Journal articles on the topic 'Radiobiology'

To see the other types of publications on this topic, follow the link: Radiobiology.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Radiobiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ader, I., C. Delmas, N. Skuli, F. Darlot, G. Favre, F. Bono, C. Toulas, et al. "Radiobiology." Neuro-Oncology 12, Supplement 4 (October 21, 2010): iv112. http://dx.doi.org/10.1093/neuonc/noq116.s16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gu, C., H. Demir, K. Joshi, Y. Nakamura, R. Yamada, S. Gupta, C. H. Kwon, et al. "RADIOBIOLOGY." Neuro-Oncology 13, suppl 3 (October 21, 2011): iii134—iii135. http://dx.doi.org/10.1093/neuonc/nor161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Artesi, M., J. Kroonen, M. Deprez, M. Bredel, A. Chakravarti, C. Poulet, T. Seute, et al. "RADIOBIOLOGY." Neuro-Oncology 15, suppl 3 (November 1, 2013): iii189—iii190. http://dx.doi.org/10.1093/neuonc/not188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, E. J., and J. F. Fowler. "Radiobiology." International Journal of Radiation Oncology*Biology*Physics 14 (January 1988): S25—S28. http://dx.doi.org/10.1016/0360-3016(88)90163-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KODRAT, HENRY, and RIMA NOVIRIANTHY. "Stereotactic Radiosurgery pada Benign Skull Base Tumor." Indonesian Journal of Cancer 10, no. 1 (January 10, 2016): 35. http://dx.doi.org/10.33371/ijoc.v10i1.412.

Full text
Abstract:
ABSTRACTTotal removal is difficult to be performed in skull base tumors because its location is surrounded by important structures such as nerves and blood vessels. Therefore, radiotherapy is one of treatment modalities that has been proven efficacy. Simultaneous with the development of imaging technology and advancement of radiobiology, radiosurgery is an emerging therapeutic modality. Radiosurgery is radiotherapy method which delivers high doseirradiation in single fraction. Rational use of stereotactic radiosurgery on benign skull base tumor is from radiobiology point of view; there is no advantage can be achieved from conventional dose fractionated radiotherapy compared with high dose. However, if we want to delivered high dose radiation, we must apply rigid immobilization, target definition using stereotactic navigation and image guidance verification. Radiosurgery can only be delivered in small intracranial lesion.ABSTRAKReseksi total kadang sulit dilakukan pada tumor yang terletak pada dasar tengkorak. Hal ini disebabkan lokasinya dikelilingi oleh struktur saraf dan pembuluh darah penting. Oleh karena itu, radioterapi merupakan salah satu modalitas terapi yang sudah terbukti maanfaatnya. Sejalan dengan perkembangan teknologi pencitraan dan kemajuan pengetahuan radiobiologi, radiosurgery merupakan modalitas terapi yang melejit penggunannya. Radiosurgery adalah metode pemberian radioterapi dengan dosis tinggi dan diberikan dalam fraksi tunggal. Rasional penggunaan stereotactic radiosurgery pada tumor jinak dasar tengkorak adalah karena dari sudut pandang radiobiologi, tidak ada kelebihan dariradioterapi dengan dosis konvensional dibandingkan dengan dosis tinggi. Namun, untuk pemberian dosis tinggi diwajibkan imobilisasi yang rigid dan lokalisasi yang akurat dengan menggunakan navigasi stereotaktik dan verifikasi dengan panduan pencitraan radiologi. Radiosurgery hanya dapat diberikan pada kelainan intrakranial yang berukuran kecil.
APA, Harvard, Vancouver, ISO, and other styles
6

Tommasino, Francesco, and Marco Durante. "Proton Radiobiology." Cancers 7, no. 1 (February 12, 2015): 353–81. http://dx.doi.org/10.3390/cancers7010353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, Eric J., Myles Astor, Joel Bedford, Carmia Borek, Stanley B. Curtis, Michael Fry, Charles Geard, et al. "Basic Radiobiology." American Journal of Clinical Oncology 11, no. 3 (June 1988): 220–52. http://dx.doi.org/10.1097/00000421-198806000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hendry, J. H. "Military Radiobiology." International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 52, no. 2 (January 1987): 344. http://dx.doi.org/10.1080/09553008714551811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Floyd, S. R., M. E. Pacold, S. M. Clarke, E. Blake, A. Fydrych, R. Ho, M. J. Lee, et al. "LAB-RADIOBIOLOGY." Neuro-Oncology 14, suppl 6 (October 1, 2012): vi129—vi132. http://dx.doi.org/10.1093/neuonc/nos237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Not Available, Not Available. "Radiobiology 2000." Radiation and Environmental Biophysics 39, no. 2 (June 16, 2000): 146. http://dx.doi.org/10.1007/s004110000051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Radivoyevitch, Tomas, Lynn Hlatky, Julian Landaw, and Rainer K. Sachs. "Quantitative modeling of chronic myeloid leukemia: insights from radiobiology." Blood 119, no. 19 (May 10, 2012): 4363–71. http://dx.doi.org/10.1182/blood-2011-09-381855.

Full text
Abstract:
Abstract Mathematical models of chronic myeloid leukemia (CML) cell population dynamics are being developed to improve CML understanding and treatment. We review such models in light of relevant findings from radiobiology, emphasizing 3 points. First, the CML models almost all assert that the latency time, from CML initiation to diagnosis, is at most ∼ 10 years. Meanwhile, current radiobiologic estimates, based on Japanese atomic bomb survivor data, indicate a substantially higher maximum, suggesting longer-term relapses and extra resistance mutations. Second, different CML models assume different numbers, between 400 and 106, of normal HSCs. Radiobiologic estimates favor values > 106 for the number of normal cells (often assumed to be the HSCs) that are at risk for a CML-initiating BCR-ABL translocation. Moreover, there is some evidence for an HSC dead-band hypothesis, consistent with HSC numbers being very different across different healthy adults. Third, radiobiologists have found that sporadic (background, age-driven) chromosome translocation incidence increases with age during adulthood. BCR-ABL translocation incidence increasing with age would provide a hitherto underanalyzed contribution to observed background adult-onset CML incidence acceleration with age, and would cast some doubt on stage-number inferences from multistage carcinogenesis models in general.
APA, Harvard, Vancouver, ISO, and other styles
12

MIRESTEAN, Camil Ciprian, Alexandru Dumitru ZARA, Roxana Irina IANCU, and Dragos Petru Teodor IANCU. "Free Educational Android Mobile Application for Radiobiology." Medicina Moderna - Modern Medicine 28, no. 3 (September 1, 2021): 315–19. http://dx.doi.org/10.31689/rmm.2021.28.3.315.

Full text
Abstract:
The use of mobile devices and applications dedicated to different medical fields has improved the quality and facilitated medical care, especially in the last 10 years. The number of applications running on the software platforms of smart phones or other smart devices is constantly growing. Radiotherapy also benefits from applications (apps) for TNM staging of cancers, for target volume delineation and toxicity management but also from radiobiological apps for calculating equivalent dose schemes for different dose fractionation regimens. In the context of the increasingly frequent use of altered fractionation schemes, the use of radiobiological models and calculations based on the linear quadratic model (LQ) becomes a necessity. We aim to evaluate free radiobiology apps for the Android software platform. Given the global educational deficit, the lack of experts and the concordance between radiobiology education and the need to use basic clinical notions of modern radiotherapy, the existence of free apps for the Android platform running on older generation processors can transform even an old smart device in a powerful “radiobiology station.” Apps for radiobiology can help the radiation oncologist and medical physicist with responsibilities in radiotherapy treatment planning in the context of accelerated adoption of hypo-fractionation regimens and calculation of the effect of treatment gaps, a topic of interest in the COVID-19 pandemic context. Radiobiology apps can also partially fill the educational gap in radiobiology by arousing the interest of young radiation oncologists to deepen the growing universe of fundamental and clinical radiobiology.
APA, Harvard, Vancouver, ISO, and other styles
13

MIRESTEAN, Camil Ciprian, Alexandru Dumitru ZARA, Roxana Irina IANCU, and Dragos Petru Teodor IANCU. "Free Educational Android Mobile Application for Radiobiology." Medicina Moderna - Modern Medicine 28, no. 3 (September 1, 2021): 315–19. http://dx.doi.org/10.31689/rmm.2021.28.3.315.

Full text
Abstract:
The use of mobile devices and applications dedicated to different medical fields has improved the quality and facilitated medical care, especially in the last 10 years. The number of applications running on the software platforms of smart phones or other smart devices is constantly growing. Radiotherapy also benefits from applications (apps) for TNM staging of cancers, for target volume delineation and toxicity management but also from radiobiological apps for calculating equivalent dose schemes for different dose fractionation regimens. In the context of the increasingly frequent use of altered fractionation schemes, the use of radiobiological models and calculations based on the linear quadratic model (LQ) becomes a necessity. We aim to evaluate free radiobiology apps for the Android software platform. Given the global educational deficit, the lack of experts and the concordance between radiobiology education and the need to use basic clinical notions of modern radiotherapy, the existence of free apps for the Android platform running on older generation processors can transform even an old smart device in a powerful “radiobiology station.” Apps for radiobiology can help the radiation oncologist and medical physicist with responsibilities in radiotherapy treatment planning in the context of accelerated adoption of hypo-fractionation regimens and calculation of the effect of treatment gaps, a topic of interest in the COVID-19 pandemic context. Radiobiology apps can also partially fill the educational gap in radiobiology by arousing the interest of young radiation oncologists to deepen the growing universe of fundamental and clinical radiobiology.
APA, Harvard, Vancouver, ISO, and other styles
14

Chailapakul, Piyawan, and Takamitsu A. Kato. "From Basic Radiobiology to Translational Radiotherapy." International Journal of Molecular Sciences 23, no. 24 (December 14, 2022): 15902. http://dx.doi.org/10.3390/ijms232415902.

Full text
Abstract:
The Special Issue, entitled “From basic radiobiology to translational radiotherapy”, highlights recent advances in basic radiobiology and the potential to improve radiotherapy in translational research [...]
APA, Harvard, Vancouver, ISO, and other styles
15

Aerts, An, Uta Eberlein, Sören Holm, Roland Hustinx, Mark Konijnenberg, Lidia Strigari, Fijs W. B. van Leeuwen, Gerhard Glatting, and Michael Lassmann. "EANM position paper on the role of radiobiology in nuclear medicine." European Journal of Nuclear Medicine and Molecular Imaging 48, no. 11 (April 29, 2021): 3365–77. http://dx.doi.org/10.1007/s00259-021-05345-9.

Full text
Abstract:
Executive SummaryWith an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.
APA, Harvard, Vancouver, ISO, and other styles
16

Nias, A. H. W. "Handbook of Radiobiology." International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 47, no. 4 (April 1985): 476–77. http://dx.doi.org/10.3109/rab.47.4.376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rao, BS. "Handbook of radiobiology." Journal of Medical Physics 42, no. 3 (2017): 194. http://dx.doi.org/10.4103/jmp.jmp_98_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tinganelli, Walter, and Marco Durante. "Carbon Ion Radiobiology." Cancers 12, no. 10 (October 17, 2020): 3022. http://dx.doi.org/10.3390/cancers12103022.

Full text
Abstract:
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different “drug” in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
APA, Harvard, Vancouver, ISO, and other styles
19

Nias, A. H. W. "Handbook of Radiobiology." International Journal of Radiation Biology 47, no. 4 (April 1985): 476–77. http://dx.doi.org/10.1080/713860593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bentzen, SØRen M. "Quantitative Clinical Radiobiology." Acta Oncologica 32, no. 3 (January 1993): 259–75. http://dx.doi.org/10.3109/02841869309093594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Denekamp, Juliana. "Neutron Radiobiology Revisited." Acta Oncologica 33, no. 3 (January 1994): 233–40. http://dx.doi.org/10.3109/02841869409098413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kondziolka, Douglas, L. Dade Lunsford, Diana Claassen, Ann H. Maitz, and John C. Flickinger. "Radiobiology of Radiosurgery." Neurosurgery 31, no. 2 (August 1992): 271???279. http://dx.doi.org/10.1097/00006123-199208000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kondziolka, Douglas, L. Dade Lunsford, Diana Claassen, Sudha Pandalai, Ann H. Maitz, and John C. Flickinger. "Radiobiology of Radiosurgery." Neurosurgery 31, no. 2 (August 1992): 280???288. http://dx.doi.org/10.1097/00006123-199208000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bleehen, Norman M. "Radiobiology in Radiotherapy." American Journal of Clinical Oncology 11, no. 6 (December 1988): 686. http://dx.doi.org/10.1097/00000421-198812000-00025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Williams, Jacqueline. "Basic clinical radiobiology." International Journal of Radiation Biology 95, no. 6 (January 28, 2019): 797. http://dx.doi.org/10.1080/09553002.2019.1569781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Falk, S. "Introduction to Radiobiology." British Journal of Cancer 67, no. 1 (January 1993): 203. http://dx.doi.org/10.1038/bjc.1993.38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Williams, MV. "Basic clinical radiobiology." British Journal of Cancer 70, no. 3 (September 1994): 571. http://dx.doi.org/10.1038/bjc.1994.352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rossi, H. H. "Microdosimetry and Radiobiology." Radiation Protection Dosimetry 13, no. 1-4 (December 1, 1985): 259–65. http://dx.doi.org/10.1093/rpd/13.1-4.259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Katz, R., D. E. Dunn, and G. L. Sinclair. "Thindown in Radiobiology." Radiation Protection Dosimetry 13, no. 1-4 (December 1, 1985): 281–84. http://dx.doi.org/10.1093/rpd/13.1-4.281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Alpen, Edward L., Maurice Tubiana, Jean Dutreix, André Wambersie, D. R. Bewley, and Andre Wambersie. "Introduction to Radiobiology." Radiation Research 131, no. 3 (September 1992): 352. http://dx.doi.org/10.2307/3578428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Held, Kathryn D. "Basic Clinical Radiobiology." International Journal of Radiation Biology 86, no. 11 (July 29, 2010): 996. http://dx.doi.org/10.3109/09553002.2010.496030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rossi (INVITED), H. H. "Microdosimetry and Radiobiology." Radiation Protection Dosimetry 13, no. 1-4 (December 1, 1985): 259–65. http://dx.doi.org/10.1093/oxfordjournals.rpd.a079591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Katz, R., D. E. Dunn, and G. L. Sinclair. "Thindown in Radiobiology." Radiation Protection Dosimetry 13, no. 1-4 (December 1, 1985): 281–84. http://dx.doi.org/10.1093/oxfordjournals.rpd.a079595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

West, C. M. L. "Introduction to Radiobiology." International Journal of Radiation Biology 62, no. 1 (January 1992): 125. http://dx.doi.org/10.1080/09553009214551901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hendry, J. H. "Radiobiology in Radiotherapy." International Journal of Radiation Biology 55, no. 1 (January 1989): 170. http://dx.doi.org/10.1080/09553008914550201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Powell, Simon. "Introduction to Radiobiology." European Journal of Cancer and Clinical Oncology 27, no. 4 (January 1991): 516. http://dx.doi.org/10.1016/0277-5379(91)90400-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kondziolka, Douglas, L. Dade Lunsford, Diana Claassen, Ann H. Maitz, and John C. Flickinger. "Radiobiology of Radiosurgery." Neurosurgery 31, no. 2 (August 1, 1992): 271–79. http://dx.doi.org/10.1227/00006123-199208000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kondziolka, Douglas, L. Dade Lunsford, Diana Claassen, Ann H. Maitz, and John C. Flickinger. "Radiobiology of Radiosurgery." Neurosurgery 31, no. 2 (August 1, 1992): 280–88. http://dx.doi.org/10.1227/00006123-199208000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tubiana, M., J. Dutreix, and A. Wambersie. "Introduction to Radiobiology." Anti-Cancer Drugs 2, no. 4 (August 1991): 419. http://dx.doi.org/10.1097/00001813-199108000-00013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gahbauer, Reinhard A. "Radiobiology in Radiotherapy." Radiology 171, no. 3 (June 1989): 852. http://dx.doi.org/10.1148/radiology.171.3.852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Mishra, KP. "Excitements in radiobiology." Journal of Radiation and Cancer Research 13, no. 4 (2022): 143. http://dx.doi.org/10.4103/jrcr.jrcr_76_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fajardo, Luis. "Radiobiology in clinical radiation therapy—Part IV: Radiobiology normal tissue pathology." International Journal of Radiation Oncology*Biology*Physics 42, no. 1 (January 1998): 115. http://dx.doi.org/10.1016/s0360-3016(98)80079-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Grebenyuk, A. N. "Military Doctors are Members of the Scientific Council of the Russian Academy of Sciences for Radiobiology." Радиационная биология. Радиоэкология 63, no. 4 (July 1, 2023): 432–40. http://dx.doi.org/10.31857/s0869803123030050.

Full text
Abstract:
From the moment of its creation in 1962 to the present, the Scientific Council of the Russian Academy of Sciences for Radiobiology (originally the Scientific Council at the USSR Academy of Sciences on the complex problem “Radiobiology”) has paid great attention to the damaging effects of radiation and medical radiation protection. Already the first composition of the Council included scientists who received significant experience in the field of radiobiology during active military service in educational, scientific and clinical institutions of the USSR Ministry of Defense – T.K. Dzharakyan, P.G. Zherebchenko, G.A. Zedgenidze, A.S. Mozzhukhin, V.P. Paribok. The first chairman of the Bureau of the Council was the outstanding Soviet radiobiologist A.V. Lebedinsky, who previously led radiobiological research at the Kirov Military Medical Academy. Over the years, the Council included current and retired military doctors – I.G. Akoev, E.A. Zherbin, V.I. Legeza, A.N. Grebenyuk. The Deputy Chairman of the Council, President of the Radiobiological Society of the Russian Academy of Sciences is currently I.B. Ushakov, who for a long time headed scientific institutions specialized for military radiobiology – the State Research Test Institute of Aviation and Space Medicine of the Ministry of Defense of the Russian Federation and the State Research Test Institute of Mi-litary Medicine of the Ministry of Defense of the Russian Federation. Throughout the existence of the Council, military doctors took an active part in its work, formed and supervised relevant research in the field of military radiobiology and medical radiation protection.
APA, Harvard, Vancouver, ISO, and other styles
44

Smoron, Geoffrey L. "Radiobiology for the Radiologist." American Journal of Roentgenology 178, no. 3 (March 2002): 600. http://dx.doi.org/10.2214/ajr.178.3.1780600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sesikeran, BNanditha, Sayan Paul, KanhuCharan Patro, and ManojK Gupta. "Radiobiology of re-irradiations." Journal of Current Oncology 1, no. 1 (2018): 35. http://dx.doi.org/10.4103/jco.jco_13_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mangoni, Monica, Simona Borghesi, Cynthia Aristei, and Carlotta Becherini. "Radiobiology of stereotactic radiotherapy." Reports of Practical Oncology and Radiotherapy 27, no. 1 (March 14, 2022): 57–62. http://dx.doi.org/10.5603/rpor.a2022.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gloi, Aime M. "Lung SBRT through Radiobiology." International Journal of Medical Physics, Clinical Engineering and Radiation Oncology 05, no. 01 (2016): 78–87. http://dx.doi.org/10.4236/ijmpcero.2016.51008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Carvlin, Mark J. "An Introduction to Radiobiology." Radiology 181, no. 3 (December 1991): 644. http://dx.doi.org/10.1148/radiology.181.3.644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Prise, KM, and SG Martin. "BJR radiobiology special feature." British Journal of Radiology 87, no. 1035 (March 2014): 20140074. http://dx.doi.org/10.1259/bjr.20140074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Markoe, Arnold M. "Radiobiology for the Radiologist." American Journal of Clinical Oncology 11, no. 4 (August 1988): 512–13. http://dx.doi.org/10.1097/00000421-198808000-00024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography