Journal articles on the topic 'Radiomics analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Radiomics analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hu, Shuyi, Xiajie Lyu, Weifeng Li, Xiaohan Cui, Qiaoyu Liu, Xiaoliang Xu, Jincheng Wang, Lin Chen, Xudong Zhang, and Yin Yin. "Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)." Contrast Media & Molecular Imaging 2022 (June 25, 2022): 1–8. http://dx.doi.org/10.1155/2022/7693631.
Full textYin, Yunchao, Derya Yakar, Rudi A. J. O. Dierckx, Kim B. Mouridsen, Thomas C. Kwee, and Robbert J. de Haas. "Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging." Diagnostics 12, no. 2 (February 21, 2022): 550. http://dx.doi.org/10.3390/diagnostics12020550.
Full textGelardi, Fabrizia, Lara Cavinato, Rita De Sanctis, Gaia Ninatti, Paola Tiberio, Marcello Rodari, Alberto Zambelli, et al. "The Predictive Role of Radiomics in Breast Cancer Patients Imaged by [18F]FDG PET: Preliminary Results from a Prospective Cohort." Diagnostics 14, no. 20 (October 17, 2024): 2312. http://dx.doi.org/10.3390/diagnostics14202312.
Full textCinarer, Gokalp, and Bulent Gursel Emiroglu. "Statistical analysis of radiomic features in differentiation of glioma grades." New Trends and Issues Proceedings on Advances in Pure and Applied Sciences, no. 12 (April 30, 2020): 68–79. http://dx.doi.org/10.18844/gjpaas.v0i12.4988.
Full textChilaca-Rosas, Maria-Fatima, Melissa Garcia-Lezama, Sergio Moreno-Jimenez, and Ernesto Roldan-Valadez. "Diagnostic Performance of Selected MRI-Derived Radiomics Able to Discriminate Progression-Free and Overall Survival in Patients with Midline Glioma and the H3F3AK27M Mutation." Diagnostics 13, no. 5 (February 23, 2023): 849. http://dx.doi.org/10.3390/diagnostics13050849.
Full textHu, Yumin, Qiaoyou Weng, Haihong Xia, Tao Chen, Chunli Kong, Weiyue Chen, Peipei Pang, Min Xu, Chenying Lu, and Jiansong Ji. "A radiomic nomogram based on arterial phase of CT for differential diagnosis of ovarian cancer." Abdominal Radiology 46, no. 6 (June 2021): 2384–92. http://dx.doi.org/10.1007/s00261-021-03120-w.
Full textLei, Chu-qian, Wei Wei, Zhen-yu Liu, Qian-Qian Xiong, Ci-Qiu Yang, Teng Zhu, Liu-Lu Zhang, Mei Yang, Jie Tian, and Kun Wang. "Radiomics analysis for pathological classification prediction in BI-RADS category 4 mammographic calcifications." Journal of Clinical Oncology 37, no. 15_suppl (May 20, 2019): e13055-e13055. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e13055.
Full textWei, Zhi-Yao, Zhe Zhang, Dong-Li Zhao, Wen-Ming Zhao, and Yuan-Guang Meng. "Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer." World Journal of Clinical Cases 12, no. 26 (September 16, 2024): 5908–21. http://dx.doi.org/10.12998/wjcc.v12.i26.5908.
Full textKalasauskas, Darius, Michael Kosterhon, Naureen Keric, Oliver Korczynski, Andrea Kronfeld, Florian Ringel, Ahmed Othman, and Marc A. Brockmann. "Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors." Cancers 14, no. 3 (February 7, 2022): 836. http://dx.doi.org/10.3390/cancers14030836.
Full textHuang, Yen-Cho, Shih-Ming Huang, Jih-Hsiang Yeh, Tung-Chieh Chang, Din-Li Tsan, Chien-Yu Lin, and Shu-Ju Tu. "Utility of CT Radiomics and Delta Radiomics for Survival Evaluation in Locally Advanced Nasopharyngeal Carcinoma with Concurrent Chemoradiotherapy." Diagnostics 14, no. 9 (April 30, 2024): 941. http://dx.doi.org/10.3390/diagnostics14090941.
Full textHarrison, Rebecca, Bryce Wei Quan Tan, Hong Qi Tan, Lloyd Tan, Mei Chin Lim, Clement Yong, John Kuo, and Shelli Kesler. "NIMG-32. THE PREDICTIVE CAPACITY OF PRE-OPERATIVE IMAGING ANALYSIS IN DIFFUSE GLIOMA: A COMPARISON OF CONNECTOMICS, RADIOMICS, AND CLINICAL PREDICTIVE MODELS." Neuro-Oncology 22, Supplement_2 (November 2020): ii154—ii155. http://dx.doi.org/10.1093/neuonc/noaa215.645.
Full textChiu, Hwa-Yen, Ting-Wei Wang, Ming-Sheng Hsu, Heng-Shen Chao, Chien-Yi Liao, Chia-Feng Lu, Yu-Te Wu, and Yuh-Ming Chen. "Progress in Serial Imaging for Prognostic Stratification of Lung Cancer Patients Receiving Immunotherapy: A Systematic Review and Meta-Analysis." Cancers 16, no. 3 (January 31, 2024): 615. http://dx.doi.org/10.3390/cancers16030615.
Full textGangil, Tarun, Krishna Sharan, B. Dinesh Rao, Krishnamoorthy Palanisamy, Biswaroop Chakrabarti, and Rajagopal Kadavigere. "Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning." PLOS ONE 17, no. 12 (December 15, 2022): e0277168. http://dx.doi.org/10.1371/journal.pone.0277168.
Full textSun, Zongqiong, Linfang Jin, Shuai Zhang, Shaofeng Duan, Wei Xing, and Shudong Hu. "Preoperative prediction for lauren type of gastric cancer: A radiomics nomogram analysis based on CT images and clinical features." Journal of X-Ray Science and Technology 29, no. 4 (July 27, 2021): 675–86. http://dx.doi.org/10.3233/xst-210888.
Full textMiccò, Maura, Benedetta Gui, Luca Russo, Luca Boldrini, Jacopo Lenkowicz, Stefania Cicogna, Francesco Cosentino, et al. "Preoperative Tumor Texture Analysis on MRI for High-Risk Disease Prediction in Endometrial Cancer: A Hypothesis-Generating Study." Journal of Personalized Medicine 12, no. 11 (November 7, 2022): 1854. http://dx.doi.org/10.3390/jpm12111854.
Full textWang, Yong, Liang Zhang, Lin Qi, Xiaoping Yi, Minghao Li, Mao Zhou, Danlei Chen, et al. "Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms." Journal of Oncology 2021 (October 11, 2021): 1–17. http://dx.doi.org/10.1155/2021/8615450.
Full textLee, Hyunjong, Seung Hwan Moon, Jung Yong Hong, Jeeyun Lee, and Seung Hyup Hyun. "A Machine Learning Approach Using FDG PET-Based Radiomics for Prediction of Tumor Mutational Burden and Prognosis in Stage IV Colorectal Cancer." Cancers 15, no. 15 (July 28, 2023): 3841. http://dx.doi.org/10.3390/cancers15153841.
Full textGill, Andrew B., Leonardo Rundo, Jonathan C. M. Wan, Doreen Lau, Jeries P. Zawaideh, Ramona Woitek, Fulvio Zaccagna, et al. "Correlating Radiomic Features of Heterogeneity on CT with Circulating Tumor DNA in Metastatic Melanoma." Cancers 12, no. 12 (November 24, 2020): 3493. http://dx.doi.org/10.3390/cancers12123493.
Full textChilaca-Rosas, Maria-Fatima, Manuel-Tadeo Contreras-Aguilar, Melissa Garcia-Lezama, David-Rafael Salazar-Calderon, Raul-Gabriel Vargas-Del-Angel, Sergio Moreno-Jimenez, Patricia Piña-Sanchez, Raul-Rogelio Trejo-Rosales, Felipe-Alfredo Delgado-Martinez, and Ernesto Roldan-Valadez. "Identification of Radiomic Signatures in Brain MRI Sequences T1 and T2 That Differentiate Tumor Regions of Midline Gliomas with H3.3K27M Mutation." Diagnostics 13, no. 16 (August 14, 2023): 2669. http://dx.doi.org/10.3390/diagnostics13162669.
Full textStoyanova, Radka, Olmo Zavala-Romero, Deukwoo Kwon, Adrian L. Breto, Isaac R. Xu, Ahmad Algohary, Mohammad Alhusseini, et al. "Clinical-Genomic Risk Group Classification of Suspicious Lesions on Prostate Multiparametric-MRI." Cancers 15, no. 21 (October 31, 2023): 5240. http://dx.doi.org/10.3390/cancers15215240.
Full textLucia, François, Vincent Bourbonne, Dimitris Visvikis, Omar Miranda, Dorothy M. Gujral, Dominique Gouders, Gurvan Dissaux, et al. "Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer." Journal of Personalized Medicine 11, no. 5 (May 11, 2021): 398. http://dx.doi.org/10.3390/jpm11050398.
Full textWei, JingWei, Jie Tian, Sirui Fu, and Ligong Lu. "Noninvasive prediction of future macrovascular invasion occurrence in hepatocellular carcinoma based on quantitative imaging analysis: A multi-center study." Journal of Clinical Oncology 37, no. 15_suppl (May 20, 2019): e14623-e14623. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e14623.
Full textCosta, Guido, Lara Cavinato, Chiara Masci, Francesco Fiz, Martina Sollini, Letterio Salvatore Politi, Arturo Chiti, et al. "Virtual Biopsy for Diagnosis of Chemotherapy-Associated Liver Injuries and Steatohepatitis: A Combined Radiomic and Clinical Model in Patients with Colorectal Liver Metastases." Cancers 13, no. 12 (June 20, 2021): 3077. http://dx.doi.org/10.3390/cancers13123077.
Full textBaine, Michael, Justin Burr, Qian Du, Chi Zhang, Xiaoying Liang, Luke Krajewski, Laura Zima, Gerard Rux, Chi Zhang, and Dandan Zheng. "The Potential Use of Radiomics with Pre-Radiation Therapy MR Imaging in Predicting Risk of Pseudoprogression in Glioblastoma Patients." Journal of Imaging 7, no. 2 (January 28, 2021): 17. http://dx.doi.org/10.3390/jimaging7020017.
Full textBioletto, Fabio, Nunzia Prencipe, Alessandro Maria Berton, Luigi Simone Aversa, Daniela Cuboni, Emanuele Varaldo, Valentina Gasco, Ezio Ghigo, and Silvia Grottoli. "Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives." Journal of Clinical Medicine 13, no. 2 (January 7, 2024): 336. http://dx.doi.org/10.3390/jcm13020336.
Full textSolopova, A. E., J. V. Nosova, and B. B. Bendzhenova. "Magnetic resonance imaging in cervical cancer: current opportunities of radiomics analysis and prospects for its further developmen." Obstetrics, Gynecology and Reproduction 17, no. 4 (September 6, 2023): 500–511. http://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2023.440.
Full textZhang, Junjie, Ligang Hao, Min Li, Qian Xu, and Gaofeng Shi. "CT Radiomics Combined With Clinicopathological Features to Predict Invasive Mucinous Adenocarcinoma in Patients With Lung Adenocarcinoma." Technology in Cancer Research & Treatment 22 (January 2023): 153303382311743. http://dx.doi.org/10.1177/15330338231174306.
Full textAbdurixiti, Meilinuer, Mayila Nijiati, Rongfang Shen, Qiu Ya, Naibijiang Abuduxiku, and Mayidili Nijiati. "Current progress and quality of radiomic studies for predicting EGFR mutation in patients with non-small cell lung cancer using PET/CT images: a systematic review." British Journal of Radiology 94, no. 1122 (June 1, 2021): 20201272. http://dx.doi.org/10.1259/bjr.20201272.
Full textSchmidt, Ian A., and Elena D. Kotina. "Applying radiomics in computed tomography data analysis to predict sarcopenia." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 20, no. 3 (2024): 376–90. http://dx.doi.org/10.21638/spbu10.2024.306.
Full textYounan, N., H. Douzane, A. Duran-Pena, L. Nichelli, Y. Garcilazo, C. Dehais, F. Ducray, et al. "OS9.2 Radiomics analysis of lower-grade gliomas, a POLA Network study." Neuro-Oncology 21, Supplement_3 (August 2019): iii18. http://dx.doi.org/10.1093/neuonc/noz126.060.
Full textCamastra, Chiara, Giovanni Pasini, Alessandro Stefano, Giorgio Russo, Basilio Vescio, Fabiano Bini, Franco Marinozzi, and Antonio Augimeri. "Development and Implementation of an Innovative Framework for Automated Radiomics Analysis in Neuroimaging." Journal of Imaging 10, no. 4 (April 22, 2024): 96. http://dx.doi.org/10.3390/jimaging10040096.
Full textBadesha, Arshpreet Singh, Russell Frood, Marc A. Bailey, Patrick M. Coughlin, and Andrew F. Scarsbrook. "A Scoping Review of Machine-Learning Derived Radiomic Analysis of CT and PET Imaging to Investigate Atherosclerotic Cardiovascular Disease." Tomography 10, no. 9 (September 3, 2024): 1455–87. http://dx.doi.org/10.3390/tomography10090108.
Full textJiang, Yan-Wei, Xiong-Jie Xu, Rui Wang, and Chun-Mei Chen. "Radiomics analysis based on lumbar spine CT to detect osteoporosis." European Radiology, April 30, 2022. http://dx.doi.org/10.1007/s00330-022-08805-4.
Full textWu, Hongyu, Ban Luo, Yali Zhao, Gang Yuan, Qiuxia Wang, Ping Liu, Linhan Zhai, Wenzhi Lv, and Jing Zhang. "Radiomics analysis of the optic nerve for detecting dysthyroid optic neuropathy, based on water-fat imaging." Insights into Imaging 13, no. 1 (September 24, 2022). http://dx.doi.org/10.1186/s13244-022-01292-7.
Full textSantinha, João, Daniel Pinto dos Santos, Fabian Laqua, Jacob J. Visser, Kevin B. W. Groot Lipman, Matthias Dietzel, Michail E. Klontzas, Renato Cuocolo, Salvatore Gitto, and Tugba Akinci D’Antonoli. "ESR Essentials: radiomics—practice recommendations by the European Society of Medical Imaging Informatics." European Radiology, October 25, 2024. http://dx.doi.org/10.1007/s00330-024-11093-9.
Full textCai, Du, Xin Duan, Wei Wang, Ze-Ping Huang, Qiqi Zhu, Min-Er Zhong, Min-Yi Lv, et al. "A Metabolism-Related Radiomics Signature for Predicting the Prognosis of Colorectal Cancer." Frontiers in Molecular Biosciences 7 (January 7, 2021). http://dx.doi.org/10.3389/fmolb.2020.613918.
Full textMou, Meiyan, Ruizhi Gao, Yuquan Wu, Peng Lin, Hongxia Yin, Fenghuan Chen, Fen Huang, Rong Wen, Hong Yang, and Yun He. "Endoscopic Rectal Ultrasound‐Based Radiomics Analysis for the Prediction of Synchronous Liver Metastasis in Patients With Primary Rectal Cancer." Journal of Ultrasound in Medicine, November 11, 2023. http://dx.doi.org/10.1002/jum.16369.
Full textShaheen, Asma, Syed Talha Bukhari, Maria Nadeem, Stefano Burigat, Ulas Bagci, and Hassan Mohy-ud-Din. "Overall Survival Prediction of Glioma Patients With Multiregional Radiomics." Frontiers in Neuroscience 16 (July 7, 2022). http://dx.doi.org/10.3389/fnins.2022.911065.
Full textLi, Yue, Huaibi Huo, Hui Liu, Yue Zheng, Zhaoxin Tian, Xue Jiang, Shiqi Jin, et al. "Coronary CTA-based radiomic signature of pericoronary adipose tissue predict rapid plaque progression." Insights into Imaging 15, no. 1 (June 20, 2024). http://dx.doi.org/10.1186/s13244-024-01731-7.
Full textLi, Mei hua, Long Liu, Lian Feng, Li jun Zheng, Qin mei Xu, Yin juan Zhang, Fu rong Zhang, and Lin na Feng. "Prediction of cervical lymph node metastasis in solitary papillary thyroid carcinoma based on ultrasound radiomics analysis." Frontiers in Oncology 14 (January 25, 2024). http://dx.doi.org/10.3389/fonc.2024.1291767.
Full textYang, Qinzhu, Haofan Huang, Guizhi Zhang, Nuoqing Weng, Zhenkai Ou, Meili Sun, Huixing Luo, Xuhui Zhou, Yi Gao, and Xiaobin Wu. "Contrast‐enhanced CT‐based radiomic analysis for determining the response to anti‐programmed death‐1 therapy in esophageal squamous cell carcinoma patients: A pilot study." Thoracic Cancer, September 24, 2023. http://dx.doi.org/10.1111/1759-7714.15117.
Full textMeng, Huan, Tian-Da Wang, Li-Yong Zhuo, Jia-Wei Hao, Lian-yu Sui, Wei Yang, Li-Li Zang, Jing-Jing Cui, Jia-Ning Wang, and Xiao-Ping Yin. "Quantitative radiomics analysis of imaging features in adults and children Mycoplasma pneumonia." Frontiers in Medicine 11 (May 20, 2024). http://dx.doi.org/10.3389/fmed.2024.1409477.
Full textWu, Ting, Chen Gao, Xinjing Lou, Jun Wu, Maosheng Xu, and Linyu Wu. "Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis." BMC Pulmonary Medicine 24, no. 1 (May 18, 2024). http://dx.doi.org/10.1186/s12890-024-03020-x.
Full textJiang, Yan-Wei, Xiong-Jei Xu, Rui Wang, and Chun-Mei Chen. "Efficacy of non-enhanced computer tomography-based radiomics for predicting hematoma expansion: A meta-analysis." Frontiers in Oncology 12 (January 10, 2023). http://dx.doi.org/10.3389/fonc.2022.973104.
Full textWang, Jincheng, Shengnan Tang, Jin Wu, Shanshan Xu, Qikai Sun, Zheyu Zhou, Xiaoliang Xu, et al. "Radiomic features at Contrast-enhanced CT Predict Virus-driven Liver Fibrosis: A Multi-institutional Study." Clinical and Translational Gastroenterology, May 27, 2024. http://dx.doi.org/10.14309/ctg.0000000000000712.
Full textPeng, Jiao, Zhen Tang, Tao Li, Xiaoyu Pan, Lijuan Feng, and Liling Long. "Contrast-enhanced computed tomography-based radiomics nomogram for predicting HER2 status in urothelial bladder carcinoma." Frontiers in Oncology 14 (August 14, 2024). http://dx.doi.org/10.3389/fonc.2024.1427122.
Full textYang, Bin, Li Zhou, Jing Zhong, Tangfeng Lv , Ang Li, Lu Ma, Jian Zhong, et al. "Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer." Respiratory Research 22, no. 1 (June 28, 2021). http://dx.doi.org/10.1186/s12931-021-01780-2.
Full textKawahara, Daisuke, Nobuki Imano, Riku Nishioka, Kouta Ogawa, Tomoki Kimura, Taku Nakashima, Hiroshi Iwamoto, Kazunori Fujitaka, Noboru Hattori, and Yasushi Nagata. "Prediction of radiation pneumonitis after definitive radiotherapy for locally advanced non-small cell lung cancer using multi-region radiomics analysis." Scientific Reports 11, no. 1 (August 10, 2021). http://dx.doi.org/10.1038/s41598-021-95643-x.
Full textZhang, Simiao, Juan Hou, Wenwen Xia, Zicheng Zhao, Min Xu, Shouxian Li, Chunhui Xu, Tieliang Zhang, and Wenya Liu. "Value of intralesional and perilesional radiomics for predicting the bioactivity of hepatic alveolar echinococcosis." Frontiers in Oncology 14 (June 27, 2024). http://dx.doi.org/10.3389/fonc.2024.1389177.
Full textTang, Shengnan, Jin Wu, Shanshan Xu, Qi Li, and Jian He. "Clinical-radiomic analysis for non-invasive prediction of liver steatosis on non-contrast CT: A pilot study." Frontiers in Genetics 14 (March 20, 2023). http://dx.doi.org/10.3389/fgene.2023.1071085.
Full text