Academic literature on the topic 'RAIM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'RAIM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "RAIM"

1

Jiang, Yiping, and Jinling Wang. "A-RAIM and R-RAIM Performance using the Classic and MHSS Methods." Journal of Navigation 67, no. 1 (August 15, 2013): 49–61. http://dx.doi.org/10.1017/s0373463313000507.

Full text
Abstract:
Two Receiver Autonomous Integrity Monitoring (RAIM) architectures, Advanced RAIM (A-RAIM) and Relative RAIM (R-RAIM), are compared with two different RAIM algorithms, the Classic method and the Multiple Hypothesis Solution Separation (MHSS) method. The difference between A-RAIM and R-RAIM is in the positioning methods that produce different error models and projection matrices for integrity monitoring. The difference between RAIM algorithms lies in the methods of risk distribution. The influences of different positioning methods on integrity results are analysed in this paper via a generalized RAIM framework. Simulation results for the LPV-200 service with worldwide coverage show that the R-RAIM position domain method has the best results, while the differences between these methods decrease with application of the optimization method.
APA, Harvard, Vancouver, ISO, and other styles
2

Santos, Juliana Pereira dos, Martamaria de Souza Ferraz Ribeiro, Maria Teresita Bendicho, Geraldo Bezerra da Silva Júnior, and Rosa Malena Fagundes Xavier. "Reações Adversas Imunomediadas em pacientes tratados com Inibidores de Checkpoints Imunológicos em um Hospital filantrópico de Salvador." Research, Society and Development 10, no. 2 (February 28, 2021): e58510212928. http://dx.doi.org/10.33448/rsd-v10i2.12928.

Full text
Abstract:
Introdução: Os Inibidores de Checkpoints Imunológicos (ICI) bloqueiam os efeitos inibitórios em receptores como o CTLA-4, PD-1 e PD-L1 e reestabelecem a imunidade antitumoral. Dessa maneira, estão associados a Reações adversas Imunomediadas (RAim) gastrintestinais, dermatológicas, hepáticas e endócrinas. Objetivo: Analisar o perfil das reações adversas imunomediadas em pacientes oncológicos tratados com ICI em um hospital de Salvador/Ba. Método: Trata-se de um estudo observacional, transversal, retrospectivo. Foram avaliadas todas as notificações de reações adversas associadas ao tratamento oncológico com os ICI, documentadas no período de janeiro de 2015 a maio de 2020. A pesquisa foi aprovada pelo Comitê de Ética em Pesquisa, conforme o nº do parecer 4.074.757/2020. Resultados: Durante o período do estudo, 27 pacientes fizeram uso de ICI. Quanto as RAim, 17 desenvolveram RAim. Das RAim mais frequentes, 62% envolveram o Nivolumabe e 21% o Pembrolizumabe. 26% das RAim foram reações gastrintestinais, seguido de 19% reações diversas (como sangramento vaginal e neuropatia); 53% das RAim foram classificadas como reações moderadas. Dentre as medidas terapêuticas adotadas para resolução das RAim, 73% dos ICI foram descontinuados e substituídos por outros quimioterápicos; 53% dos pacientes utilizaram terapias de suporte para manejo de sintomas provocados pelas Raim. Quanto ao desfecho clínico, 53% pacientes se recuperaram das RAim, 24% se recuperaram com sequela e 23% foram a óbito. Conclusão: A introdução de terapêutica dirigida, acompanhamento farmacoterapêutico adequado e o monitoramento pela farmacovigilância favorecerão a identificação de reações adversas imunomediadas, e o uso seguro dos ICI.
APA, Harvard, Vancouver, ISO, and other styles
3

Radišić, Tomislav, Doris Novak, and Tino Bucak. "The Effect of Terrain Mask on RAIM Availability." Journal of Navigation 63, no. 1 (December 1, 2009): 105–17. http://dx.doi.org/10.1017/s0373463309990294.

Full text
Abstract:
Receiver Autonomous Integrity Monitoring (RAIM) is a method, used by an aircraft's receiver, for detecting and isolating faulty satellites of the Global Navigation Satellite System (GNSS). In order for a receiver to be able to detect and isolate a faulty satellite using a RAIM algorithm, a couple of conditions must be met: a minimum number of satellites, and an adequate satellite geometry. Due to the highly predictable orbits of the GPS satellites, a RAIM availability prediction can be done easily. A number of RAIM methods exist; however, none of them takes into account the precise terrain masking of the satellites for the specific location. They consider a uniform fixed mask angle over the whole horizon. This paper will introduce the variable mask RAIM algorithm in order to show to what extent the terrain can affect the RAIM availability and how much it differs from the conventional algorithms.
APA, Harvard, Vancouver, ISO, and other styles
4

Sun, Jun, and Yong Gang Yang. "Analysis and Simulation of an Autonomous Integrity Monitoring Algorithm for Dual-Mode Navigation Receiver." Advanced Materials Research 765-767 (September 2013): 2097–100. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.2097.

Full text
Abstract:
A dual-mode receiver combination of GPS and Compass (BD) is introduced on the assumption when only one of the satellites had a failure, how to implement a weighting RAIM monitoring. And the GPS and BD in single mode and the GPS/BD dual-mode were simulated to produce the Fault Detection Rates and RAIM integrity availability. It is demonstrated that the dual-mode RAIM algorithm is superior to any kind of single-system RAIM algorithms.
APA, Harvard, Vancouver, ISO, and other styles
5

ANGUS, J. E. "RAIM with Multiple Faults." Navigation 53, no. 4 (December 2006): 249–57. http://dx.doi.org/10.1002/j.2161-4296.2006.tb00387.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zi Lu, and Bin Wu. "GNSS RAIM Performance Analysis for World Wide Area." Applied Mechanics and Materials 565 (June 2014): 217–22. http://dx.doi.org/10.4028/www.scientific.net/amm.565.217.

Full text
Abstract:
Multi-constellations provide much better satellite geometrics, thus RAIM algorithms areexpected to achieve greater reliability and integrity performance. This paper mainly discusses different RAIM algorithms and gives simulations of RAIM availability and reliability of standalone GPS and integrated GPS/GLONASS, GPS/BEIDOU and GPS/GLONASS/BEIDOU constellations.The results show that multi-constellation improve RAIM availability and reliability greatly. It is no less than 99.7%for APV I. Also MDB values indicate thatinternal and external reliability of satellite navigation system can be enhanced by multi-constellation.
APA, Harvard, Vancouver, ISO, and other styles
7

Feng, Shaojun, Washington Y. Ochieng, David Walsh, and Rigas Ioannides. "A Highly Accurate and Computationally Efficient Method for Predicting RAIM Holes." Journal of Navigation 59, no. 1 (December 15, 2005): 105–17. http://dx.doi.org/10.1017/s037346330500353x.

Full text
Abstract:
Receiver Autonomous Integrity Monitoring (RAIM) is a method implemented within the receiver to protect users against satellite navigation system failures. For a receiver to execute a RAIM calculation, two conditions must be met: a minimum number of satellites and adequate satellite geometry. The non-existence of the minimum number of satellites (five) is referred to as a RAIM hole. Current regional and global RAIM availability studies use spatial (grid-based) and temporal sampling intervals driven by a trade-off between accuracy and computation workload. The implication of minimising computational load is that accuracy is compromised and potential RAIM holes remain un-sampled, with potential risk to safety. This paper proposes a direct and computationally efficient method (as opposed to the grid-based search approach) to predict RAIM holes. The method is based on the precise computation of satellite coverage (footprint) boundaries, the intersection points and analysis of the topology of the regions of intersection. Test results show that the proposed method is highly accurate and requires minimal computational load compared to the current approach.
APA, Harvard, Vancouver, ISO, and other styles
8

Joerger, Mathieu, Stefan Stevanovic, Steven Langel, and Boris Pervan. "Integrity Risk Minimisation in RAIM Part 1: Optimal Detector Design." Journal of Navigation 69, no. 3 (January 6, 2016): 449–67. http://dx.doi.org/10.1017/s0373463315000983.

Full text
Abstract:
This paper describes the first of a two-part research effort to find the optimal detector and estimator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring (RAIM). In this first part, a new method is established to determine a piecewise linear approximation of the optimal detection region in parity space. The paper presents examples suggesting that the optimal detection boundary lays in between that obtained using chi-squared residual-based RAIM, and that provided by Solution Separation (SS) RAIM, as one varies the alert limit requirement. In addition, these examples indicate that for realistic navigation requirements, the SS RAIM method approaches the optimal detection region. The SS RAIM detection tests will be employed in the second part of this work, which focuses on the design of non-least-squares estimators to reduce the integrity risk in exchange for a slight increase in nominal positioning error.
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Daehee, and Jeongho Cho. "Improvement of Anomalous Behavior Detection of GNSS Signal Based on TDNN for Augmentation Systems." Sensors 18, no. 11 (November 6, 2018): 3800. http://dx.doi.org/10.3390/s18113800.

Full text
Abstract:
The reliability of a navigation system is crucial for navigation purposes, especially in areas where stringent performance is required, such as civil aviation or intelligent transportation systems (ITSs). Therefore, integrity monitoring is an inseparable part of safety-critical navigation applications. The receiver autonomous integrity monitor (RAIM) has been used with the global navigation satellite system (GNSS) to provide integrity monitoring within avionics itself, such as in civil aviation for lateral navigation (LNAV) or the non-precision approach (NPA). However, standard RAIM may not meet the stricter aviation availability and integrity requirements for certain operations, e.g., precision approach flight phases, and also is not sufficient for on-ground vehicle integrity monitoring of several specific ITS applications. One possible way to more clearly distinguish anomalies in observed GNSS signals is to take advantage of time-delayed neural networks (TDNNs) to estimate useful information about the faulty characteristics, rather than simply using RAIM alone. Based on the performance evaluation, it was determined that this method can reliably detect flaws in navigation satellites significantly faster than RAIM alone, and it was confirmed that TDNN-based integrity monitoring using RAIM is an encouraging alternative to improve the integrity assurance level of RAIM in terms of GNSS anomaly detection.
APA, Harvard, Vancouver, ISO, and other styles
10

Blanch, Juan, Todd Walter, and Per Enge. "Optimal Positioning for Advanced Raim." Navigation 60, no. 4 (December 2013): 279–89. http://dx.doi.org/10.1002/navi.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "RAIM"

1

Charbonnieras, Christophe. "Mesure d’intégrité par l’exploitation des signaux de navigation par satellites." Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0036/document.

Full text
Abstract:
Dans le cadre des systèmes de positionnement par satellite GNSS (« Global Navigation Satellite Systems »), l’intégritéde la navigation d’un utilisateur est gérée en réception par la détection, l’identification voire l’exclusion de mesures depseudo-distance jugées erronées. Généralement basés sur le concept a posteriori RAIM (« Receiver Autonomous IntegrityMonitoring »), les algorithmes de contrôle autonome d’intégrité fournissent de hautes performances pour l’aviation civile,dont le contexte de navigation est caractérisé par une forte visibilité des satellites et peu de signaux parasites captéspar l’antenne réceptrice. L’algorithme WLSR RAIM est communément utilisé dans ce cadre. Néanmoins, les techniquesRAIM ne sont pas compatibles avec la navigation terrestre en milieu contraint. En effet, le contexte urbain est notammentcaractérisé par un masquage récurrent des signaux satellitaires directs ainsi que la réception de multi-trajets générés parl’environnement proche du récepteur. RAIM ne prend pas en compte l’ensemble des données disponibles en réception,dégradant ainsi fortement ses performances. Il est donc nécessaire de développer des méthodes de contrôle d’intégritécompatibles avec un tel contexte de navigation. Pour cela, la thèse propose d’étudier l’apport d’informations GNSS a priorinon utilisées par les techniques RAIM. Deux paramètres principaux ont été exploités : le signal GNSS brut reçu et lesestimations de directions d’arrivée des signaux satellitaires DOA (« Direction Of Arrival »). La première étape a consisté à implémenter une méthode a priori qui évalue la cohérence du positionnement estimé par rapport au signal brut directement reçu. Cette méthode a été nommée Direct-RAIM (D-RAIM) et a démontré une forte sensibilité de détection, permettant d’anticiper d’éventuels risques sur la navigation et de caractériser plus finement la qualité de l’environnement proche du récepteur. Toutefois, le caractère a priori de l’approche engendre de potentielles non détection d’erreurs en cas de modèle de signal défectueux. Afin de contourner cette limitation, un couplage WLSRRAIM – D-RAIM a été développé, nommé Hybrid-RAIM (H-RAIM). Une telle approche permet de combiner robustesse etsensibilité apportées par ces techniques respectives. Le second axe de recherche a mis en évidence la contribution de l’information des DOA dans un contrôle autonome d’intégrité. L’intégration d’un réseau d’antennes en réception permet d’obtenir l’estimation des DOA pour l’ensemble dela constellation visible. Théoriquement, l’évolution jointe des DOA est directement liée à l’attitude du réseau. Cet aspectpermet donc de détecter toute incohérence sur une ou plusieurs voies en cas d’estimation(s) de DOA biaisée(s), par rapportà l’ensemble de la constellation. L’algorithme RANSAC (« RANdom SAmple Consensus») a été utilisé afin de détecter toutcomportement aberrant dans l’estimation des DOA, et ainsi mesurer la confiance que l’utilisateur peut placer dans chaquevoie. L’algorithme WLSR RAIM RANSAC a ainsi été implémenté. L’intégration de la composante DOA permet d’ajouterun degré de liberté dans le contrôle autonome d’intégrité côté récepteur et ainsi d’affiner la détection voire l’exclusiond’erreurs. Au cours de cette thèse, un récepteur logiciel a été implémenté, permettant de traiter des signaux Galileo, de lagénération du signal jusqu’au positionnement puis au contrôle d’intégrité. Ce récepteur a pu être évalué à partir de donnéessimulées en environnement urbain
In Global Navigation Satellite Systems (GNSS) applications, integrity is managed at the reception side by detection,identification and exclusion of faulty pseudorange measurements. Usually based on the a posteriori Receiver AutonomousIntegrity Monitoring (RAIM) concept, integrity techniques provide high performances for civil aviation, with a navigationcontext defined by a clear-sky environment. WLSR RAIM is commonly used. Nevertheless, RAIM techniques are notcompatible with a terrestrial navigation in harsh environments. For instance, urban areas are characterized by a poorvisibility and the reception of many multipaths derived from the receiver closed-environment. RAIM does not consider allthe available data in the reception chain, which dramatically deteriorates the detection performances. Hence, it is necessaryto develop integrity process compatible with such a navigation context. This PhD work studies the contribution of GNSSa priori information, disused by conventional RAIM techniques. Two main parameters have been exploited : the receivedraw GNSS signal and the Directions Of Arrival (DOA) estimations.This first step was devoted to the development of an a priori method which evaluates the consistence of the estimatedPosition Velocity Time (PVT) vector of the receiver with respect to the raw GNSS signal. This method has been calledDirect-RAIM (D-RAIM) and has shown high detection sensitivity, allowing the user to anticipate navigation risks and todefine precisely the quality of the receiver closed-environment. However, the a priori aspect of this approach may lead tonavigation error missed detections if the signal model is getting flawed. In order to circumvent this limitation, a WLSRRAIM – D-RAIM coupling has been developed, called Hybrid-RAIM (H-RAIM). Such an approach merges the robustnessand the sensitivity brought by both techniques.The second research step has brought to light the contribution of the DOA information in an autonomous integritymonitoring. Using an antenna array, the user can get the DOA estimations for all satellites in view. Theoretically, the DOAjoint evolution is directly correlated with the array rotation angles. Hence, any mismatch on the DOA estimations withrespect to the global constellation can be detected. RANdom Sample Consensus (RANSAC) algorithm has been used inorder to detect any faulty DOA evolution, derived from inconsistencies in reception linked to potential navigation risks :RANSAC measures the trust that the user can place in each channel. Therefore, a WLSR RAIM RANSAC algorithmhas been developed. The integration of the DOA component adds a degree of freedom in receiver autonomous integritymonitoring, refining the error detection and exclusion.Last but not least, a software receiver has been implemented processing Galileo data, from the signal generation to positioningand integrity monitoring. This software has been evaluated by simulated data characterizing urban environments
APA, Harvard, Vancouver, ISO, and other styles
2

Rotondo, Giuseppe. "Processing and integrity of DC/DF GBAS for CAT II/III operations." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/17774/1/Rotondo_Giuseppe_1.pdf.

Full text
Abstract:
In Civil Aviation domain, to cope with the increasing traffic demand, research activities are pointed toward the optimization of the airspace capacity. Researches are thus ongoing on all Civil Aviation areas: Communication, Navigation, Surveillance (CNS) and Air Traffic Management (ATM). Focusing on the navigation aspect, the goals are expected to be met by improving performances of the existing services through the developments of new NAVigation AIDS (NAVAIDS) and the definition of new procedures based on these new systems. The Global Navigation Satellite System (GNSS) is recognized as a key technology in providing accurate navigation services with a worldwide coverage. The GNSS concept was defined by the International Civil Aviation Organization (ICAO). A symbol of its importance, in civil aviation, can be observed in the avionics of new civil aviation aircraft since a majority of them are now equipped with GNSS receivers. The GNSS concept includes the provision of an integrity monitoring function by an augmentation system in addition to the core constellations. This is needed to meet all the required performance metrics of accuracy, integrity, continuity and availability which cannot be met by the stand-alone constellations such as GPS. Three augmentation systems have been developed within civil aviation: the GBAS (Ground Based Augmentation System), the SBAS (Satellite Based Augmentation System) and the ABAS (Aircraft Based Augmentation System). GBAS, in particular, is currently standardized to provide precision approach navigation services down to Category I (CAT I) using GPS or Glonass constellations and L1 band signals. This service is known as GBAS Approach Service Type-C (GAST-C). In order to extend this concept down to CAT II/III service, research activities is ongoing to define the new service called a GAST-D. Among other challenges, the monitoring of the ionospheric threat is the area where the integrity requirement is not met. Thanks to the deployment of new constellations, Galileo and Beidou, and the modernization process of the existing ones, GPS and Glonass, the future of GNSS is envisaged to be Multi-Constellation (MC) and Multi-frequency (MF). In Europe, research activities have been focused on a Dual-Constellation (DC) GNSS and DC GBAS services based on GPS and Galileo constellations. Moreover, to overcome the problems experienced by Single-Frequency (SF) GBAS due to ionosphere anomalies, the use of two frequencies (Dual Frequency, DF) has been selected as a mean to improve ionosphere anomalies detection and to mitigate ionosphere residual errors. Advantages in using a DC/DF GBAS (GAST-F) system are, however, not only related to the integrity monitoring performance improvement. Benefits, brought by DC and DF, are also related to •the robustness of the entire system against unintentional interference thanks to the use of measurements in two protected frequency bands, •the robustness against a constellation failure, •the accuracy improvement by using new signals with improved performance, and more satellites. However, the use of new signals and a new constellation, does not bring only benefits. It also raises a series of challenges that have to be solved to fully benefit from the new concept. In this thesis, some challenges, related to DC/DF GBAS, have been investigated. One of them, rising from the use of new GNSS signals, is to determine the impact of error sources that are uncorrelated between the ground station and the aircraft and that induce an error on the estimated position. Using two frequencies, there is the possibility to form measurement combinations like Divergence-free (D-free) and Ionosphere-free (I-free) for which the errors impact has to be analyzed. In this thesis, the impact of the uncorrelated errors (noise and multipath as main sources) on ground measurements is analyzed. The aim is to compare the derived performances with the curve proposed in (RTCA,Inc DO-253C, 2008) for the
APA, Harvard, Vancouver, ISO, and other styles
3

Mink, Michael [Verfasser], and B. [Akademischer Betreuer] Heck. "Performance of Receiver Autonomous Integrity Monitoring (RAIM) for Maritime Operations / Michael Mink ; Betreuer: B. Heck." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1122461410/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salós, Andrés Carlos Daniel. "Integrity monitoring applied to the reception of GNSS signals in urban environments." Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0047/document.

Full text
Abstract:
L’intégrité des signaux GNSS est définie comme la mesure de la confiance qui peut être placée dans l’exactitude des informations fournies par le système de navigation. Bien que le concept d’intégrité GNSS a été initialement développé dans le cadre de l’aviation civile comme une des exigences standardisées par l’Organisation de l’Aviation Civile Internationale (OACI) pour l’utilisation du GNSS dans les systèmes de Communication, Navigation, et Surveillance / Contrôle du Trafic Aérien (CNS/ATM), un large éventail d’applications non aéronautiques ont également besoin de navigation par satellite fiable avec un niveau d’intégrité garanti. Beaucoup de ces applications se situent en environnement urbain. Le contrôle d’intégrité GNSS est un élément clé des applications de sécurité de la vie (SoL), telle que l’aviation, et des applications exigeant une fiabilité critique comme le télépéage basé sur l’utilisation du GNSS, pour lesquels des erreurs de positionnement peuvent avoir des conséquences juridiques ou économiques. Chacune de ces applications a ses propres exigences et contraintes, de sorte que la technique de contrôle d’intégrité la plus appropriée varie d’une application à l’autre. Cette thèse traite des systèmes de télépéage utilisant GNSS en environnement urbain. Les systèmes de navigation par satellite sont l’une des technologies que l’UE recommande pour le Service Européen de Télépéage Electronique (EETS). Ils sont déjà en cours d’adoption: des systèmes de télépéage pour le transport poids lourd utilisant GPS comme technologie principale sont opérationnels en Allemagne et en Slovaquie, et un système similaire est envisagé en France à partir de 2013. À l’heure actuelle, le contrôle d’intégrité GPS s’appuie sur des systèmes d´augmentation (GBAS, SBAS, ABAS) conçus pour répondre aux exigences de l’OACI pour les opérations aviation civile. C´est la raison pour laquelle cette thèse débute par une présentation du concept d’intégrité en aviation civile afin de comprendre les performances et contraintes des systèmes hérités. La thèse se poursuit par une analyse approfondie des systèmes de télépéage et de navigation GNSS en milieu urbain qui permets de dériver les techniques de contrôle d’intégrité GNSS les plus adaptées. Les algorithmes autonomes de type RAIM ont été choisis en raison de leur souplesse et leur capacité d´adaptabilité aux environnements urbains. Par la suite, le modèle de mesure de pseudodistances est élaboré. Ce modèle traduit les imprécisions des modèles de correction des erreurs d’horloge et d’ephemeride, des retards ionosphériques et troposphériques, ainsi que le bruit thermique récepteur et les erreurs dues aux multitrajets. Les exigences d’intégrité GNSS pour l’application télépéage sont ensuite dérivées à partir de la relation entre les erreurs de positionnement et leur effets dans la facturation finale. Deux algorithmes RAIM sont alors proposés pour l’application péage routier. Le premier est l’algorithme basé sur les résidus de la solution des moindres carrés pondérés (RAIM WLSR), largement utilisé dans l’aviation civile. Seulement, un des principaux défis de l’utilisation des algorithmes RAIM classiques en milieux urbains est un taux élevé d’indisponibilité causé par la mauvaise géométrie entre le récepteur et les satellites. C’est pour cela que un nouvel algorithme RAIM est proposé. Cet algorithme, basé sur le RAIM WLSR, est conçu de sorte à maximiser l’occurrence de fournir un positionnement intègre dans un contexte télépéage. Les performances des deux algorithmes RAIM proposés et des systèmes de télépéage associés sont analysés par simulation dans différents environnements ruraux et urbains. Dans tous les cas, la disponibilité du nouvel RAIM est supérieure à celle du RAIM WLSR
Global Navigation Satellite Systems (GNSS) integrity is defined as a measure of the trust that can be placed in the correctness of the information supplied by the navigation system. Although the concept of GNSS integrity has been originally developed in the civil aviation framework as part of the International Civil Aviation Organization (ICAO) requirements for using GNSS in the Communications, Navigation, and Surveillance / Air Traffic Management (CNS/ATM) system, a wide range of non-aviation applications need reliable GNSS navigation with integrity, many of them in urban environments. GNSS integrity monitoring is a key component in Safety of Life (SoL) applications such as aviation, and in the so-called liability critical applications like GNSS-based electronic toll collection, in which positioning errors may have negative legal or economic consequences. At present, GPS integrity monitoring relies on different augmentation systems (GBAS, SBAS, ABAS) that have been conceived to meet the ICAO requirements in civil aviation operations. For this reason, the use of integrity monitoring techniques and systems inherited from civil aviation in non-aviation applications needs to be analyzed, especially in urban environments, which are frequently more challenging than typical aviation environments. Each application has its own requirements and constraints, so the most suitable integrity monitoring technique varies from one application to another. This work focuses on Electronic Toll Collection (ETC) systems based on GNSS in urban environments. Satellite navigation is one of the technologies the directive 2004/52/EC recommends for the European Electronic Toll Service (EETS), and it is already being adopted: toll systems for freight transport that use GPS as primary technology are operational in Germany and Slovakia, and France envisages to establish a similar system from 2013. This dissertation begins presenting first the concept of integrity in civil aviation in order to understand the objectives and constraints of existing GNSS integrity monitoring systems. A thorough analysis of GNSS-based ETC systems and of GNSS navigation in urban environments is done afterwards with the aim of identifying the most suitable road toll schemes, GNSS receiver configurations and integrity monitoring mechanisms. Receiver autonomous integrity monitoring (RAIM) is chosen among other integrity monitoring systems due to its design flexibility and adaptability to urban environments. A nominal pseudorange measurement model suitable for integrity-driven applications in urban environments has been calculated dividing the total pseudorange error into five independent error sources which can be modelled independently: broadcasted satellite clock corrections and ephemeris errors, ionospheric delay, tropospheric delay, receiver thermal noise (plus interferences) and multipath. In this work the fault model that includes all non-nominal errors consists only of major service failures. Afterwards, the GNSS integrity requirements are derived from the relationship between positioning failures and toll charging errors. Two RAIM algorithms are studied. The first of them is the Weighted Least Squares Residual (WLSR) RAIM, widely used in civil aviation and usually set as the reference against which other RAIM techniques are compared. One of the main challenges of RAIM algorithms in urban environments is the high unavailability rate because of the bad user/satellite geometry. For this reason a new RAIM based on the WLSR is proposed, with the objective of providing a trade-off between the false alarm probability and the RAIM availability in order to maximize the probability that the RAIM declares valid a fault-free position. Finally, simulations have been carried out to study the performance of the different RAIM and ETC systems in rural and urban environments. In all cases, the availability obtained with the novel RAIM improve those of the standard WLSR RAIM
APA, Harvard, Vancouver, ISO, and other styles
5

Hewitson, Steve Surveying &amp Spatial Information Systems Faculty of Engineering UNSW. "Quality control for integrated GNSS and inertial navigation systems." Awarded by:University of New South Wales. Surveying and Spatial Information Systems, 2006. http://handle.unsw.edu.au/1959.4/25534.

Full text
Abstract:
The availability of GPS signals is a major limitation for many existing and potential applications. Fortunately, with the development of Galileo by the European Commission (EC) and European Space Agency (ESA) and new funding for the restoration of the Russian GLONASS announced by the Russian Federation the future for satellite based positioning and navigation applications is extremely promising. This research primarily investigates the benefits of GNSS interoperability and GNSS/INS integration to Receiver Autonomous Integrity Monitoring (RAIM) from a geometrical perspective. In addition to these investigations, issues regarding multiple outlier detection and identification are examined and integrity procedures addressing these issues are proposed. Moreover, it has been shown how the same RAIM algorithms can be effectively applied to the various static and kinematic navigation architectures used in this research.
APA, Harvard, Vancouver, ISO, and other styles
6

Younes, Abdelrazak. "Théorie séquentielle appliquée au contrôle de l'intégrité du GNSS et à l'hybridation GNSS/INS." Toulouse, INPT, 2000. http://www.theses.fr/2000INPT044H.

Full text
Abstract:
Un récepteur GPS (Système de Positionnement Global par satellite) permet à son utilisateur de connaître sa position et sa vitesse à tout moment et à tout endroit du globe. Malheureusement, le GPS ne peut satisfaire à lui seul les exigences de l'OACI (Organisation de l'Aviation Civile Internationale) pour devenir un moyen unique de navigation. Il doit être amélioré pour cela. Une des principales limitations du GPS est son intégrité. Celle-ci peut être améliorée grâce à une augmentation du GPS ou par son hybridation avec un autre système de navigation. Au niveau du récepteur GPS, un module RAIM (Receiver Autonomous Integrity Monitoring) est proposé pour effectuer le contrôle autonome de l'intégrité du système. Ce module se sert de la redondance inhérente aux mesures GPS pour s'assurer qu'aucune panne n'affecte la solution GPS de navigation. En cas de panne, le RAIM doit aussi pouvoir rapidement détecter cette panne et exclure le satellite qui est en cause. Il existe deux sortes de RAIMs : le RAIM Snapshot n'utilise que les mesures GPS instantanées alors que le RAIM Séquentiel se sert de toutes les mesures passées et présentes pour décider de l'intégrité du système. La géométrie des satellites utilisée pour la solution de navigation peut nuire à la détection et/ou l'isolation d'une panne. Dans ces cas de figure, des tests sur mesures réelles et des simulations montrent que le RAIM Séquentiel est beaucoup plus performant que le RAIM Snapshot. De cette capacité à fonctionner sous des conditions adverses, la disponibilité du GPS lorsqu'il est contrôlé par un RAIM Séquentiel est naturellement améliorée. Beaucoup d'avions civils intègrent un Système de Navigation Inertielle (INS). Grâce à leur grande complémentarité, l'hybridation des systèmes GPS et INS peut devenir un moyen unique de navigation pour certaines phases de vol. Dans ce système, il faut s'assurer que la solution GPS utilisée pour recaler la solution INS soit intègre. C'est ce que permet le RAIM Séquentiel grâce à ses qualités théoriques (vérifiées par simulations). Un schéma d'hybridation exploitant ces qualités est présenté.
APA, Harvard, Vancouver, ISO, and other styles
7

Neri, Pierre. "Use of GNSS signals and their augmentations for Civil Aviation navigation during Approaches with Vertical Guidance and Precision Approaches." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0073/document.

Full text
Abstract:
La navigation par satellite, Global Navigation Satellite System, a été reconnue comme une solution prometteuse afin de fournir des services de navigation aux utilisateurs de l'Aviation Civile. Ces dernières années, le GNSS est devenu l'un des moyens de navigation de référence, son principal avantage étant sa couverture mondiale. Cette tendance globale est visible à bord des avions civils puisqu'une majorité d'entre eux est désormais équipée de récepteurs GNSS. Cependant, les exigences de l'Aviation Civile sont suffisamment rigoureuses et contraignantes en termes de précision de continuité, de disponibilité et d'intégrité pour que les récepteurs GPS seuls ne puissent être utilisés comme unique moyen de navigation. Cette réalité a mené à la définition de plusieurs architectures visant à augmenter les constellations GNSS. Nous pouvons distinguer les SBAS (Satellite Based Augmentation Systems), les GBAS (Ground Based Augmentation Systems), et les ABAS (Aircraft Based Augmentation Systems). Cette thèse étudie le comportement de l'erreur de position en sortie d'architectures de récepteur qui ont été identifiées comme étant très prometteuses pour les applications liées à l'Aviation Civile
Since many years, civil aviation has identified GNSS as an attractive mean to provide navigation services for every phase of flight due to its wide coverage area. However, to do so, GNSS has to meet relevant requirements in terms of accuracy, integrity, availability and continuity. To achieve this performance, augmentation systems have been developed to correct the GNSS signals and to monitor the quality of the received Signal-In-Space (SIS). We can distinguish GBAS (Ground Based Augmentation Systems), ABAS (Airborne Based Augmentation Systems) SBAS (Satellite Based Augmentation Systems). In this context, the aim of this study is to characterize and evaluate the GNSS position error of various positioning solutions which may fulfil applicable civil aviation requirements for GNSS approaches. In particular, this study focuses on two particular solutions which are: • Combined GPS/GALILEO receivers augmented by RAIM where RAIM is a type of ABAS augmentation. This solution is a candidate to provide a mean to conduct approaches with vertical guidance (APV I, APV II and LPV 200). • GPS L1 C/A receivers augmented by GBAS. This solution should allow to conduct precision approaches down to CAT II/III, thus providing an alternative to classical radio navigation solutions such as ILS. This study deals with the characterization of the statistics of the position error at the output of these GNSS receivers. It is organised as following. First a review of civil aviation requirements is presented. Then, the different GNSS signals structure and the associated signal processing selected are described. We only considered GPS and GALILEO constellations and concentrated on signals suitable for civil aviation receivers. The next section details the GNSS measurement models used to model the measurements made by civil aviation receivers using the previous GNSS signals. The following chapter presents the GPS/GALILEO and RAIM combination model developed as well as our conclusions on the statistics of the resulting position error. The last part depicts the GBAS NSE (Navigation System Error) model proposed in this report as well as the rationales for this model
APA, Harvard, Vancouver, ISO, and other styles
8

Perea, Diaz Santiago Verfasser], Michael [Akademischer Betreuer] [Meurer, Boris [Akademischer Betreuer] Pervan, and Jens-Rainer [Akademischer Betreuer] Ohm. "Design of an integrity support message for offline advanced RAIM / Santiago Perea Diaz ; Michael Meurer, Boris Pervan, Jens-Rainer Ohm." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1194239242/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martineau, Anaïs. "Étude de la performance du contrôle autonome d'intégrité pour les approches à guidage vertical." Toulouse, INPT, 2008. http://ethesis.inp-toulouse.fr/archive/00000984/.

Full text
Abstract:
Afin de répondre aux exigences opérationnelles de l'aviation civile, les systèmes de navigation par satellite requièrent l'appui de moyens d'augmentation tels que ceux utilisant des stations de surveillance sol ou ceux fonctionnant de manière autonome, tel le RAIM (Receiver Autonomous Integrity Monitoring). Cette méthode engendre des coûts de mise en oeuvre réduits et constitue à l'heure actuelle un moyen simple et efficace d'effectuer des approches de non précision. Or la future mise en place du système de navigation européen Galileo ainsi que la modernisation du système historique américain GPS vont entrainer une nette amélioration, à la fois en terme de nombre et de qualité, des mesures satellitaires disponibles, laissant entrevoir la possible utilisation du RAIM pour des approches à guidage vertical, très intéressantes du point de vue opérationnel. Cette étude porte sur l'évaluation des performances du RAIM qu'il soit basé sur des algorithmes classiques ou innovants
To ensure civil aviation requirements different architectures are defined to augment basic Global Navigation Satellite System constellations. Among them, Receiver Autonomous Integrity Monitoring (RAIM) is a simple and efficient solution to check the integrity down to Non Precision Approaches. The future introduction of Galileo and modernized GPS will imply great improvements in the number and in the quality of available measurements. Thus, more demanding phases of flight such as approaches with vertical guidance could be targeted using classical or new RAIM techniques to provide integrity monitoring. The goal of this thesis is to carefully evaluate the RAIM resulting performance, as more available measurements also implies a larger number of potential faulty measurements. Moreover, the targeted phases of flight are also characterized by more stringent requirements resulting in smaller threatening range errors to be detected
APA, Harvard, Vancouver, ISO, and other styles
10

Norris, Natasha Louise. "Implementation of Multi-Constellation Baseline Fault Detection and Exclusion Algorithm Utilizing GPS and GLONASS Signals." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1535028817622931.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "RAIM"

1

Mills, Peter. Rain! rain! Sisters, Or: Gold 'n' Honey Books, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Utriainen, Raimo. Raimo Uturiainen: Raimo Utriainen. Sapporo-shi: Sapporo Geijutsu no Mori, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rain, rain, smurf away! London: Simon & Schuster, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lundell, Margo. Rain, rain, go away. Racine, Wis: Golden Books Pub. Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Archambault, John. Rain, rain go away. Mount Joy, PA: Childcraft Education Corp., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hall, Susan (Susan G.), ill and Scull Robert, eds. Rain, rain, go away. New York: Simon Spotlight/Nickelodeon, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Archambault, John. Rain, rain go away. Mt. Joy, PA: Childcraft Education Corp., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reed, Teresa. Rain, rain, go away. New York, N.Y: Aladdin Paperbacks, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

ill, Wilhelm Hans 1945, ed. Rain! Rain! Go away! New York: Scholastic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rain, rain, go away! New York, NY: Scholastic, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "RAIM"

1

Li, Rui, Xinyuan Zhang, and Zhigang Huang. "Relative RAIM Based on IMM." In Lecture Notes in Electrical Engineering, 3–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29193-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhaoyang, Qingsong Li, and Jie Wu. "RAIM Algorithm Based on Residual Separation." In Lecture Notes in Electrical Engineering, 233–43. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4591-2_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, Yimin, Hong Li, Chenxi Peng, and Mingquan Lu. "Time Domain Differential RAIM Method for Spoofing Detection Applications." In Lecture Notes in Electrical Engineering, 606–14. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7759-4_53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Zhengnan, Huaijian Li, and Xiaojing Du. "Improved RAIM Algorithm Based on Kalman Innovation Monitoring Method." In Lecture Notes in Electrical Engineering, 759–68. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0005-9_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Ershen, Rui Li, Tao Pang, Pingping Qu, and Zhixian Zhang. "Research on GPS RAIM Algorithm Using PF Based on PSO." In China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume II, 199–210. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0937-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Fuxia, Ershen Wang, Tao Pang, Pingping Qu, and Zhixian Zhang. "Research on RAIM Algorithm Based on GPS/BDS Integrated Navigation." In Lecture Notes in Electrical Engineering, 221–31. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4591-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Luo, Si-long, Li Wang, Rui Tu, Ya-bing Zhang, and Wei-qi Zhang. "An Improved RAIM Algorithm and Hatch-Type Filter Smoothing Strategy." In Lecture Notes in Electrical Engineering, 375–85. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0029-5_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Qianqian, and Qingming Gui. "Carrier-Phase RAIM Algorithm Based on a Vector Autoregressive Model." In Lecture Notes in Electrical Engineering, 125–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46635-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jianfeng, Hong Li, Chenxi Peng, Jian Wen, and Mingquan Lu. "Research on the Random Traversal RAIM Method for Anti-spoofing Applications." In Lecture Notes in Electrical Engineering, 593–605. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7759-4_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, LongXia, XiaoHui Li, YanRong Xue, ChengLin Cai, and MeiJun Guo. "System Time Offset Based RAIM in Combined GPS/Beidou Navigation System." In Lecture Notes in Electrical Engineering, 137–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29193-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "RAIM"

1

Xu, Yanbo, Siddharth Biswal, Shriprasad R. Deshpande, Kevin O. Maher, and Jimeng Sun. "RAIM." In KDD '18: The 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3219819.3220051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Joerger, Mathieu, Stefan Stevanovic, Samer Khanafseh, and Boris Pervan. "Differential RAIM and relative RAIM for orbit ephemeris fault detection." In 2012 IEEE/ION Position, Location and Navigation Symposium - PLANS 2012. IEEE, 2012. http://dx.doi.org/10.1109/plans.2012.6236879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ober, P. B., D. A. G. Harriman, and J. Wilde. "Augur: RAIM for dummies." In 1999 IEEE Aerospace Conference. Proceedings (Cat. No.99TH8403). IEEE, 1999. http://dx.doi.org/10.1109/aero.1999.793184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jian, Chen, and Ren Yafei. "RAIM in Integrated Navigation System." In 2007 8th International Conference on Electronic Measurement and Instruments. IEEE, 2007. http://dx.doi.org/10.1109/icemi.2007.4350622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Shubh, and Grace Xingxin Gao. "Particle RAIM for Integrity Monitoring." In 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019). Institute of Navigation, 2019. http://dx.doi.org/10.33012/2019.16939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schurmann, Dominik, Felix Busching, Sebastian Willenborg, and Lars Wolf. "RAIM: Redundant array of independent motes." In 2017 International Conference on Networked Systems (NetSys). IEEE, 2017. http://dx.doi.org/10.1109/netsys.2017.7903957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Young C., and Michael P. McLaughlin. "A position domain relative RAIM method." In 2008 IEEE/ION Position, Location and Navigation Symposium. IEEE, 2008. http://dx.doi.org/10.1109/plans.2008.4570016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xinyuan, Zhigang Huang, and Rui Li. "RAIM analysis in the position domain." In 2010 IEEE/ION Position, Location and Navigation Symposium - PLANS 2010. IEEE, 2010. http://dx.doi.org/10.1109/plans.2010.5507200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Blanch, Juan, and Todd Walter. "Stress Testing Advanced RAIM Airborne Algorithms." In 2020 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2020. http://dx.doi.org/10.33012/2020.17153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blázquez, F., G. Moreno, A. Cezón, T. Tavares, and K. Callewaert. "Revision of RAIM Implementation for Maritime." In 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020). Institute of Navigation, 2020. http://dx.doi.org/10.33012/2020.17732.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "RAIM"

1

Sepulveda, Misa, and Sheri L. Dragoo. Confetti Rain. Ames: Iowa State University, Digital Repository, 2014. http://dx.doi.org/10.31274/itaa_proceedings-180814-1072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sparks, Diana. Shibori Rain. Ames: Iowa State University, Digital Repository, February 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bartholomew, M. J. Rain Gauges Handbook. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1245982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Turner, R. S. (Acid rain workshop). Office of Scientific and Technical Information (OSTI), December 1990. http://dx.doi.org/10.2172/6179146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allwein, Gerard, and Ira S. Moskowitz. Double Rail Tests. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada505365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zimmerman, Jonathan, and Mattie Hensley. H2@Rail Workshop. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1763223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gardner, R. (Acid rain research). Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/5474970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Author, Not Given. Preliminary rail access study. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/137645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Christmas, James D. The Raid on Trenton. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada403700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Alzoubi, M. F., G. R. Fenske, R. A. Erck, and A. S. Boparai. Top-of-Rail lubricant. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography