Academic literature on the topic 'Radiobiology'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiobiology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Radiobiology"

1

Ader, I., C. Delmas, N. Skuli, F. Darlot, G. Favre, F. Bono, C. Toulas, et al. "Radiobiology." Neuro-Oncology 12, Supplement 4 (October 21, 2010): iv112. http://dx.doi.org/10.1093/neuonc/noq116.s16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gu, C., H. Demir, K. Joshi, Y. Nakamura, R. Yamada, S. Gupta, C. H. Kwon, et al. "RADIOBIOLOGY." Neuro-Oncology 13, suppl 3 (October 21, 2011): iii134—iii135. http://dx.doi.org/10.1093/neuonc/nor161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Artesi, M., J. Kroonen, M. Deprez, M. Bredel, A. Chakravarti, C. Poulet, T. Seute, et al. "RADIOBIOLOGY." Neuro-Oncology 15, suppl 3 (November 1, 2013): iii189—iii190. http://dx.doi.org/10.1093/neuonc/not188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hall, E. J., and J. F. Fowler. "Radiobiology." International Journal of Radiation Oncology*Biology*Physics 14 (January 1988): S25—S28. http://dx.doi.org/10.1016/0360-3016(88)90163-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

KODRAT, HENRY, and RIMA NOVIRIANTHY. "Stereotactic Radiosurgery pada Benign Skull Base Tumor." Indonesian Journal of Cancer 10, no. 1 (January 10, 2016): 35. http://dx.doi.org/10.33371/ijoc.v10i1.412.

Full text
Abstract:
ABSTRACTTotal removal is difficult to be performed in skull base tumors because its location is surrounded by important structures such as nerves and blood vessels. Therefore, radiotherapy is one of treatment modalities that has been proven efficacy. Simultaneous with the development of imaging technology and advancement of radiobiology, radiosurgery is an emerging therapeutic modality. Radiosurgery is radiotherapy method which delivers high doseirradiation in single fraction. Rational use of stereotactic radiosurgery on benign skull base tumor is from radiobiology point of view; there is no advantage can be achieved from conventional dose fractionated radiotherapy compared with high dose. However, if we want to delivered high dose radiation, we must apply rigid immobilization, target definition using stereotactic navigation and image guidance verification. Radiosurgery can only be delivered in small intracranial lesion.ABSTRAKReseksi total kadang sulit dilakukan pada tumor yang terletak pada dasar tengkorak. Hal ini disebabkan lokasinya dikelilingi oleh struktur saraf dan pembuluh darah penting. Oleh karena itu, radioterapi merupakan salah satu modalitas terapi yang sudah terbukti maanfaatnya. Sejalan dengan perkembangan teknologi pencitraan dan kemajuan pengetahuan radiobiologi, radiosurgery merupakan modalitas terapi yang melejit penggunannya. Radiosurgery adalah metode pemberian radioterapi dengan dosis tinggi dan diberikan dalam fraksi tunggal. Rasional penggunaan stereotactic radiosurgery pada tumor jinak dasar tengkorak adalah karena dari sudut pandang radiobiologi, tidak ada kelebihan dariradioterapi dengan dosis konvensional dibandingkan dengan dosis tinggi. Namun, untuk pemberian dosis tinggi diwajibkan imobilisasi yang rigid dan lokalisasi yang akurat dengan menggunakan navigasi stereotaktik dan verifikasi dengan panduan pencitraan radiologi. Radiosurgery hanya dapat diberikan pada kelainan intrakranial yang berukuran kecil.
APA, Harvard, Vancouver, ISO, and other styles
6

Tommasino, Francesco, and Marco Durante. "Proton Radiobiology." Cancers 7, no. 1 (February 12, 2015): 353–81. http://dx.doi.org/10.3390/cancers7010353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, Eric J., Myles Astor, Joel Bedford, Carmia Borek, Stanley B. Curtis, Michael Fry, Charles Geard, et al. "Basic Radiobiology." American Journal of Clinical Oncology 11, no. 3 (June 1988): 220–52. http://dx.doi.org/10.1097/00000421-198806000-00003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hendry, J. H. "Military Radiobiology." International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 52, no. 2 (January 1987): 344. http://dx.doi.org/10.1080/09553008714551811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Floyd, S. R., M. E. Pacold, S. M. Clarke, E. Blake, A. Fydrych, R. Ho, M. J. Lee, et al. "LAB-RADIOBIOLOGY." Neuro-Oncology 14, suppl 6 (October 1, 2012): vi129—vi132. http://dx.doi.org/10.1093/neuonc/nos237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Not Available, Not Available. "Radiobiology 2000." Radiation and Environmental Biophysics 39, no. 2 (June 16, 2000): 146. http://dx.doi.org/10.1007/s004110000051.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Radiobiology"

1

Colliaux, Anthony. "Implication de l’oxygène et des anti-oxydants dans le processus de radiolyse de l’eau induit par l’irradiation aux ions de haute énergie : simulations numériques pour la radiobiologie." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10297.

Full text
Abstract:
Il s’agit d’étudier les effets du TEL du rayonnement, d’un soluté (oxygène, antioxydant, scavengers...) et d’une géométrie de confinement sur les processus physiques et chimiques. Nos études sur la production de radicaux libres en fonction de la pression d’oxygène et du TEL du rayonnement nous ont permis de noter une similitude entre la production des radicaux O2- / HO2 et l’effet oxygène décrit en radiothérapie. Ces résultats confortent l’idée que ce couple de radicaux pourraient jouer un rôle dans l’effet oxygène (radiothérapie) et expliqueraient la disparition de cet effet à haut TEL (hadronthérapie). Nous avons aussi montré que cette similitude persistait en présence de Glutathion (antioxydant majoritaire dans le noyau cellulaire)
-
APA, Harvard, Vancouver, ISO, and other styles
2

Nasilowska, Agata. "The role of the CtIP gene as a genetic susceptibility factor for radiation leukaemogenesis." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:b8cc6940-e780-4ebd-8bf5-a655a52570d2.

Full text
Abstract:
Exposure to ionising radiation increases the risk of cancer, including acute myeloid leukemia (AML), which is the most common myeloid leukaemia. The C-terminal binding protein (CtBP)-interacting protein (CtIP), which is essential for embryonic development and possibly functions as a tumour suppressor, has been identified as a strong candidate for susceptibility to radiation-induced AML (rAML).
APA, Harvard, Vancouver, ISO, and other styles
3

Massager, Nicolas. "Influence de la distribution de dose d'irradiation dans la variation de l'effet radiobiologique du traitement radiochirurgical par Gamma Knife." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210380.

Full text
Abstract:
La radiochirurgie par Gamma Knife constitue une modalité thérapeutique reconnue de certaines affections cérébrales. Le traitement se base sur l’administration d’un rayonnement focalisé au niveau d’une cible intracrânienne. L’efficacité de ce traitement repose sur la délivrance d’une dose d’irradiation efficace au sein d’un volume-cible associé à la délivrance d’une dose d’irradiation négligeable à l’extérieur de ce même volume-cible. En pratique, la dose d’irradiation administrée à l’intérieur du volume-cible n’est pas distribuée de manière homogène, et la dose d’irradiation reçue par les tissus situés en-dehors du volume-cible n’est pas nécessairement faible. Notre travail est basé sur l’hypothèse que l’imperfection de la distribution de la dose d’irradiation au sein du volume-cible et en-dehors de celui-ci peut être responsable des échecs et des complications rencontrées en radiochirurgie. Dans deux modèles cliniques de traitement radiochirurgical, le schwannome vestibulaire et la névralgie du trijumeau, nous avons montré qu’il existait une relation entre les paramètres de distribution de dose d’irradiation et certains résultats du traitement radiochirurgical par Gamma Knife de ces pathologies. Nous avons développé deux modèles expérimentaux d’irradiation radiochirurgicale de rats, l’un ciblé sur le striatum et l’autre sur le nerf trijumeau, permettant d’analyser les conséquences histologiques des variations de la distribution de dose à l’intérieur du volume-cible ainsi qu’à distance de celui-ci. Nous avons démontré que la réponse radiobiologique des tissus irradiés était fortement dépendante de ce paramètre dosimétrique, et que ce dernier constituait une donnée de la planification chirurgicale aussi importante que la dose de prescription. Nous avons corrélé ces résultats avec certaines observations réalisées dans d’autres indications de traitement radiochirurgical ainsi que dans l’analyse histologique de tumeurs traitées par Gamma Knife. Ces études mettent en évidence le rôle important joué par l’optimalisation de la distribution de la dose d’irradiation dans l’amélioration des résultats cliniques du traitement radiochirurgical. Les valeurs optimales de la distribution de dose dans les différentes indications de traitement radiochirurgical doivent être recherchées, et les différentes méthodes mises à notre disposition lors de la planification dosimétrique pour améliorer la distribution de dose doivent être utilisées avec discernement pour obtenir la dosimétrie radiochirurgicale la plus parfaite possible.
Doctorat en sciences médicales
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
4

Kakolee, Kaniz Fatema. "Laser driven acceleration of ions and its application in radiobiology." Thesis, Queen's University Belfast, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kiger, Jingli Liu. "Radiobiology of normal rat lung in Boron Neutron Capture Therapy." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/41286.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2006.
Includes bibliographical references.
Boron Neutron Capture Therapy (BNCT) is a binary cancer radiation therapy that utilizes biochemical tumor cell targeting and provides a mixed field of high and low Linear Energy Transfer (LET) radiation with differing biological effectiveness. This project investigated the radiobiology of normal rat lung in BNCT and measured the relative biological effectiveness factors for the lung. Rat thorax irradiations were carried out with x-rays and neutrons with or without the boron compound boronophenylalanine-fructose (BPA-F). Monte Carlo radiation transport simulations were used to design the rat lung neutron irradiations. Among the neutron beam facilities available for BNCT at the MIT Research Reactor, the thermal neutron beam facility was found to provide a suitable dose distribution for this project. A delimiter was designed and constructed for the rat lung irradiations as a lithiated-polyethylene plate of 1.5 cm thickness with an aperture tapered from 4 to 3 cm in width to expose the lung to the beam and shield adjacent radiosensitive organs. The simulation design was validated with in-phantom measurements using gold foil activation and the dual ion chamber technique. By using a two-field irradiation, a relatively uniform dose distribution could be delivered to the rat lung. The mean lung dose rate was 18.7 cGy/min for neutron beam only irradiation and 37.5 cGy/min with neutrons plus BPA and a blood boron concentration of 18 gg/g.
(cont.) The delimiter designed for rat lung irradiation, and another similar delimiter, along with the animal holding box, all designed in this project, also serve as the apparatus for other small animal irradiations and cell irradiations at the thermal neutron facility at the MIT Research Reactor. An open-flow whole-body plethysmography system with fully automated signal processing programs was developed to non-invasively measure rat breathing rates and lung functional damage after lung irradiation. Noise reduction was carried out against high frequencies beyond the range of rat breathing frequency and large amplitude spikes due to abnormal animal movement. The denoised breathing signals were analyzed using the Fast Fourier Transform with a circular moving block in combination with the bootstrap for noise suppression and to allow estimation of the statistical uncertainty (standard deviation) of frequency measurements. The major frequency of the mean frequency spectrum was determined as the breathing frequency. The mean control breathing rate was 176 ± 13 (7.4%) min' (mean ± SD), and breathing rates 20% (- 3 SD) above the control average were considered to be abnormally elevated. The mean standard deviation of all measurements (n = 4269) was 2.4%. The dose responses of different irradiation groups with breathing rate elevation as the biological endpoint were evaluated with probit analysis. Two response phases of breathing rate elevation were observed as the early response phase (<100 days) and the late response phase (>100 days). The ED50 values for x-rays, neutrons only, and neutrons plus BPA during the early response phase, and neutrons plus BPA during the late response phase, were 11.5 ± 0.4 Gy, 9.2 + 0.5 Gy, 8.7 ± 0.6 Gy and 6.7 ± 0.4 Gy, respectively.
(cont.) The radiobiological weighting factors for the neutron beam (neutrons and photons), thermal neutrons only, %°B dose component during the early response phase, and 10B dose component during the late response phase were 1.24 ± 0.08, 2.2 ± 0.4, 1.4 ± 0.2, and 2.3 + 0.3, respectively. The histological damage to the lung during the late phase was also quantified with a histological scoring system. A set of linear dose response curves with histological damage as the endpoint was constructed. The radiobiological weighting factors for the different dose components were also determined at a degree of lung histological damage corresponding to a median histological score between the baseline (similar to the control) and the maximum. The weighting factors measured, 1.22 ± 0.09 for the thermal neutron beam and 1.9 + 0.2 for the o1B dose component, are consistent with the corresponding weighting factors measured using functional damage. The knowledge gained in these radiobiological studies of the normal rat lung indicates that the lung complications experienced by two patients in the Harvard-MIT clinical trial of BNCT for brain tumors do not appear to be related to the BNCT irradiations. This project is also helpful for evaluating the feasibility of BNCT for lung cancer.
by Jingli Liu Kiger.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Hanton, Fiona. "Laser ion acceleration from ultrathin foils and application to radiobiology." Thesis, Queen's University Belfast, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.706690.

Full text
Abstract:
Laser driven ion sources offer a potential alternative to conventional ion accelerators currently used in hadrontherapy for cancer treatment. The unique characteristics of the ion beams sets the basis for development toward therapeutic use. The work presented in this thesis seeks to overcome the present limitations of laser-driven ion accelerators and to demonstrate the ion beam parameters required to make this a viable treatment option. Ultra-thin copper and gold foil targets were irradiated with intense laser pulses at normal incidence by varying laser and target parameters. For copper, the peak ion energies were observed to quadratically scale with the dimensionless fluence parameter, suggesting efficient Radiation Pressure Acceleration in the Light Sail phase in a hybrid acceleration regime. For gold targets, the production of high peak ion energies of ~20 MeV, ~12 MeV/nucleon and 7.5 MeV/nucleon for H+, C6+ and Au45+ were observed, respectively. In particular, the Au45+ ion energies translate to approximately 1.5-2 GeV per Au ion (for energies exceeding and including the spectral peak). 2D PIC simulations were performed and were found to be in agreement with experimentally observed data. The radiobiological work focused on studying DNA Double Strand Breaks (DSBs) following the irradiation of AG01522 cells with proton and carbon ions at ultra-high dose rates of ≥10A˄9 Gys˄-1. This was done by quantitatively measuring the dispersion of 53BP1 foci over a 24 hour period for cells irradiated with 10 MeV (5 keV/μm) protons and 5 MeV/nucleon (310 keV/μm) carbon ions. The slow repair kinetics and large number of foci remaining at 24 hours from carbon ion irradiation was indicative of more severe DSBs compared to the lower LET exposure from protons. The relative biological effectiveness for protons and carbon ions were found to be RBE_1H = 1.6 ± 0.2 and RBE_12C = 13 ± 9.
APA, Harvard, Vancouver, ISO, and other styles
7

Renegar, Jackson Reid. "On the implementations of experimental methods using fluorescence microscopy in modern radiobiology." Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37228.

Full text
Abstract:
This thesis is intended as an introductory lab manual on the experimental methods using fluorescence microscopy in modern radiobiology research. It is written for those who are unfamiliar with biology research. It first covers the proper use of laboratory equipment and growth of cell cultures in the lab. Subsequent chapters provide overviews of relevant modern experimental techniques for the quantification of radiation induced DNA damage in cells, and detailed protocols for performing these procedures. Techniques covered include immunostaining with fluorescent antibodies, the comet assay, and plasmid DNA transfections. Results of some straightforward experiments using these techniques are presented.
APA, Harvard, Vancouver, ISO, and other styles
8

Almeida, Solange Maria de 1959. "Efeito da radiação de eletrons na reparação tecidual." [s.n.], 1996. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288893.

Full text
Abstract:
Orientador: Frab Norberto Boscolo
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-07-22T03:00:44Z (GMT). No. of bitstreams: 1 Almeida_SolangeMariade_D.pdf: 5623908 bytes, checksum: b26c68566d3a5cc890cf18e225a7c0c1 (MD5) Previous issue date: 1997
Resumo: O presente trabalho teve como finalidade estudar o efeito de baixas doses de radiação de elétrons no processo de reparação tecidual em ratos. Para tanto, os animais sofreram um procedimento cirúrgico, onde foi produzida uma ferida retangular, medindo 2,3 cm por 1,4 cm, na sua região dorsal anterior. No momento da irradiação, as feridas produzidas foram protegidas, sendo irradiada somente uma região corresponde a 1,0 cm lateralmente à cada borda da ferida, com todo o restante do corpo do animal também protegido. A irradiação foi realizada para um grupo de animais, imediatamente após a abertura da ferida. O outro grupo sofreu a irradiação 3 dias após esse procedimento. O processo de reparação tecidual foi estudado aos 2, 4, 7, 11, 14, 17 e 21 dias após o procedimento cirúrgico para o primeiro grupo, enquanto para o segundo grupo de animais, a reparação tecidual foi avaliada 5, 7, 10, 14, 17, 20 e 24 dias também após a abertura da ferida. Cada grupo irradiado foi comparado com. grupos controles correspondentes, os quais não sofreram irradiação. O processo de reparação tecidual foi avaliado pelos seguintes métodos: coloração pela hematoxilina - eosina, que possibilitou avaliar a mortologia do tecido de granulação; reação histoquímica de metacromasia pelo azul de toluidina pH 4, podendo assim ser avaliada a síntese de glicosaminoglicanas e por fim, impregnação argêntica, onde foi observada a síntese de colágeno, através da microscopia de polarização (birrefringência). Os resultados obtidos mostraram que 1,0 Gy de radiação de elétrons com um feixe de 6 MéV, usou um retardo no processo de reparação tecidual, quando aplicado imediatamente e 3 dias após a abertura da ferida, sendo que quando comparados os dois grupos irradiados, para os dias 7, 14 e 17 , o efeito na reparação tecidual foi mais acentuado no grupo que sofreu irradiação 3 dias após a abertura da ferida
Abstract: The present search had the purpose to study the low dose electron irrradiation effect in the process of tissue repair in rats. In such a way, the animais were submitted to a surgical procedure, in which a rectangular wound was performed, measuring 2.3cm X 1.4cm on the fore dorsal area. At the moment of irradiation, the wounds were protected so that only an area near 1.0cm laterally to each b9rder of the wound was i rrad iated , being protected ali the rest ofthe animal body. The irradiation was performed in one group of animais immediately after the wounding procedure. The other group was irradiated three days after wounding. The process of tissue repair was studied at 2, 4, 7, 11, 14, 17 and 21 days after the surgical procedure on the first group, while for the other group of animais, tissue repair was evaluated at 5, 7, 10, 14, 17, 20 and 24 days, also after wounding. Each irradiated group was compared to corresponding control groups, which did not were submited irradiation. The tissue repair process was evaluated by the following methods: staining by haematoxylin-eosin in order to evaluating granulation tissue morphology; histochemical reaction of metachromasia by toluidin pH 4.0, so that it was possible to evaluate the synthesis of glucosaminglucans and at last, the silver impregnation, in which it was studied the collagen synthesis bymeans of polarizing microscopy. The results obtained showed that 1.0 Gy of electron irradiation with a 6 MeV beam caused a delay in the process of tissue repair, when applied immediately after and at three days after wounding. The comparison of both irradiated groups at days 7, 14 and 17, have showed that the effect on tissue repair was stronger on the group that received irradiation 3 days after wounding
Doutorado
Radiologia
Doutor em Odontologia
APA, Harvard, Vancouver, ISO, and other styles
9

Bloch, Jonatas Carrero. "Avaliação de técnicas radioterápicas conformacionais utilizando critérios físicos e biológicos." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-26062012-160955/.

Full text
Abstract:
No combate às neoplasias, diferentes técnicas radioterápicas têm surgido, apoiadas em avanços tecnológicos, com o objetivo de otimizar a eliminação das células tumorais produzindo o menor dano a tecidos sadios dos pacientes. Os planejamentos de tratamentos radioterápicos visam o estabelecimento de parâmetros técnicos de irradiação de forma que as doses prescritas nos volumes de tratamento sejam atingidas. Enquanto que a prescrição das doses se baseiam em considerações biológicas de radiosensibilidade dos tecidos, os cálculos físicos do planejamento levam em conta parâmetros dosimétricos associados aos feixes de radiação e às características físicas dos tecidos irradiados. A incorporação de informações de sensibilidade de tecidos aos cálculos radioterápicos pode auxiliar na particularização de tratamentos e no estabelecimento de critérios de comparação e escolha de técnicas radioterápicas, contribuindo para o controle tumoral e sucesso do tratamento. Para tanto, modelos biológicos de resposta celular à radiação ionizante devem ser bem estabelecidos. Este trabalho visou estudar a aplicabilidade do uso de modelos biológicos em cálculos de planejamento radioterápico com objetivo de auxiliar na avaliação de técnicas radioterápicas. A probabilidade de controle tumoral (TCP) foi estudada para duas formulações do modelo linear-quadrático, com e sem consideração de repopulação celular, em função de parâmetros de planejamento, como dose por fração, e de parâmetros radiobiológicos, como a razão ?/?. Além disso, o uso de critérios biológicos para comparação de técnicas radioterápicas foi testado através da simulação de um planejamento de próstata utilizando simulação Monte Carlo com o código PENELOPE. Posteriormente, planejamentos radioterápicos de tumores de próstata de cinco pacientes do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, USP, utilizando-se três técnicas de irradiação diferentes, foram comparados através do critério de probabilidade de controle tumoral. Para tanto, matrizes de dose obtidas do sistema de planejamento radioterápico XiO foram utilizadas para obter as distribuições de TCP e histogramas TCP-volume. Os estudos realizados permitiram concluir que variações em parâmetros radiobiológicos podem influenciar significativamente cálculos de controle tumoral e que a análise de histogramas TCP-volume pode fornecer informações importantes para avaliação de tratamentos radioterápicos. Entretanto, o estabelecimento de fatores quantitativos de comparação através de critérios radiobiológicos passa pelo estabelecimento de protocolos de prescrição clínica baseados nesses critérios. Além disto, valores radiobiológicos sofreram grandes alterações na literatura recentemente e, portanto, a inclusão destes parâmetros nos cálculos de planejamentos requer grandes cuidados.
In the fight against cancer, different irradiation techniques have been developed based on technological advances and aiming to optimize the elimination of tumor cells with the lowest damage to healthy tissues. The radiotherapy planning goal is to establish irradiation technical parameters in order to achieve the prescribed dose distribution over the treatment volumes. While dose prescription is based on radiosensitivity of the irradiated tissues, the physical calculations on treatment planning take into account dosimetric parameters related to the radiation beam and the physical characteristics of the irradiated tissues. To incorporate tissue\'s radiosensitivity into radiotherapy planning calculations can help particularize treatments and establish criteria to compare and elect radiation techniques, contributing to the tumor control and the success of the treatment. Accordingly, biological models of cellular response to radiation have to be well established. This work aimed to study the applicability of using biological models in radiotherapy planning calculations to aid evaluating radiotherapy techniques. Tumor control probability (TCP) was studied for two formulations of the linear-quadratic model, with and without repopulation, as a function of planning parameters, as dose per fraction, and of radiobiological parameters, as the ?/? ratio. Besides, the usage of biological criteria to compare radiotherapy techniques was tested using a prostate planning simulated with Monte Carlo code PENELOPE. Afterwards, prostate plannings for five patients from the Hospital das Clínicas da Faculdadede Medicina de Ribeirão Preto, USP, using three different techniques were compared using the tumor control probability. In that order, dose matrices from the XiO treatment planning system were converted to TCP distributions and TCP-volume histograms. The studies performed allow the conclusions that radiobiological parameters can significantly influence tumor control calculations and that the TCP-volume histograms can provide important information for treatment techniques evaluation. However, the establishment of quantitative comparison parameters using radiobiological criteria demands the establishment of prescription protocols based on these same parameters. Also, the literature recently showed large variations in radiobiological parameters, meaning that the inclusion of those in treatment planning calculations should require a careful endeavor.
APA, Harvard, Vancouver, ISO, and other styles
10

Prade, H. "Workshop on X-rays from electron beams." Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-30011.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Radiobiology"

1

1930-, Duncan William, ed. Clinical radiobiology. 2nd ed. Edinburgh: Churchill Livingstone, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

J, Conklin James, and Walker Richard I, eds. Military radiobiology. Orlando: Academic Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nias, A. H. W. Clinical radiobiology. 2nd ed. Edinburgh: Churchill Livingstone, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

J, Conklin James, and Walker Richard I, eds. Military radiobiology. Orlando: Academic Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schofield, Paul N., and Carmel E. Mothersill. Environmental Radiobiology. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003432135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baatout, Sarah, ed. Radiobiology Textbook. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18810-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bleehen, Norman M. Radiobiology in Radiotherapy. London: Springer London, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Joiner, Michael C., and Albert J. van der Kogel, eds. Basic Clinical Radiobiology. Fifth edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, [2018]: CRC Press, 2018. http://dx.doi.org/10.1201/9780429490606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pirtoli, Luigi, Giovanni Luca Gravina, and Antonio Giordano, eds. Radiobiology of Glioblastoma. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28305-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bleehen, Norman M., ed. Radiobiology in Radiotherapy. London: Springer London, 1988. http://dx.doi.org/10.1007/978-1-4471-1603-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Radiobiology"

1

Beyzadeoglu, Murat, Gokhan Ozyigit, Ugur Selek, and Ugur Selek. "Radiobiology." In Radiation Oncology, 71–135. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27988-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morse, Kenneth F., and Christopher M. Wolfe. "Radiobiology." In Radiation Therapy for Skin Cancer, 9–16. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6986-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amestoy, William. "Radiobiology." In Review of Medical Dosimetry, 407–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-13626-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Panizzon, Renato G. "Radiobiology." In Modern Dermatologic Radiation Therapy, 17–23. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4613-9041-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Breuer, Hans, and Berend J. Smit. "Radiobiology." In Proton Therapy and Radiosurgery, 121–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04301-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heath, Amy. "Radiobiology." In Radiation Therapy Study Guide, 17–26. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3258-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Beyzadeoglu, Murat, Gokhan Ozyigit, and Cuneyt Ebruli. "Radiobiology." In Basic Radiation Oncology, 71–144. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11666-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wenz, Frederik, Katia Pasciuti, and Carsten Herskind. "Radiobiology." In Targeted Intraoperative Radiotherapy in Oncology, 45–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39821-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MacDonald, Iain M. "Radiobiology." In Computed Tomography, 45–59. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003132554-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Strigari, Lidia, and Marta Cremonesi. "Radiobiology." In Handbook of Nuclear Medicine and Molecular Imaging for Physicists, 17–31. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9780429489549-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Radiobiology"

1

Sotolongo-Grau, O., D. Rodriguez-Perez, J. C. Antoranz, O. Sotolongo-Costa, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Non-extensive radiobiology." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Streit-Bianchi, Marilena, Gerardo Herrera Corral, and Luis Manuel Montaño Zentina. "Radiobiology of Hadrons." In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schettino, G. "Radiobiology challenges for ELIMED." In 2ND ELIMED WORKSHOP AND PANEL. AIP, 2013. http://dx.doi.org/10.1063/1.4816617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

GRIBKOV, V. A. "PULSED RADIOBIOLOGY: POSSIBILITIES AND PERSPECTIVES." In Proceedings of the First Workshop. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811301_0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Freyer, James, Mario Schillaci, Susan Carpenter, Michael Cornforth, Robert Sebring, Patricia Schor, Mark Wilder, Kathryn Thompson, and Mudundi Raju. "The Radiobiology of Ultrasoft X-rays." In Free-Electron Laser Applications in the Ultraviolet. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/fel.1988.fc3.

Full text
Abstract:
We have an ongoing project using ultrasoft x-rays as a tool to investigate the mechanisms of radiation-induced damage in biological systems. The data which are derived from these studies are used to test the assumptions of current models of the biological and chemical mechanisms of radiation damage. In principle, refinement of these models should aid in the extrapolation of biological data obtained at high radiation doses to the low-dose region. Basic mechanistic data may also improve our understanding of the therapeutic application of radiation in the treatment of cancer. Soft x-rays are particularly attractive for these studies because they deposit their energy over nanometer-scale dimensions, comparable to the size of critical target structures within mammalian cells. For example, 0.28 keV characteristic x-rays from carbon generate photoelectrons which deposit all of their energy over a range of 7 nm, comparable to the dimensions of DNA strands (2-3 nm) and DNA-histone complexes (10 nm). Thus, these radiations serve as very precise probes of the energy deposition and lesion interaction requirements for biological damage.
APA, Harvard, Vancouver, ISO, and other styles
6

Pautard, C., E. Balanzat, G. Ban, E. Batin, B. Carniol, J. Colin, D. Cussol, et al. "Heavy ion beams monitoring for radiobiology applications." In 2006 IEEE Nuclear Science Symposium Conference Record. IEEE, 2006. http://dx.doi.org/10.1109/nssmic.2006.353840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giulietti, Antonio, Maria Grazia Andreassi, and Carlo Greco. "Pulsed radiobiology with laser-driven plasma accelerators." In SPIE Optics + Optoelectronics, edited by Kenneth W. D. Ledingham, Wim P. Leemans, Eric Esarey, Simon M. Hooker, Klaus Spohr, and Paul McKenna. SPIE, 2011. http://dx.doi.org/10.1117/12.888736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yogo, A., T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, et al. "Radiobiology with laser-accelerated quasi-monoenergetic proton beams." In SPIE Optics + Optoelectronics, edited by Kenneth W. D. Ledingham, Wim P. Leemans, Eric Esarey, Simon M. Hooker, Klaus Spohr, and Paul McKenna. SPIE, 2011. http://dx.doi.org/10.1117/12.886680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Koyama, Kazuyoshi, Yosuke Matsumura, Mitsuru Uesaka, Mitsuhiro Yoshida, Takuya Natsui, and Aimidula Aimierding. "Laser-driven dielectric electron accelerator for radiobiology researches." In SPIE Optics + Optoelectronics, edited by Eric Esarey, Carl B. Schroeder, Wim P. Leemans, Kenneth W. D. Ledingham, and Dino A. Jaroszynski. SPIE, 2013. http://dx.doi.org/10.1117/12.2017221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cunha, M., M. Pinto, F. Alves, P. Crespo, and R. F. Marques. "Radiobiology with cyclotron proton beams: A viability study." In 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (2010 NSS/MIC). IEEE, 2010. http://dx.doi.org/10.1109/nssmic.2010.5874028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Radiobiology"

1

Jee, W. S. S. Research in radiobiology. Office of Scientific and Technical Information (OSTI), July 1990. http://dx.doi.org/10.2172/6518325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prather, J., S. Smith, and C. Watson. National Radiobiology Archives distributed access programmer's guide. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5900212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Watson, C., S. Smith, and J. Prather. National Radiobiology Archives Distributed Access user's manual. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6253476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dr. Anthony C. James and Stacey L. McCord. Operation and Maintenance of the National Radiobiology Archives. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1035877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, S. K., J. C. Prather, E. K. Ligotke, and C. R. Watson. National Radiobiology Archives Distributed Access User's Manual, Version 1. 1. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7159057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Davern, Sandra, and Saed Mirzadeh. Radiobiology, Omics and Microdosimetry of Systemic and Targeted Radiotherapeutics Workshop. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1820871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maxim, Peter, Jr Loo, and Billy. Very High Dose-Rate Radiobiology and Radiation Therapy for Lung Cancer. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada616594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, S. K., J. C. Prather, E. K. Ligotke, and C. R. Watson. National Radiobiology Archives Distributed Access User`s Manual, Version 1.1. Revision 1. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/10183970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gerber, G. B., C. R. Watson, T. Sugahara, and S. Okada. International radiobiology archives of long-term animal studies. I. Descriptions of participating institutions and studies. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/376402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Angus, P., A. Cook, M. Gadd, B. Lawson, P. Maggi, S. Mitchell, S. Murphy, et al. Experiment Logistics for an International Blind Intercomparison Exercise for Nuclear Accident Dosimetry at the Armed Forces Radiobiology Research Institute’s TRIGA Reactor. Office of Scientific and Technical Information (OSTI), March 2024. http://dx.doi.org/10.2172/2329382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography