Dissertations / Theses on the topic 'Radio lines:ISM'

To see the other types of publications on this topic, follow the link: Radio lines:ISM.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Radio lines:ISM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Barnes, Peter J., Audra K. Hernandez, Stefan N. O’Dougherty, III William J. Schap, and Erik Muller. "THE GALACTIC CENSUS OF HIGH- AND MEDIUM-MASS PROTOSTARS. III. 12 CO MAPS AND PHYSICAL PROPERTIES OF DENSE CLUMP ENVELOPES AND THEIR EMBEDDING GMCs." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/622167.

Full text
Abstract:
We report the second complete molecular line data release from the Census of High-and Medium-mass Protostars (CHaMP), a large-scale, unbiased, uniform mapping survey at sub-parsec resolution, of millimeter-wave line emission from 303 massive, dense molecular clumps in the Milky Way. This release is for all (CO)-C-12 J = 1 -> 0 emission associated with the dense gas, the first from Phase II of the survey, which includes (CO)-C-12, (CO)-C-13, and (CO)-O-18. The observed clump emission traced by both (CO)-C-12 and HCO+ (from Phase I) shows very similar morphology, indicating that, for dense molecular clouds and complexes of all sizes, parsec-scale clumps contain. similar to 75% of the mass, while only 25% of the mass lies in extended (>10 pc) or "low density" components in these same areas. The mass fraction of all gas above a density of 10(9) m(-3) is xi(9) greater than or similar to 50%. This suggests that parsec-scale clumps may be the basic building blocks of the molecular interstellar medium, rather than the standard GMC concept. Using (CO)-C-12 emission, we derive physical properties of these clumps in their entirety, and compare them to properties from HCO+, tracing their denser interiors. We compare the standard X-factor converting I (CO)-C-12 to N-H2 with alternative conversions, and show that only the latter give whole-clump properties that are physically consistent with those of their interiors. We infer that the clump population is systematically closer to virial equilibrium than when considering only their interiors, with perhaps half being long-lived (10s of Myr), pressure-confined entities that only terminally engage in vigorous massive star formation, supporting other evidence along these lines that was previously published.
APA, Harvard, Vancouver, ISO, and other styles
2

Seo, Youngmin, and Youngmin Seo. "The L1495-B218 Filaments in Taurus Seen in NH₃ & CCS and Dynamical Stability of Filaments and Dense Cores." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621572.

Full text
Abstract:
We present deep NH₃ and CCS maps of L1495-B218 filaments and the dense cores embedded within the filaments in Taurus. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed the filaments in NH₃ (1,1)&(2,2), CCS Nⱼ = 1₂-0₁, and HC₇N J = 21-20 with spectral resolution of 0.038 km/s and spatial resolution of 31". The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithm, identifies 39 leaves and 16 branches in NH₃ (1,1). Applying a virial analysis for the 39 NH₃ leaves, we find only 9 out of 39 leaves are gravitationally bound, and 12 out of 30 gravitationally unbound leaves are pressure-confined. Our analysis suggests that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and then undergo collapse to form a protostar. We find that the L1495A, B213E, and B216 regions have strong CCS emission and the B211 and B218 regions have weak CCS emission. Analysis of CCS emission with NH₃ (1,1) and dust continuum emission shows that CCS is not a good tracer for starless core evolution. On the other hand, CCS appears to trace recently accreted gas in L1495A and L1521D. We also present more realistic dynamic stability conditions for dense cores and filaments. In a new analysis of stability conditions we account for converging motions which have been modeled toward starless cores and take the effect of radiation fields. We find that the critical size of a dense core having a homologous converging motion with its peak speed being the sound speed is roughly half of the critical size of the Bonnor-Ebert sphere. We also find the critical mass/line density of a dense core/filament irradiated by radiation to be considerably smaller than that of the Bonnor-Ebert sphere/isothermal cylinder when the radiation pressure is stronger than the central gas pressure of dense core/isothermal cylinder. For regions in the inner Galaxy and near OB associations, the critical mass/line density of a dense structure may be less than 20% of the critical mass/line density of Bonnor-Ebert sphere/isothermal cylinder.
APA, Harvard, Vancouver, ISO, and other styles
3

Rho, J., J. W. Hewitt, J. Bieging, W. T. Reach, M. Andersen, and R. Güsten. "DISCOVERY OF BROAD MOLECULAR LINES AND OF SHOCKED MOLECULAR HYDROGEN FROM THE SUPERNOVA REMNANT G357.7+0.3: HHSMT, APEX, SPITZER , AND SOFIA OBSERVATIONS." IOP PUBLISHING LTD, 2016. http://hdl.handle.net/10150/622645.

Full text
Abstract:
We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), (CO)-C-13 (2-1), and (CO)-C-13 (3-2), HCO+, and HCN using the Heinrich Hertz Submillimeter Telescope, the Arizona 12 m Telescope, APEX, and the MOPRA Telescope. The widths of the broad lines are 15-30 km s(-1), and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4'.5 x 5'). We also present the detection of shocked H-2 emission in the mid-infrared but lacking ionic lines using Spitzer/IRS observations to map a few-arcminute area. The H2 excitation diagram shows a best fit with a two-temperature local thermal equilibrium model with the temperatures of similar to 200 and 660 K. We observed [C II] at 158 mu m and high-J CO(11-10) with the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on the Stratospheric Observatory for Infrared Astronomy. The GREAT spectrum of [C II], a 3 sigma detection, shows a broad line profile with a width of 15.7 km(-1) that is similar to those of broad CO molecular lines. The line width of [C II] implies that ionic lines can come from a low-velocity C-shock. Comparison of H2 emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n(H-2) = 1.7 x 10(4) cm(-3), N(CO) = 5.6 x 10(16) cm(-2), and T = 75 K can reproduce the observed millimeter CO brightnesses.
APA, Harvard, Vancouver, ISO, and other styles
4

Schmidt, D. R., and L. M. Ziurys. "NEW DETECTIONS OF HNC IN PLANETARY NEBULAE: EVOLUTION OF THE [HCN]/[HNC] RATIO." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/622874.

Full text
Abstract:
New detections of HNC have been made toward 11 planetary nebulae (PNe), including K4-47, K3-58, K3-17, M3-28, and M4-14. These sources, which represent a wide range of ages and morphologies, had previously been observed in HCN by Schmidt & Ziurys. Measurements of the J = 1 -> 0 and J = 3 -> 2 transitions of HNC near 90 and 271 GHz were conducted using the new 12 m and the Sub-Millimeter Telescope of the Arizona Radio Observatory. HCN and HNC were also identified via their J = 1 -> 0 lines toward eight positions across the Helix Nebula (NGC 7293). Column densities for HNC, determined from radiative transfer modeling, were N-tot(HNC) similar to (0.06-4.0) x 10(13) cm(-2), corresponding to fractional abundances with respect to H-2 of f similar to (0.02-1.4) x 10(-7). The HCN and HNC column densities across the Helix were found to be N-tot (HCN) similar to (0.2-2.4). x. 10(12) cm(-2) and Ntot (HNC) similar to (0.07-1.6). x. 1012 cm(-2), with fractional abundances of (0.2-3.2) x 10(-7) and (0.09-2.2) x 10(-7). The [ HCN]/[ HNC] ratio varied between similar to 1-8 for all PNe, with [ HCN]/[ HNC] similar to 1-4 across the Helix. These values are greatly reduced from what has been found in asymptotic giant branch stars, where the ratio is typically > 100. Both the abundance of HNC and the [ HCN]/[ HNC] ratio do not appear to vary significantly with nebular age across a time span of similar to 10,000 years, in contrast to predictions of chemical models. The increase in HNC appears to arise in the proto-planetary stage, but becomes " frozen" once the PN phase is reached.
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt, D. R., and L. M. Ziurys. "New Identifications of the CCH Radical in Planetary Nebulae: A Connection to C-60?" IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626258.

Full text
Abstract:
New detections of CCH have been made toward nine planetary nebulae (PNe), including K4-47, K3-58, K3-17, M3-28, and M4-14. Measurements of the N = 1 -> 0 and N = 3 -> 2 transitions of this radical near 87 and 262 GHz were carried out using the new 12 m and the Sub-Millimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). The presence of fine and/or hyperfine structure in the spectra aided in the identification. CCH was not observed in two PNe which are sources of C-60. The planetary nebulae with positive detections represent a wide range of ages and morphologies, and all had previously been observed in HCN and HNC. Column densities for CCH in the PNe, determined from radiative transfer modeling, were N-tot(CCH) similar to 0.2-3.3 x 10(15) cm(-2), corresponding to fractional abundances with respect to H-2 of f similar to 0.2-47 x 10(-7). The abundance of CCH was found to not vary significantly with kinematic age across a time span of similar to 10,000 years, in contrast to predictions of chemical models. CCH appears to be a fairly common constituent of PNe that are carbon-rich, and its distribution may anti-correlate with that of C-60. These results suggest that CCH may be a product of C-60 photodestruction, which is known to create C-2 units. The molecule may subsequently survive the PN stage and populate diffuse clouds. The distinct, double-horned line profiles for CCH observed in K3-45 and M3-28 indicate the possible presence of a bipolar flow oriented at least partially toward the line of sight.
APA, Harvard, Vancouver, ISO, and other styles
6

Shaw, Gargi, G. J. Ferland, and I. Hubeny. "The Validity of 21 cm Spin Temperature as a Kinetic Temperature Indicator in Atomic and Molecular Gas." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625168.

Full text
Abstract:
The gas kinetic temperature (T-K) of various interstellar environments is often inferred from observations that can deduce level populations of atoms, ions, or molecules using spectral line observations; H I 21 cm is perhaps the most widely used, and has a long history. Usually the H I 21 cm line is assumed to be in thermal equilibrium. and the populations are given by the Boltzmann distribution. A variety of processes, many involving Ly alpha, can affect the 21 cm line. Here we show how this is treated in the spectral simulation code Cloudy, and present numerical simulations of environments where this temperature indicator is used, with a detailed treatment of the physical processes that determine level populations within H-0. We discuss situations where this temperature indicator traces TK, cases where it fails, as well as the effects of Lya pumping on the 21 cm spin temperature. We also show that the Lya excitation temperature rarely traces the gas kinetic temperature.
APA, Harvard, Vancouver, ISO, and other styles
7

Roberts-Borsani, G. W., M. J. Jiménez-Donaire, M. Daprà, K. Alatalo, I. Aretxaga, J. Álvarez-Márquez, A. J. Baker, et al. "Multiwavelength Characterization of an ACT-selected, Lensed Dusty Star-forming Galaxy at z = 2.64." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625330.

Full text
Abstract:
We present CI(2-1) and multi-transition (CO)-C-12 observations of a dusty star-forming galaxy, ACT J2029+0120, which we spectroscopically confirm to lie at z = 2.64. We detect CO(3-2), CO(5-4), CO(7-6), CO(8-7), and CI (2-1) at high significance, tentatively detect HCO+(4-3), and place strong upper limits on the integrated strength of dense gas tracers (HCN(4-3) and CS(7-6)). Multi-transition CO observations and dense gas tracers can provide valuable constraints on the molecular gas content and excitation conditions in high-redshift galaxies. We therefore use this unique data set to construct a CO spectral line energy distribution (SLED) of the source, which is most consistent with that of a ULIRG/Seyfert or QSO host object in the taxonomy of the Herschel Comprehensive ULIRG Emission Survey. We employ RADEX models to fit the peak of the CO SLED, inferring a temperature of T similar to 117 K and n(H2) similar to 10(5) cm(-3), most consistent with a ULIRG/QSO object and the presence of high-density tracers. We also find that the velocity width of the C I line is potentially larger than seen in all CO transitions for this object, and that the L'(Ci(2-1))/L'(CO(3-2)) ratio is also larger than seen in other lensed and unlensed submillimeter galaxies and QSO hosts; if confirmed, this anomaly could be an effect of differential lensing of a shocked molecular outflow.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Shanghuo, Junzhi Wang, Zhi-Yu Zhang, Min Fang, Juan Li, Jiangshui Zhang, Junhui Fan, Qingfeng Zhu, and Fei Li. "Millimetre spectral line mapping observations towards four massive star-forming H ii regions." OXFORD UNIV PRESS, 2017. http://hdl.handle.net/10150/623847.

Full text
Abstract:
We present spectral line mapping observations towards four massive star-forming regions Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 14(0), 14-13(0), (13)) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of C-12/C-13 were derived using HC3N and its C-13 isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (similar to 65). The N-14/N-15 and O-16/O-18 abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the S-33/S-34 ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N( DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 x 10(-5). Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.
APA, Harvard, Vancouver, ISO, and other styles
9

Rice, Johnathan Scott. "The Transition From Diffuse to Dense Molecular Clouds." University of Toledo / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1534945134382193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Niemeier, James J. "Radio in hydroscience: unconventional links and new sensor possibilities." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/863.

Full text
Abstract:
One can use unlicensed and often very inexpensive radios for unconventional communication (underwater- and underground) links. However, one can go further, and use these radios as sensors rather than communication links. Such communication links and sensors can have important application in hydroscience. While the attenuation of RF signals is high in these mediums, by using the wireless sensor network (WSN) paradigm of multi-hop and retransmission, reliable networks can be formed underwater and underground. One no longer needs to think of RF modules as only a source of data transmission. This revelation lends itself to thinking of these modules as inexpensive RF wave generators at prescribed unlicensed frequencies. Analyzing the received signal strength indicator (RSSI) of a link over time, one can infer changes in the medium from the changes in RSSI. In this thesis, I develop a simple mathematical model to relate changes in RSSI to changes in the medium. Additionally, five experimentally validated examples demonstrate the possibility of non-traditional uses for RF modules. Demonstrated sensor possibilities include soil moisture estimation, leaf wetness measurement, and vegetation water content estimation. This thesis served to validate the use of inexpensive unlicensed RF modules as more than just communication links through air, but as links in unconventional media, and more importantly as measurement instruments.
APA, Harvard, Vancouver, ISO, and other styles
11

Halfen, D. T., N. J. Woolf, and L. M. Ziurys. "The 12C/ 13C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic Chemistry." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/625777.

Full text
Abstract:
A study has been conducted of 12C/13C ratios in five complex molecules in the Galactic center. H2CS, CH3CCH, NH2CHO, CH2CHCN, and CH3CH2CN and their 13C-substituted species have been observed in numerous transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the 12C species and 2–54 for 13C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found to consistently exhibit two velocity components near VLSR ∼ 64 and 73 km s−1, with column densities ranging from Ntot ∼ 3 × 1014 − 4 × 1017 cm−2 and ∼2 × 1013 − 1 × 1017 cm−2 for the 12C and 13C species, respectively. Based on 14 different isotopic combinations, ratios were obtained in the range 12C/13C = 15 ± 5 to 33 ± 13, with an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the 12C/13C ratio at the Galactic center, and suggest a slightly revised isotope gradient of 12C/13C = 5.21(0.52) DGC + 22.6(3.3). As indicated by the column densities, no preferential 13C enrichment was found on the differing carbon sites of CH3CCH, CH2CHCN, and CH3CH2CN. Because of the elevated temperatures in Sgr B2(N), 13C isotopic substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.
APA, Harvard, Vancouver, ISO, and other styles
12

Hindson, Luke Paul. "The G305 star forming complex : a panoramic view of the environment and star formation." Thesis, University of Hertfordshire, 2012. http://hdl.handle.net/2299/9197.

Full text
Abstract:
This thesis presents molecular line and radio continuum observations of the giant molecular cloud (GMC) complex known as G305. The energy input from high-mass stars in the form of powerful winds and ionising radiation is one of the primary feedback mechanisms in GMCs. This feedback is thought to play a dual role both dispersing and destroying the natal environment but also sweeping up and compressing molecular gas and potentially triggering new episodes of star formation. Despite their importance to the evolution of GMCs and galaxies as a whole, the physical processes behind the formation and evolution of high-mass stars remains poorly understood. We therefore set out to obtain wide-field observations of the ionised and molecular environment to study the impact of high-mass stars on the evolution of G305. Observations conducted with the Mopra telescope of the molecular gas traced by NH3 in the (1,1), (2,2) and (3,3) transition and CO (12CO, 13CO and C18O J = 1–0) reveals the reservoir for future star formation in G305 and allows the physical properties and kinematics of the region to be studied. We identify 15 large molecular clouds and 57 smaller molecular clumps towards G305. The physical properties of the molecular gas are consistent with G305 being amongst the most massive a vigorous star forming regions in the Galaxy. We find a total molecular gas mass of 2:5–6:5 105M indicating that there is a large reservoir for future star formation. By considering virial equilibrium within the molecular clumps we discover that only 14% of the molecular clumps in G305 are gravitationally unstable, however these clumps contain > 30% of the molecular mass in G305 suggesting there is scope for considerable future star formation. To study the ionised environment towards G305 we have obtained some of the largest and most detailed wide-area mosaics with the Australia Telescope Compact Array to date. These radio continuum observations were performed simultaneously at 5.5 and 8.8 GHz and by applying two imaging techniques we are able to resolve HII regions from the ultra-compact to classical evolutionary phase. This has allowed high-mass star formation within G305 to be traced over the extent and lifetime of the complex. We discover that more than half of the observable total ionising flux in G305 is associated with embedded high-mass star formation around the periphery of a central cavity that has been driven into the molecular gas by a cluster of optically visible massive stars. By considering the contribution of embedded and visible massive stars to the observed radio continuum we suggest that more than 45 massive stars exist within G305. Combination of these two studies and recent and ongoing star formation provides the most in depth view of G305 to date and allows the star formation history and impact of high-mass stars to be investigated. We find compelling morphological evidence that suggests triggering is responsible for at least some of the observed high-mass star formation and construct a star formation history for the region.
APA, Harvard, Vancouver, ISO, and other styles
13

De, Witt Aletha. "Radio astronomy techniques : the use of radio instruments from single dish radio telescopes to radio interferometers." Thesis, 2012. http://hdl.handle.net/10500/7046.

Full text
Abstract:
New radio telescopes under development, will significantly enhance the capabilities of radio astronomy in the Southern Hemisphere. South Africa, in particular, is actively involved in the development of a new array (MeerKAT) as well as in the expansion of existing very long baseline interferometer arrays in the south. Participation in these new developments demands a thorough understanding of radio astronomy techniques, and data analysis, and this thesis focusses on two projects with the aim of gaining such experience. The Southern Hemisphere very long baselines array is not well served with calibrator sources and there are significant gaps in the present calibrator distribution on the sky. An adequately dense, well distributed, set of strong, compact calibrator or reference sources is needed. With this in mind, observations using the Southern Hemisphere long baseline array were conducted to investigate a sample of candidate calibrator sources. The compactness of the sources was investigated and new potential calibrators have been identified. Single antenna radio spectroscopy of OH masers has identified sources of 1720 MHz emission associated with supernova remnants at the shock interface between the expanding supernova remnant and a molecular cloud. Models indicate that these masers are shock excited and can only be produced under tight physical constraints. Out ows from newly-formed stars create nebulous regions known as Herbig-Haro objects when they interact with the surrounding medium, and these regions are potentially similar to those seen in supernova remnants. If conditions behind the shock fronts of Herbig-Haro objects are able to support 1720-MHz OH masers they could be a useful diagnostic tool for star formation. A survey toward Herbig-Haro objects using a single-dish radio telescope did detect 1720-MHz OH lines in emission, but neither their spectral signature nor follow-up observations with the Very Large Array showed evidence of maser emission.
Mathematical Sciences
Ph.D. (Astronomy)
APA, Harvard, Vancouver, ISO, and other styles
14

Prozesky, Andri. "Investigation of radiative transfer effects in photoionized nebulae." Thesis, 2019. http://hdl.handle.net/10500/26505.

Full text
Abstract:
Detailed knowledge of the hydrogen population structure is necessary for the interpretation of hydrogen recombination line (HRL) observations. Calculations of hydrogen departure coefficients using a capture-collision-cascade type model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. Updated atomic rates and new numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. My results differ from previous results by up to 20 per cent. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Atomic hydrogen masers occur in recombination plasmas in sufficiently dense HII regions. These HRL masers have been observed in a handful of objects to date and the analysis of the atomic physics involved has been rudimentary. A new model of HRL masers is presented which uses an nl-model to describe the atomic populations interacting with free-free radiation from the plasma, and an escape probability framework to deal with radiative transfer effects. The importance of including the collisions between angular momentum quantum states and the free-free emission in models of HRL masers is demonstrated. The model is used to describe the general behaviour of radiative transfer of HRLs and to investigate the conditions under which HRL masers form. The model results show good agreement with observations collected over a broad range of frequencies. Theoretical predictions are made regarding the ratio of recombination lines from the same upper quantum level for these objects.
Physics
Ph. D. (Astronomy)
APA, Harvard, Vancouver, ISO, and other styles
15

Prozesky, Andri. "Atomic processes in gaseous nebulae." Diss., 2011. http://hdl.handle.net/10500/5347.

Full text
Abstract:
The atomic physics relevant to gaseous nebulae is critically examined using modelling software with particular emphasis on radio recombination lines (RRLs). The theoretical spectral line intensities can be deduced if we know the population structure of the bound electrons in the gas under non-thermal equilibrium conditions. The population structure of hydrogen is solved for various environments using a capture-collision-cascade model that incorporates an ambient radiation eld. The validity of assuming Case B (Baker & Menzel, 1938) for nebulae is investigated. It is known that Case B is appropriate for levels with small principal quantum numbers (n < 40), but this assumption is re-examined for high levels which are relevant to RRLs. E ects of an ambient radiation eld on the population structure is examined and processes that are stimulated by a radiation eld are included in the model. This is done as a preliminary investigation to extend the model to a photoionization code.
Physics
(M. Sc. (Astronomy)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography