forcing. VNU Journal of Science, Natural Sciences and Technology, 26(3S), 310-316.Kieu C.Q., 2011. Overview of the Ensemble Kalman Filter and Its Application to the Weather Research and Forecasting (WRF) model. VNU Journal of Science, Natural Sciences and Technology, 27(1S), 17-28.Kieu C.Q., Truong N.M., Mai H.T., and Ngo Duc T., 2012. Sensitivity of the Track and Intensity Forecasts of Typhoon Megi (2010) to Satellite-Derived Atmosphere Motion Vectors with the Ensenble Kalman filter. J. Atmos. Oceanic Technol., 29, 1794-1810.Kieu Thi Xin, 2005. Study on large-scale rainfall forecast by modern technology for flood prevention in Vietnam. State-level independent scientific and technological briefing report, 121-151.Kieu Thi Xin, Vu Thanh Hang, Le Duc, Nguyen Manh Linh, 2013. Climate simulation in Vietnam using regional climate nonhydrostatic NHRCM and hydrostatic RegCM models. Vietnam National University, Hanoi. Journal of Natural sciences and technology, 29(2S), 243-25.Krishnamurti T.N., Bounoa L., 1996. An introduction to numerical weather prediction techniques. CRC Press, Boca Raton, FA.Lau K.M., Yang S., 1997. Climatology and interannual variability of the Southeast Asian summer monsoon. Adv. Atmos. Sci., 14,141-162.Li C., Qu X., 1999. Characteristics of Atmospheric Circulation Associated with Summer monsoon onset in the South China Sea. Onset and Evolution of the South China Sea Monsoon and Its Interaction with the Ocean. Ding Yihui, and Li Chongyin, Eds, Chinese Meteorological Press, Beijing, 200-209.Lin N., Smith J.A., Villarini G., Marchok T.P., Baeck M.L., 2010. Modeling Extreme Rainfall, Winds,and Surge from Hurricane Isabel, 25. Doi: 10.1175/2010WAF2222349.Lu J., Zhang Q., Tao S., and Ju J., 2006. The onset and advance of the Asian summer monsoon. Chinese Science Bulletin, 51(1), 80-88.Matsumoto J., 1997. Seasonal transition of summer rainy season over Indochina and adjacent monsoon region. Adv. Atmos. Sci., 14, 231-245.Miyoshi T., and Kunii M., 2012. The Local Ensenble Transform Kalman Filter with the Weather Rearch and Forecasting Model: Experiments with Real Observation. Pure Appl. Geophysic, 169(3), 321-333. Miyoshi T., Yamane S., 2007. Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 3841-3861.Nguyen Khanh Van, Tong Phuc Tuan, Vuong Van Vu, Nguyen Manh Ha, 2013. The heavy rain differences based on topo-geographical analyse at Coastal Central Region, from Thanh Hoa to Khanh Hoa. J. Sciences of the Earth, 35, 301-309.Nguyen Minh Truong, Bui Minh Tuan, 2013. A case study on summer monsoon onset prediction for southern Vietnam in 2012 using the RAMS model. VNU Journal of Science, 29(1S), 179-186.Phillips N.A., 1960b. Numerical weather prediction. Adv. Computers, 1, 43-91, Kalnay 2004.Phillips N., 1960a. On the problem of the initial data for the primitive equations, Tellus, 12, 121126.Phuong Nguyen Duc, 2013. Experiment on combinatorial Kalman filtering method for WRF model to forecast heavy rain in central region in Vietnam. The Third International MAHASRI/HyARC Workshop on Asian Monsoon and Water Cycle, 28-30 August 2013, Da Nang, Viet Nam, 217-224.Richardson L.F., 1922. Weather prediction by numerical process. Cambridge University Press, Cambridge. Reprinted by Dover (1965, New York).Routray, Mohanty U.C., Niyogi D., Rizvi S.R., Osuri K.K., 2008. First application of 3DVAR-WRF data assimilation for mesoscale simulation of heavy rainfall events over Indian Monsoon region. Journal of the Royal Meteorological Society, 1555.Schumacher, R. S., C. A. Davis, 2010. Ensemble-based Forecast Uncertainty Analysis of Diverse Heavy Rainfall Events, 25. Doi: 10.1175/2010WAF2222378.Snyder C., Zhang F., 2003. Assimilation of simulated Doppler radar observations with an Ensemble Kalman filter. Mon. Wea. Rev., 131, 1663.Szunyogh I., Kostelich E.J., Gyarmati G., Kalnay E., Hunt B.R., Ott E., Satterfield E., Yorke J.A., 2008. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A., 60, 113-130.Tanaka M., 1992. Intraseasonal oscillation and the onset and retreat dates of the summer monsoon east, southeast Asia and the western Pacific region using GMS high cloud amount data. J. Meteorol. Soc. Japan, 70, 613-628.Tan Tien Tran, Nguyen Thi Thanh, 2011. The MODIS satellite data assimilation in the WRF model to forecast rainfall in the central region. VNU Journal of Science, Natural Sciences and Technology, 27(3S), 90-95.Tao S., Chen L., 1987. A review of recent research on East summer monsoon in China, Monsoon Meteorology. C. P. Changand T. N. Krishramurti, Eds, Oxford University Press, Oxford, 60-92.Tippett M.K., Anderson J.L., Bishop C.H., Hamill T.M., Whitaker J.S., 2003. Ensemble square root filters. Mon. Wea. Rev., 131, 1485.Thuy Kieu Thi, Giam Nguyen Minh, Dung Dang Van, 2013. Using WRF model to forecast heavy rainfall events on September 2012 in Dong Nai River Basin. The Third International MAHASRI/HyARC Workshop on Asian Monsoon and Water Cycle, 28-30 August 2013, Da Nang, Viet Nam, 185-200.Xavier, Chandrasekar, Singh R. and Simon B., 2006. The impact of assimilation of MODIS data for the prediction of a tropical low-pressure system over India using a mesoscale model. International Journal of Remote Sensing 27(20), 4655-4676. https://doi.org/10.1080/01431160500207302. Wang B., 2003. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Climate, 16(8), 1195-1211.Wang B. and Wu R., 1997. Peculiar temporal structure of the South China Sea summer monsoon. J. Climate., 15, 386-396.Wang L., He J., and Guan Z., 2004. Characteristic of convective activities over Asian Australian ”landbridge” areas and its possible factors. Act a Meteorologic a Sinica, 18, 441-454.Wang, B., and Z. Fan, 1999. Choice of South Asian Summer Monsoon Indices. Bull. Amer. Meteor. Sci., 80, 629-638.Webster P.J., Magana V.O., Palmer T.N., Shukla J., Tomas R.A., Yanai M., Yasunari T., 1998. Monsoons: Processes, predictability, and teprospects for prediction, J. Geophys. Res., 103, 14451-14510.Wilks Daniel S., 1997. Statistical Methods in the Atmospheric Sciences. Ithaca New York., 59, 255.Whitaker J.S., Hamill T.M., 2002. Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913.Wu G., Zhang Y., 1998. Tibetan plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon.Wea.Rev., 126, 913-927.Zhang Z., Chan J.C.L., and Ding Y., 2004. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. J.Climatology, 24, 1461-1482.http://weather.uwyo.edu/upperair/sounding.html and http://tropic.ssec.wisc.edu/archive/
APA, Harvard, Vancouver, ISO, and other styles
5

Sarris, P. F., E. A. Trantas, E. Mpalantinaki, F. N. Ververidis, S. E. Gouma, and D. E. Goumas. "First Report of Pseudomonas viridiflava Causing a Bacterial Blight of Artichoke Bract Leaves." Plant Disease 96, no. 8 (August 2012): 1223. http://dx.doi.org/10.1094/pdis-12-11-1084-pdn.

Full text
Abstract:
In 2006, a disease was observed on two artichoke (Cynara scolymus L. cv. Lardati) fields in Crete, Greece, covering ~2 ha. Symptoms developed after several days of rainy and windy weather and >70% of capitula were affected, resulting in unmarketable produce. Initial symptoms were water-soaked, dark green spots on bracts with many sunken, necrotic, often elongated lesions, each with a brown-black center and surrounded by a water-soaked halo with a dark red-brown margin. Symptoms were more severe on inner bracts. Isolations from symptomatic, surface-disinfected bracts onto King's B agar medium (KB) consistently yielded yellow bacterial colonies that produced a green-blue fluorescent pigment. Ten selected artichoke isolates, all gram-negative, presented the LOPAT profile (- - + - +) and were levan negative, oxidase negative, potato rot positive, arginine dihydrolase negative, and showed tobacco hypersensitive reaction. All isolates used L-arabinose, D(-)-tartrate, and L-lactate, but not sucrose, L(+)-tartrate, or trigonelline. Results were identical to those obtained with the reference strain of Pseudomonas viridiflava NCPPB 1249 (3), and strains PV3005 and PV3006 from eggplant (1). Based on these biochemical tests, 10 isolates were identified as P. viridiflava group II members of the LOPAT determinative scheme of Lelliott (1,2). Two artichoke isolates (PV608 and PV609) were selected for molecular characterization. The identity and phylogenetic analysis were determined by multilocus sequence typing with the gyrB, rpoD, and rpoB genes (PV608 Accession Nos. JN383375, JN383363, and JQ267546; PV609 Accession Nos. JN383376, JN383364, and JQ267547). BLAST searches showed highest nucleotide sequence identity (96%) with GenBank sequences of P. viridiflava reference strains NCPPB 963 and CFBP 2107. Pathogenicity of 10 artichoke isolates and reference strains was tested twice on detached capitulum bracts of artichoke cv. Lardati, as well as 4-week-old tomato plants of cv. ACE, and Chrysanthemum indicum cv. Reagan plants. Each isolate was inoculated onto 10 bracts by placing 15 μl of bacterial suspension (5 × 106 CFU/ml) of a 48-h culture in KB broth on the surface of the bract, and pricking the bract through the drop of bacterial suspension with a sterile needle. Each isolate was also inoculated onto five tomato and five chrysanthemum plants by dipping a sterile toothpick in the appropriate bacterial culture and pricking the surface of the stem. Ten control plants were inoculated similarly with sterile, distilled water. Inoculated bracts and plants were kept in boxes lined with moist filter paper at 25 to 30°C and 80 to 100% relative humidity. Lesions developed on detached bracts within 72 h and were similar to those observed on the naturally infected plants. On tomato and chrysanthemum plants, pith necrosis and wilting symptoms were induced within 1 week of inoculation. Symptoms were not observed on control bracts and plants. Bacterial colonies were reisolated from bract lesions and stems with pith necrosis, but not from control plants, and the reisolates had the same LOPAT profile as the original isolates of P. viridiflava, thus fulfilling Koch's postulates. To our knowledge, this is the first report in the world of P. viridiflava causing a disease of artichoke bracts. References: (1) D. E. Goumas et al. Eur. J. Plant Pathol. 104:181, 1998. (2) Lelliott et al. J. Appl. Bacteriol. 29:470, 1966. (3) M. L. Saunier et al. Appl. Environ. Microbiol. 62:2360, 1996.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography