Dissertations / Theses on the topic 'Radical polymer'

To see the other types of publications on this topic, follow the link: Radical polymer.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Radical polymer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Zeyang. "INTERFACIAL FREE RADICAL POLYMERIZATION OF MALEIC AND 1,4-CYCLOHEXANEDIMETHYANOL DIVINYL ETHER." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468681937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Mir Mukkaram Stöver Harald D. H. "Polymer capsules by living radical polymerization /." *McMaster only, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zewei. "Functionalization of Hyperbranched Polyacrylates by Radical Quenching." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1399542729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Euapermkiati, Anucha. "Free radical telomerisation reactions." Thesis, University of Bradford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shooter, Andrew James. "Living free radical polymerisation." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Staisch, Ingrid. "Atom transfer radical polymerisation of unusual monomers." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/49751.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2003.
ENGLISH ABSTRACT: Controlled free radical polymerisation techniques offer several practical and theoretical advantages compared to many other polymerisation techniques. Living polymerisation techniques such as anionic polymerisations require the total exclusion of impurities such as oxygen and moisture. Controlled free radical polymerisations, however, do not require such stringent methods of practice. This is very advantageous for industrial purposes. Atom Transfer Radical Polymerisation (ATRP) is a form of a controlled/living free radical polymerisation technique by which one is able to synthesize controlled architectural structures and predetermine the molecular weights of macromolecules. The monomers that were investigated for this research project include methyl methacrylate (MMA), 4-vinylpyridine (4VP) and lauryl methacrylate (LMA). The latter two monomers (4VP and LMA) are not commonly used in ATRP-mediated reactions. The synthesis of block copolymers ofMMA and LMA were attempted. The homopolymerisation of 4VP did not give the control expected when polymerising by means of ATRP. This prompted an investigation into possible side reactions that could take place with 4VP in this specific ATRP system. This included possible quatemization of 4VP with the alkyl halide initiator species.
AFRIKAANSE OPSOMMING: Beheerde vrye-radikaalpolimerisasietegnieke bied verskeie praktiese en teoretiese voordele bo verskeie ander vrye-radikaalpolimerisasietegnieke. Lewende polimerisasietegnieke soos anioniese polimerisasie, vereis die totale uitsluiting van onsuiwerhede soos suurstof en water. Beheerde vrye-radikaalpolimerisasies vereis egter nie sulke streng reaksiekondisies nie. Hierdie is baie voordelig vir industriële doeleindes. Atoomoordragradikaalpolimerisasie (ATRP) is 'n tipe beheerde/lewende vryeradikaalpolimerisasietegniek wat dit moontlik maak om die samestelling en struktuur van makromolekules asook die molekulêre massa presies te beheer. In hierdie studie is die monomere metielmetakrilaat (MMA), 4-vinielpiridien (4VP) en laurielmetakrilaat (LMA) bestudeer. Laasgenoemde twee monomere (4VP en LMA) word beskou as ongewone monomere om in ATRP-sisteme te gebruik. Daar is gepoog om blok kopolimere van MMA en LMA te sintetiseer. Die homopolimerisasie van 4VP het minder beheer gelewer as wat by beheerde vrye-radikaal sisteme soos hierdie verwag word. Na aanleiding van hierdie resultate is 'n ondersoek geloods om die moontlike newereaksies van 4VP in hierdie spesifieke ATRP-sisteem te ondersoek. Daar is gepoog om te bewys dat die alkielchloriedinisieerder verdwyn deur kwatemisasie met 4VP.
APA, Harvard, Vancouver, ISO, and other styles
7

Ren, Wendong. "Photoinduced Atom Transfer Radical Polymerization." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1619122320374689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heredia, Karina Lynn. "Synthesis of polymer bioconjugates using controlled radical polymerization." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1583873071&sid=37&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carlmark, Anna. "Atom transfer radical polymerization from multifunctional substrates." Licentiate thesis, KTH, Polymer Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1447.

Full text
Abstract:

Atom transfer radical polymerization (ATRP) has proven to be a powerful technique to obtain polymers with narrow polydispersities and controlled molecular weight. It also offers control over chain-ends. The technique is the most studied and utilized of thecontrolled/”living” radical polymerization techniques since a large number of monomerscan be polymerized under simple conditions. ATRP can be used to obtain polymer graftsfrom multifunctional substrates. The substrates can be either soluble (i. e. based ondendritic molecules) or insoluble (such as gold or silicon surfaces). The large number ofgrowing chains from the multifunctional substrates increases the probability of inter-and intramolecular reactions. In order to control these kinds of polymerizing systems, andsuppress side-reactions such as termination, the concentration of propagating radicalsmust be kept low. To elaborate such a system a soluble multifunctional substrate, based on 3-ethyl-3-(hydroxymethyl)oxetane, was synthesized. It was used as a macroinitiatorfor the atom transfer radical polymerisation of methyl acrylate (MA) mediated byCu(I)Br and tris(2-(dimethylamino)ethyl)amine (Me6-TREN) in ethyl acetate at room temperature. This yielded a co-polymer with a dendritic-linear architecture. Since mostsolid substrates are sensitive to the temperatures at which most ATRP polymerisations are performed, lowering the polymerization temperatures are preferred. ATRP at ambienttemperature is always more desirable since it also suppresses the formation of thermally formed polymer. The macroinitiator contained approximately 25 initiating sites, which well mimicked the conditions on a solid substrate. The polymers had low polydispersity and conversions as high as 65% were reached without loss of control. The solid substrateof choice was cellulose fibers that prior to this study not had been grafted through ATRP.As cellulose fibers a filter paper, Whatman 1, was used due to its high cellulose content.The hydroxyl groups on the surface was first reacted with 2-bromoisobutyryl bromidefollowed by grafting of MA. Essentially the same reaction conditions were used that hadbeen elaborated from the soluble substrate. The grafting yielded fibers that were very hydrophobic (contact angles>100°). By altering the sacrificial initiator-to-monomer ratiothe amount of polymer that was attached to the surface could be tailor. PMA with degreesof polymerization (DP’s) of 100, 200 and 300 were aimed. In order to control that thepolymerizations from the surface was indeed “living” a second layer of a hydrophilicmonomer, 2-hydroxymethyl methacrylate (HEMA), was grafted onto the surface. Thisdramatically changed the hydrophobic behavior of the fibers.


QC 20100524
APA, Harvard, Vancouver, ISO, and other styles
10

Ogura, Yusuke. "Tandem Transesterification in Polymer Synthesis: Gradient and Pinpoint‐Functionalized Polymers." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Reeves, Jennifer Anne. "Photochemistry: Its Application to Reversible Deactivation Radical Polymerization, Degradation, and Post-polymerization Modification." Miami University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=miami154297403540796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Klumperman, Bert. "NMR studies of radical polymerization processes." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71596.

Full text
Abstract:
Thesis (DSc)--Stellenbosch University, 2012.
ENGLISH ABSTRACT: Examples of the use of NMR spectroscopy in the study of radical polymerization processes have been described. The studies presented have made a significant contribution to the understanding of the fundamental mechanistic processes in these polymerization systems. It is pointed out that NMR in conventional radical polymerization is of limited use due to the concurrent occurrence of all elementary reactions (initiation, propagation and termination). Conversely, for living radical polymerization, NMR has great value. In that case, the elementary reactions are somewhat more restricted to specific times of the polymerization process. This allows for example the detailed study of the early stages of chain growth in Reversible Addition-­‐Fragmentation Chain Transfer (RAFT) mediated polymerization. Two different studies are described. The first is related to the early stages of RAFT-­‐mediated polymerization. A process for which we coined the name initialization was studied via in situ 1H NMR spectroscopy. It is shown that in many cases, there is a selective reaction that converts the original RAFT agent into its single monomer adduct. A few different examples and their mechanistic interpretation are discussed. It is also shown that NMR spectroscopy can be a valuable tool for the assessment of a RAFT agent in conjunction with a specific monomer and polymerization conditions. In the second study, 15N NMR, 31P NMR and 1H NMR are used for two different types of experiments. The first is a conventional radical copolymerization in which the growing chains are trapped by a 15N labeled nitroxide to yield a stable product. In the second experiment, a similar copolymerization is conducted under nitroxide-­‐mediated conditions. The nitroxide of choice contains phosphorous, which enables the quantification of the terminal monomer in the dormant chains. Each of the experiments individually provides interesting information on conventional radical copolymerization and nitroxide-­‐mediated copolymerization, respectively. Combination of the experimental data reveals an interesting discrepancy in the ratio of terminal monomer units in active chains and dormant chains. Although not unexpected, this result is interesting and useful from a mechanistic as well as a synthetic point of view. In terms of future perspectives, it is expected that the advanced analytical techniques as described here will remain crucial in polymer science. Present developments in radical polymerization, such as investigations into monomer sequence control, rely on accurate knowledge of kinetic and mechanistic details of elementary reactions. It is expected that such detailed studies will be a main challenge for the next decade of polymer research.
AFRIKAANSE OPSOMMING: Voorbeelde van die gebruik van KMR-­‐spektroskopie in die studie van radikaalpolimerisasies word beskryf. Hierdie studies het ʼn beduidende bydrae gelewer tot die verstaan van die fundamentele meganistiese prosesse in hierdie polimerisasiesisteme. Dit het daarop gewys dat KMR beperkte gebruike het in konvensionele radikaalpolimerisasies as gevolg van die gelyktydige voorkoms van alle basiese reaksies (afsetting, voortsetting en beëindiging). Aan die anderkant het KMR groot waarde vir lewende radikaalpolimerisasie. In hierdie geval is die elementêre reaksies ietwat meer beperk tot spesifieke tye van die polimerisasieproses. Gedetailleerde studies kan byvoorbeeld van die vroeë stadiums van die kettinggroei in Omkeerbare Addisie-­‐Fragmentasie-­‐ KettingOordrag (OAFO)-­‐bemiddelde polimerisasie gedoen word. Twee verskillende studies is beskryf. Die eerste het betrekking op die vroeë stadiums van die OAFO-­‐bemiddelde polimerisasie. 'n Proses wat “inisialisering” genoem is, is bestudeer deur middel van in situ 1H KMR-­‐spektroskopie. Dit is bewys dat daar in baie gevalle 'n selektiewe reaksie is wat die oorspronklike OAFO-­‐agent in sy enkelmonomeeradduk verander voor polimerisasie. 'n Paar ander voorbeelde en hul meganistiese interpretasie is bespreek. Dit is ook bewys dat KMR-­‐spektroskopie 'n waardevolle hulpmiddel kan wees vir die assessering van 'n OAFO-­‐agent in samewerking met 'n spesifieke monomeer en polimerisasie toestande. In die tweede studie is 15N KMR, 31P KMR en 1H KMR gebruik vir twee verskillende tipes van die eksperiment. Die eerste is 'n konvensionele radikaalkopolimerisasie waarin die groeiende kettings vasgevang word deur 'n 15N-­‐gemerkte nitroksied om 'n stabiele produk te lewer. In die tweede eksperiment is 'n soortgelyke kopolimerisasie gedoen onder nitroksied-­‐ bemiddelde toestande. Die gekose nitroksied bevat fosfor wat die kwantifisering van die terminale monomeer in die dormante kettings moontlik maak. Elkeen van die individuele eksperimente lewer interessante inligting oor konvensionele radikale kopolimerisasie en nitroksied-­‐bemiddelde kopolimerisasie, onderskeidelik. ʼn Kombinasie van die eksperimentele data toon 'n interessante verskil aan in die verhouding van die terminale monomeereenhede in die aktiewe en sluimerende kettings. Alhoewel dit nie onverwags is nie, is die resultate interessant en van waarde vanuit 'n meganistiese-­‐ sowel as 'n sintetiese oogpunt. In terme van toekomstige perspektiewe word daar verwag dat gevorderde analitiese tegnieke soos hier beskryf, belangrik sal bly in polimeerwetenskap. Huidige ontwikkelinge in radikaalpolimerisasie, soos ondersoeke na die beheer van monomeervolgorde, maak staat op akkurate kennis van kinetiese en meganistiese besonderhede van die basiese reaksies. Daar word verwag dat sulke gedetailleerde studies ʼn uitdaging sal bied vir die volgende dekade van polimeernavorsing.
APA, Harvard, Vancouver, ISO, and other styles
13

Dieudonne, Lucile. "Synthesis, characterisation and cytotoxicity evaluation of novel polymeric carriers for polymer therapeutics : from free radical polymerisation to atom transfer radical polymerisation." Thesis, Cardiff University, 2008. http://orca.cf.ac.uk/55722/.

Full text
Abstract:
Polymer therapeutics include water-soluble polymers designed as carriers for drugs, proteins or DNA. Over the last two decades, they have found increasing clinical use against cancer and other diseases. A growing number is in clinical trials or on the market. However, the polymers used so far have limitations including heterogeneity in structure, molecular weight, polydispersity, drug carrying capacity, lack of control of architecture and biodegradability of polymer backbone. Therefore, the aim of this study was to synthesise and characterise a library of linear/star homo/copolymers with potential for further development as second-generation polymer therapeutics. Atom Transfer Radical Polymerisation (ATRP) and (chain transfer agent - CTA) Free Radical Polymerisation (FRP) techniques were used to synthesise water-soluble amine-based acrylamide and methacrylate homo/copolymers. Nuclear magnetic resonance, gel permeation chromatography, infrared and titration were used for characterisation. In vitro cytotoxicity studies of the polymers towards a murine melanoma cell line were performed using a cell viability evaluating colorimetric assay. Molecular weights (from 3,000 to 550,000 g.mol --1) were successfully adjusted by varying either the initiator or CTA to monomer ratios. Semitelechelic homo/copolymers with either carboxylic acid or hydroxyl termini were obtained using mercapto-based CTA. Either stable or degradable star-shaped poly(dimethylaminoethyl methacrylate) were obtained by copper-mediated ATRP using previously synthesised multifunctional initiators (4, 5 or 8 initiating moieties). A linear increase of predictable molecular weight with monomer conversion and narrow polydispersity (1.3) were observed. Amongst other molecular parameters systematically tested, the amount of cationic residues had the most striking effect on the cell viability. To conclude, conditions were optimised for the synthesis of a library of water- soluble amine-based homo/copolymers with different molecular weight, composition, charge density and architecture using several polymerisation techniques. Preliminary evaluation of polymer cytotoxicity associated to molecular parameters is vital for intelligently designing future, novel, and biocompatible polymeric carriers.
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Xianjun. "An Affordable and Effective Macroamine Ligand for Atom Transfer Radical Polymerization." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1555692867285719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Carlmark, Anna. "Complex Macromolecular Architectures by Atom Transfer Radical Polymerization." Doctoral thesis, KTH, Fibre and Polymer Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3740.

Full text
Abstract:

Controlled radical polymerization has proven to be a viableroute to obtain polymers with narrow polydispersities (PDI's)and controlled molecular weights under simple reactionconditions. It also offers control over the chain-]ends of thesynthesized polymer. Atom transfer radical polymerization(ATRP) is the most studied and utilized of these techniques. Inthis study ATRP has been utilized as a tool to obtain differentcomplex macromolecular structures.

In order to elaborate a system for which a multitude ofchains can polymerize in a controlled manner and in closeproximity to one another, a multifunctional initiator based onpoly(3-ethyl-3-(hydroxymethyl)oxetane was synthesized. Themacroinitiator was used to initiate ATRP of methyl acrylate(MA). The resulting dendritic-]linear copolymer hybrids hadcontrolled molecular weights and low PDI's. Essentially thesame system was used for the grafting of MA from a solidsubstrate, cellulose. A filter paper was used as cellulosesubstrate and the hydroxyl groups on the cellulose weremodified into bromo-]ester groups, known to initiate ATRP.Subsequent grafting of MA by ATRP on the cellulose made thesurface hydrophobic. The amount of polymer that was attached tothe cellulose could be tailored. In order to control that thesurface polymerization was -eliving-f and hence that thechain-]end functionality was intact, a second layer of ahydrophilic monomer, 2-hydroxyethyl methacrylate, was graftedonto the PMA- grafted cellulose. This dramatically changed thehydrophilicity of the cellulose.

Dendronized polymers of generation one, two and three weresynthesized by ATRP of acrylic macromonomers based on2,2-bis(hydroxymethyl)propionic acid. In the macromonomerroute, macromonomers of each generation were polymerized byATRP. The polymerizations resulted in polymers with low PDI's.The kinetics of the reactions were investigated, and thepolymerizations followed first-order kinetics when ethyl2-bromopropionate was used as the initiator. In the-egraft-]onto-f route dendrons were divergently attached to adendronized polymer of generation one, that had been obtainedby ATRP.

APA, Harvard, Vancouver, ISO, and other styles
16

Unsal, Gungor Elif Mufide. "The Effect Of Potassium Hydroxide On The Polymerization Of Trichlorophenol, Pyrrole And Thiophene By Microwave Initiation." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609670/index.pdf.

Full text
Abstract:
The synthesis of black conducting polymer (CP) and/or crosslinked polymers (CLP) and/or radical ion polymer (RIP) and/or white polymers (WP) and/or orange polymer (OP) were achieved by using KOH with TCP, pyrrole and thiophene via microwave energy in a very short time interval. Polymerizations were carried out by constant microwave energy with different time intervals varying from 1 to 25 min
or at constant time intervals with variation of microwave energy from 90 to 900 watt
or varying the water content from 0, 0.5 to 5 ml at constant time intervals and microwave energy, or at constant time interval, water content, microwave energy with variation of amount of KOH 0.03 mol to 6x10-4 mol. The effects of heating time, microwave energy, water content and amount of KOH on the percent conversion and the polymer synthesis were also investigated.White, orange polymers and radical ion polymers were characterized by FTIR (Fourier Transform Infrared), 1H-NMR (Proton Nuclear Magnetic Resonance), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), TGA/ FTIR (Thermal Gravimetric Analysis / Fourier Transform Infrared), DSC (Differential Scanning Calorimeter), SEM (Scanning Electron Microscope), ESR (Electron Spin Resonance), GPC (Gel Permeation Chromatography), UV-Vis (UV-Visible Spectroscopy) and Light Scattering. Conducting and crosslinked polymers were characterized by FTIR, TGA/ FTIR, DSC, SEM, ESR, XRD (Powder Diffraction X-Ray) and conductivity.
APA, Harvard, Vancouver, ISO, and other styles
17

Tsujii, Yoshinobu. "STUDIES ON STABILIZATION OF PHOTOINDUCED RADICAL IONS IN POLYMER SYSTEMS." Kyoto University, 1991. http://hdl.handle.net/2433/168727.

Full text
Abstract:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである
Kyoto University (京都大学)
0048
新制・課程博士
工学博士
甲第4683号
工博第1159号
新制||工||826(附属図書館)
UT51-91-C101
京都大学大学院工学研究科高分子化学専攻
(主査)教授 山本 雅英, 教授 東村 敏延, 教授 宮本 武明
学位規則第5条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
18

Johansson, Erik. "Free radical mediated cellulose degradation." Doctoral thesis, KTH, Chemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3477.

Full text
Abstract:

This thesis addresses the mechanisms involved in cellulosedegradation in general and Totally Chlorine Free (TCF) bleachingof pulp in particular. The thesis shows that the cellulosedegradation during high consistency ozone bleaching is explainedby free radical chain reactions.

By simulation, it has been shown that the number, weight andviscosity average of liner polymer chain length can be used tocalculate the number of random scissions in a linear polymer ofany molecular weight distribution, provided that there is acalibrated Mark-Houwink equation. A model describing partialdegradation of molecular weight distributions of linear polymersmeasured with viscometry was developed and verifiedexperimentally. The model predicts viscometric measurement ofchemical cellulose degradation by a rapidly reacting reagent tobe strongly dependent on cellulose accessibility.

The role of free radical reactions in cellulose degradationwas studied by varying the amount of ferrous ions and ozone addedto the cotton linters. The result was compared to the resultsobtained from cellulose of lower crystallinity (cellulose beads)by measuring average chain length. When a ferryl ion reacted withcotton linters in the presence of ozone, the very formation ofone glycosidic radical was more significant to degradation thanthe final step of forming one oxidised glycoside. The inefficientdegradation observed of the oxidation step is explainable by theamount of accessible glycosides being too small to influenceviscometry. The efficient degradation observed in associationwith the glycosidic radical formation is explained by initiationof free radical chain reactions that are propagated as long asthere is ozone in the system. As none of these phenomena werefound in the less crystalline cellulose, cellulose structureappears to be important for how free radical mediated cellulosedegradation develops.

The theory of free radical chain reactions coupled withdiffusion suggests a concentric expansion of the chain reactionsoutwards from the initial site of radical formation duringozonation of carbohydrates. This was confirmed by demonstratingfree radical chain reactions spreading from a spot of initiationoutwards during ozonation of a filter paper, using a pH-indicatorto monitor acid formation. Furthermore, the interior and exteriorof cellulose fibres doped with initiator were shown to bepermeated by small holes after ozonation.

Ethylene glycol was shown to improve the selectivity duringozone bleaching of oxygen bleached kraft pulp at pH 3. Optimalconditions were obtained at pH 3 for 25 wt% ethylene glycol. Theinfluence of ethylene glycol on selectivity is explained by aproportion of the free radical chain reactions being carried bythe ethylene glycol instead of the cellulose during ozonebleaching. The observations were summarised in the form of amodel where the observed degradations for pulp, bleached pulp andcotton fibres during both ozone bleaching and ethylene glycolassisted ozone bleaching were shown to agree with each other.

From g-irradiation of ozonised aqueous solutions of alcohol,the rate constant of superoxide formation from the peroxylradical of methanol was estimated to be 10 s-1. Rate constants of the reactions between ozone andalkylperoxyl radicals were determined to be around 104M-1s-1. The possibility of the reaction betweenalkylperoxyl radicals and ozone contributing significantly tofree radical chain reactions during ozonation of carbohydratesand alcohols could therefore be ruled out.

Cellulose, degradation, free radical, ozone, selectivity,ethylene glycol, alcohol, bleaching, kraft pulp, cotton linters,delignification, fibre, fibril, crystallinity, ferryl ion, freeradical chain reactions, TCF, viscometry, molecular weightdistributions, random scissions.

APA, Harvard, Vancouver, ISO, and other styles
19

Vosloo, Johannes Jacobus. "Controlled free radical polymerization in miniemulsion using Reversible Addition-Fragmentation Chain Transfer (RAFT)." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52174.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2001.
ENGLISH ABSTRACT: A novel approach to conducting controlled free radical polymerization in aqueous systems using Reversible Addition-Fragmentation Chain Transfer (RAFT) has been studied. When conducting RAFT in aqueous systems, reaction conditions must be chosen such that monomer transport across the aqueous-phase is either eliminated or facilitated. This is to prevent the formation of the red layer associated with RAFT in emulsions. The formation of the red layer is ascribed to the inability of waterinsoluble, dithiobenzoate-endcapped oligomers to be sufficiently transported across the aqueous phase. The novel approach in this study focussed on eliminating monomer transport and comprises two fundamental steps: the synthesis of dithiobenzoate-encapped oligomers in bulk followed by miniemulsification of these oligomers to yield a polymerizable miniemulsion. Dithioesters that act as chain transfer agents in the RAFT -process were synthesized in situ, thereby eliminating laborious and time-consuming organic purification procedures of dithioesters. In situ formation of the RAFT-agents involved conducting the reaction between di(thiobenzoyl) disulfide and conventional azo-initiators of differing structures in the presence of monomer. The structure of the chosen azo-initiator played a role in the efficiency of the RAFT process when the reaction was conducted in the presence of monomer to control the free radical polymerization process. Synthesis of the oligomers was performed by heating di(thiobenzoyl) disulfide and a selected azo-initiator, in the presence of monomer for a specific reaction duration in bulk. After the reaction was stopped, these oligomers were then miniemulsified by adding water, surfactant and cosurfactant, followed by the application of shear to form the resulting mini emulsion. The free radical polymerization of the dithiobenzoate-endcapped oligomers in the miniemulsion proceeded in a controlled manner with molecular weight increasing in a linear fashion with increasing conversion, while polydispersities remained low. The familiar red layer formation associated with RAFT polymerization in conventional emulsions was not observed under these conditions. The effects of changing the cosurfactant (hydrophobe) as well as changing the degree of polymerization of the emulsified oligomers were also investigated and described.
AFRIKAANSE OPSOMMING: Hierdie studie is geloods om 'n nuwe benadering tot die beheerde vry-radikaal polimerisasie in water gebaseerde sisteme te ondersoek. Daar is spesifiek gekyk na die uitvoer van die RAFT (Reversible Addition-Fragmentation Chain Transfer) proses in emulsies. Wanneer RAFT in emulsies toegepas word, moet die toestande waaronder die reaksie uitgevoer word, versigtig opgestel word. Die toestande moet so gekies word dat die vervoer van monomere deur die waterfase óf geëlimineer word óf gefasiliteer word. Dit word gedoen om die faseskeiding in die vorm van 'n rooi laag, wat so kenmerkend van RAFT -polimerisasie in emulsies is, te voorkom. Hierdie faseskeiding vind plaas omdat die vervoer van ditiobensoaat endgroep-bevattende oligomere deur die waterfase tydens interval II, moeilik is a.g.v. hulle oplosbaarheid in water. Die nuwe benadering wat hier bestudeer is, het twee basiese stappe. Eerstens word die ditiobensoaat endgroep-bevattende oligomere in bulk gesintetiseer. Dit word gevolg deur die emulsifisering van die oligomere. Hierna vind verdere polimerisasie van die oligomere plaas deur die dormante oligomere te heraktiveer. Die ditio-esters wat as kettingoordrag agente optree in die RAFT proses, word in situ gesintetiseer. Hierdie modifikasie sny tydrowende organiese suiweringsmetodes uit. Die in situ RAFT agente word gesintetiseer deur di(tiobensoïel) disulfied met verskillende konvensionele azo-inisieerders te laat reageer. Die struktuur van die spesifieke azoinisieerder het wel 'n rol gespeel in die effektiwiteit van die RAFT proses om molekulêre massa te beheer as bg. reaksie in die teenwoordigheid van monomere uitgevoer is. Die sintese van die oligomere is gedoen deur di(tiobensoïel) en 'n azo-inisieerder te verhit in die teenwoordigheid van monomere. Die reaksie is gedoen in bulk en die graad van polimerisasie van die oligomere is beheer deur die reaksie te stop by verskillende tydstippe. Nadat die bulk reaksie gestop is, is hierdie oligomere ge-emulsifiseer deur die oligomere te meng met 'n seep, hidrofoob en water. Hierdie mengsel word dan onderwerp aan 'n vermengingskrag om 'n polimeriseerbare mini-emulsie te vorm. Die voortsetting van die polimerisasie van die oligomere in die mini-emulsie het op 'n beheerde wyse verloop, m.a.w. molekulêre massa wat linieêr toeneem met stygende omsetting. Polidispersiteit indekse van die polimere het deurentyd laag gebly in die stabielste sisteme. Onder hierdie toestande was daar geen kenmerkende rooi laagvorming te bespeur nie. Die effekte wat die verandering van die hidrofoob, asook die verandering van die graad van polimerisasie van die oligomere op die sisteem gehad het, is onder andere ook ondersoek en beskryf.
APA, Harvard, Vancouver, ISO, and other styles
20

Skene, William G. "Investigation of nitroxide-mediated thermal and photochemical reactions of living free radical polymerization." Thesis, University of Ottawa (Canada), 2002. http://hdl.handle.net/10393/6351.

Full text
Abstract:
The work presented in this thesis deals primarily with living free radical polymerization (LFRP). Two main specific areas of this process have been studied; thermal and photochemical reaction sequences. Stoichiometric unimolecular initiators were found to be ideal probes for studying the reactions involved in the LFRP process. The bond dissociation energy (BDE) of the labile C-O bond of the alkoxyamine initiators was found to be ca. 28 kcal/mol and is dependent on the resulting carbon centered radical produced upon thermal decomposition. Lower activation energies were measured for more stable carbon centered radicals. Complementary to the thermal studies, photoacoustic studies (PAC) involving photochemical decomposition of the initiators led to the homolytic N-O and C-O bond cleavages in addition to disproportionation product formation. The BDE for the N-O bond of these initiators is ca. 43 kcal/mol. These studies also provided insight into volume effects, where a strict homologous solvent series is not required for extrapolating true enthalpies of reactions and volume correction factors for PAC. The decomposition quantum yields of a series of ketone based actinometers used for PAC BDE studies were re-evaluated and found to be solvent independent. The specific kinetics of thermal LFRP were equally investigated through the use of probes which are normally used for thermal initiation. Fast time resolved techniques of laser flash photolysis (LFP) were used to measure the bi-molecular rate constant for the coupling reaction between a carbon centered radical and a nitroxide radical involved in LFRP. Typical values lay in the area of 108 M-1 s-1 and are influenced by the structure of the carbon centered radical and not that of the nitroxide. The rate constants were observed to be slower with more stable carbon centered radicals, similar to the BDE results where weaker dissociation energies were observed. The formation of minor disproportionation products upon thermal decomposition of the unimolecular initiators was assigned to a concerted four center elimination ultimately responsible for the lack of controlled polymerization with acrylates. The incorporation of steric effects into the monomer or the nitroxide suppressed the formation of these products by increasing the energy barrier necessary for correct orbital alignment required for the elimination reaction. Living polymerization of acrylate monomers was achieved with a nitroxide containing bulky substituents in its 2 and 6 positions. Moderate success of living polymerization was also achieved with acrylate type monomers through the use of an additional phase not miscible with the bulk phase. Chromophores producing triplet states upon excitation were found to undergo fast and efficient energy transfer to a covalently linked alkoxyamine subsequently promoting C-O bond homolysis. The orientation of the C-O bond relative to the chromophore in addition to the distance separating the two influences the efficiency of energy transfer and bond cleavage. Using a benzophenone type chromophore with a covalently linked alkoxyamine initiator promoted photoinduced living type polymerization of acrylate.
APA, Harvard, Vancouver, ISO, and other styles
21

Vadala, Timothy Patrick. "Cooperative Electrostatic Polymer-Antibiotic Nanoplexes." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/33472.

Full text
Abstract:
Many pathogenic bacteria can enter phagocytic cells and replicate in them, and these intracellular bacteria are difficult to treat because the recommended antibiotics do not transport into the cells efficiently. Examples include food-borne bacteria such as Salmonella and Listeria as well as more toxic bacteria such as Brucella and the Mycobacteria that lead to tuberculosis. Current treatments utilize aminoglycoside antibiotics that are polar and positively charged and such drugs do not enter the cells in sufficient concentrations to eradicate the intracellular infections. We have developed core-shell polymeric drug delivery vehicles containing gentamicin to potentially overcome this challenge. Pentablock and diblock copolymers comprised of amphiphilic nonionic polyether blocks and anionic poly(sodium acrylate) blocks have been complexed with the cationic aminoglycoside gentamicin. The electrostatic interaction between the anionic polyacrylates and the cationic aminoglycosides form the cores of the nanoplexes, while the amphiphilic nature of the polyethers stabilize their dispersion in physiological media. The amphiphilic nature of the polyethers in the outer shell aid in interaction of the nanoplexes with extra- and intra-cellular components and help to protect the electrostatic core from any physiological media. This thesis investigates the electrostatic cooperativity between the anionic polyacrylates and cationic aminoglycosides and evaluated the release rates of gentamicin as a function of pH.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, James Hongxue. "Synthesis of aromatic polyethers by ion-radical reactions." Case Western Reserve University School of Graduate Studies / OhioLINK, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=case1059492813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Skinner, Emily K. "Sonochemical production of hollow polymer microspheres for responsive delivery." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.577749.

Full text
Abstract:
Ultrasound irradiation of a protein or polymer solution at the air:water interface can be used to form hollow microspheres containing an air bubble. By introducing a layer of oil and sonicating the oil:water interface, microspheres containing an oil droplet are formed. The microspheres are stabilised by disulfide crosslinking, have diameters of between 1-20 mm and have a number of applications; gas filled protein microspheres are used as ultrasound contrast agents and oil filled microspheres are being developed for delivery of lipophilic drugs. This project extends the scope of sonochemically produced microspheres to include water-in-oil emulsion filled microspheres, which facilitate encapsulation of hydrophilic species, and polymer microspheres that release their contents in response to an external stimulus. Successful encapsulation of a water in oil emulsion phase is demonstrated using confocal microscopy. Release studies are reported for a number of hydrophilic species (in vitro) including 5,6-carboxyfluorescein, 5-fluorouracil and sodium chloride. Release can be triggered by sonochemical disruption of the microsphere shells or cleavage of the disulfide cross links. Thiol-ene coupling reactions initiated by ultrasound irradiation are reported. In water, ultrasound initiation of thiol-ene reactions with electron rich alkenes results in rates of reaction which compare favourably with conventional thermal initiation. Thiol-ene crosslinking is proposed as an alternative to disulfide crosslinking to stabilise sonochemically produced microspheres. Temperature responsive microspheres are produced via the sonochemical method using a block copolymer of N-isopropylacrylamide and thiolated methacrylic acid, P(MASH-b-NIPAm). The block co-polymer is synthesised using reversible addition-fragmentation transfer (RAFT) polymerisation and has a lower critical solution temperature (LCST) of 37 ºC. The microspheres formed from this block copolymer can be seen to rupture, releasing their internal oil phase, when heated above 37 ºC. These findings provide a basis from which to develop sonochemically produced polymer microspheres for responsive delivery of both hydrophilic and lipophilic species.
APA, Harvard, Vancouver, ISO, and other styles
24

Aran, Bengi. "Polymerization And Characterization Of Methylmethacrylate By Atom Transfer Radical Polymerization." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605042/index.pdf.

Full text
Abstract:
In this work, methylmethacrylate, MMA was polymerized by ATRP method to obtain low molecular weight living polymers. The initiator was p-toluenesulfonylchloride and catalyst ligand complex system were CuCl-4,4&rsquo
dimethyl 2,2&rsquo
bipyridine. Polymers with controlled molecular weight were obtained. The polymer chains were shown by NMR investigation to be mostly syndiotactic. The molecular weight and molecular weight distribution of some polymer samples were measured by GPC method. The K and a constants in [h]=K Ma equation were measured as 9.13x10-5 and 0.74, respectively. FT-IR and X-Ray results showed regularity in polymer chains. The molecular weight-Tg relations were verified from results of molecular weight-DSC results.
APA, Harvard, Vancouver, ISO, and other styles
25

Amato, Douglas Vincent. "LATENT CYSTEINE RESIDUES FROM POLYMERS PREPARED VIA FREE AND CONTROLLED RADICAL POLYMERIZATIONS." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/972.

Full text
Abstract:
One less commonly used “click” reaction is thiazolidine chemistry. Thiazolidine chemistry is a commonly used reaction used in biological systems because the reaction requires the presence of both cysteine (a common amino acid) and an aldehyde or ketone. If cysteine residues could be incorporated into a polymer then a variety of applications could be developed. Polymers containing free thiols (aka thiomers) have developed in the last decade to become great mucoadhesives. If there was a facile route to control the amount of free thiols along the polymer then more fine-tuned and potentially stronger adhesives could be made. For these reasons the attachment of cysteine residues in a facile way via reversible addition fragmentation chain transfer (RAFT) polymerization or small molecule synthesis was researched. The incorporation of latent cysteine residues into the polymer via post polymerization modification proved to be less successful. However protected cysteine molecules have been successfully ligated onto polymerizable monomers and have been show to be easily deprotected in the presence of an acid source.
APA, Harvard, Vancouver, ISO, and other styles
26

Ono, Isamu. "Optimization of the Structure of Benzocyclobutene Containing Methacrylate Monomer for Controlled Radical Polymerization." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468500945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Çakir, Pinar. "Molecularly imprinted polymer nanostructures by controlled / living radical polymerization with multi-iniferters." Compiègne, 2012. http://www.theses.fr/2012COMP2018.

Full text
Abstract:
Les polymères à empreintes moléculaires (MIPs) sont des matériaux synthétiques contenant des cavités capables de reconnaître spécifiquement une molécule cible. Ils se présentent comme une alternative intéressante face aux anticorps biologiques en raison de leur meilleure stabilité chimique et physique, leur meilleure disponibilité et leur moindre coût. Traditionnellement, les MIPs sont synthétisés par polymérisation de monolithes, qui sont ensuite broyés mécaniquement, engendrant des particules de taille micrométrique et de formes irrégulières. Durant ces dernières années, de nombreuses techniques de polymérisation ont été développées afin d’obtenir des particules MIP sphériques de tailles micro et nanométriques, et plus particulièrement des nanogels quasi-solubles. Dans l’optique d’une application en biologie, des tailles de quelques nanomètres - de l’ordre de grandeur de la taille des protéines – sont souhaitées, ce qui pose un réel défi pour leur synthèse, car la faible densité du matériau (une particule ne consiste que de quelques chaines de polymère) s'oppose à l'impression d'une mémoire moléculaire. Nous avons développé une nouvelle approche de synthèse de MIP nanogels dont la taille est proche de celle des anticorps naturels. Notre stratégie est basée sur l’utilisation d’un nouveau type d'amorceur pour la polymérisation radicalaire contrôlée comprenant des fonctions iniferter multiples attachées à un noyau dendritique. Cela permet de générer une concentration localement élevée de radicaux et ainsi, d'obtenir des nanogels de polymère dont la densité est augmentée. Ces travaux de thèse ont conduit à l’obtention des nanogels de MIP de 17 nm de diamètre avec un effet impression appréciable, une bonne affinité pour la cible, le beta-antagoniste propranolol, et une sélectivité moléculaire prononcée. En plus de la synthèse des nanogels solubles de MIP, des motifs de MIP micro et nanostructurés ont été greffés sur des surfaces planes de silicium. Le multiiniferter a été imprimé à la surface par lithographie douce, et fixé chimiquement par son groupement carboxyle central. Les MIPs ont ensuite été synthétisés par une approche « bottom up », caractérisés par spectroscopie d'émission optique, la spectroscopie Raman et la microscopie à force atomique, et la reconnaissance moléculaire de la cible a été visualisée par microscopie de fluorescence. Ces nouveaux matériaux, nanogels et surfaces imprimées offrent de nombreuses perspectives pour la détection par biocapteurs et biopuces, en particulier dans le domaine du biomédical
Molecularly imprinted polymers (MIPs) are synthetic materials with specific recognition properties for target molecules. They are considered an alternative to antibodies and are characterized by a higher chemical and physical stability, better availability and lower cost. Historically, MIPs were synthesized as bulk monoliths that were subsequently broken down mechanically in order to form particles of a size in the micrometer range, with irregular shapes. During the last decade, research has focused on the direct synthesis of spherical MIP micro and nanoparticles, and, more recently, on protein-sized, quasi-soluble MIP nanogels in order to widen the application range of MIPs in the biological field. The main difficulty of synthesizing MIPs with diameters in the low nm region is the low density of the resulting polymer network consisting only of a few polymer chains, which makes it difficult to imprint and maintain a molecular memory. In this thesis, we propose an original approach to the synthesis of quasisoluble MIP nanogels with a size in the low nm range, close to that of real antibodies. The proposed procedure involves a new type of initiator for controlled/living radical polymerization, based on multiple iniferter moieties attached to a dendritic core. This allows for the generation of a higher local radical density, and thus for the synthesis of denser nanogels. By using this strategy, MIP Nanogels of 17 nm size with an appreciable molecular imprinting effect, a good affinity for the target molecule, the chiral drug propranolol, and a good selectivity were obtained. In addition, these multiiniferters were also used for the bottom-up synthesis of thin MIP patterns on silicon wafers, by surface-initiated polymerization. The multi-iniferter was printed on to the surface by soft lithography and chemically attached through its carboxyl-functionalized core, followed by the in-situ synthesis of the MIP. Well defined MIP patterns were obtained, which were characterized by optical emission spectroscopy, Raman spectroscopy, atomic force microscopy, and the specific binding of the target molecule was visualized by fluorescence microscopy. We believe that the synthesis, in solution and at surfaces, of protein-size MIP nanogels with specific recognition properties will provide new opportunities for biosensors and biochips technologies in biomedical applications
APA, Harvard, Vancouver, ISO, and other styles
28

Higashimura, Hideyuki. "Radical-controlled oxidative polymerization of phenols : a new methodology for polymer synthesis." 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Edmonds, Ryan. "The synthesis and properties of novel saccharide containing polymers by copper mediated living radical polymerisation." Thesis, University of Warwick, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhang, Zheng. "Synthesis of Pegylated Poly(lactic acid) Via Radical Coupling." University of Akron / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=akron1430759091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Celik, Guler (bayrakli). "Microwave-assisted Simultaneous Novel Synthesis Of Poly(dibromophenylene Oxide)s, Poly(diiodophenylene Oxide)s (p), Conducting(cp) And/or Crosslinked (clp) And/or Radical Ion Polymers (rip)." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608296/index.pdf.

Full text
Abstract:
Microwave-assisted novel synthesis of poly(dibromophenylene oxide) or poly(diiodophenylene oxide) (P), conducting polymer (CP) and/or crosslinked polymer (CLP) and/or radical ion polymer (RIP) were achieved simultaneously from lithium, sodium or potassium 2,4,6-bromophenolate or sodium 2,4,6-iodophenolate in a very short time interval. Polymerizations were carried out by constant microwave energy with different time intervals varying from 1 to 20 min
or at constant time intervals with variation of microwave energy from 70 to 900 watt
or varying the water content from 0.5 to 5 ml at constant time intervals and microwave energy. Poly(dihalophenylene oxide) and radical ion polymers were characterized by FTIR (Fourier Transform Infrared), 1H-NMR (Proton Nuclear Magnetic Resonance), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), TGA/ FTIR (Thermal Gravimetric Analysis / Fourier Transform Infrared), DSC (Differential Scanning Calorimeter), SEM (Scanning Electron Microscope), ESR (Electron Spin Resonance), GPC (Gel Permeation Chromatography), UV-Vis (UV-Visible Spectroscopy), Light Scattering and Elemental Analysis. Conducting and crosslinked polymers were characterized by FTIR, TGA/ FTIR, DSC, SEM, ESR, XRD (Powder Diffraction X-Ray) and Elemental Analysis. The effects of heating time, microwave energy and water content on the percent conversion and the polymer synthesis were also investigated.
APA, Harvard, Vancouver, ISO, and other styles
32

Saoud, Fozi. "Superparamagnetic nanoparticles for synthesis and purification of polymers prepared via controlled/"living" radical polymerization (CLRP)." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/3998.

Full text
Abstract:
Thesis (PhD (Chemistry and Polymer Science))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Living chains prepared by RAFT polymerization and NMP reactions using Z-carboxylate and Z-phosphate RAFT agents, and X-phosphate NMP initiators, were efficiently attached to the surface of magnetic nanoparticles (MNPs) and used for the separation of dead chains formed in these polymerization reactions prior to the attachment of the RAFT agents and NMP initiators to the surface of MNPs. All the living chains that attach selectively to the surface of MNPs contained RAFT or NMP functionalities, had a low polydispersity index (PDI), and could be reactivated to form new polymer extensions or block copolymers with no detectable deviation from 100% efficiency. RAFT chains prepared by RAFT polymerization using the Z-carboxylate RAFT agent and an excess of free radical initiator were also attached to the surface of MNPs and separated in the presence of an external magnetic field. Separated RAFT-functional chains contained no dead chains formed by combination or disproportionation reactions, but a substantial amount of cross-terminated by-product with a low UV absorbance at 320 nm. The cross-termination of the intermediate radical formed in the RAFT polymerization reactions was also investigated in the monomer-excluded free radical reaction model of polystyryl benzyl-(4-carboxyl dithiobenzoate) and polystyryl ethyl-2-bromoisobutyrate. The Z-carboxylate 3- and 4-arm star polymers (formed by cross-termination reactions) were then efficiently attached to the surface of MNPs and separated from the remainder of the polymer solution. They were separated from MNPs and characterized by 1H and 13C-NMR spectroscopy, and MALDI-ToF-MS. Living chains prepared by a RAFT miniemulsion polymerization reaction using Z-carboxylate RAFT agent were attached to the surface of MNPs and used for the separation of all dead chains and uncontrolled high molecular weight polymer of secondary particle formations occur during a miniemulsion polymerization reaction prior to the attachment. Separated dead chains had high PDI values and contained a significant fraction of uncontrolled high molecular weight polymer that lacked RAFT functionality. Initiator-derived chains formed in RAFT polymerization reactions of styrene (St) and methyl methacrylate (MMA) using phosphate free radical (PFR) initiator were selectively attached to the surface of MNPs and separated from R-group-derived polymer chains in the presence of an external magnetic field. All separated initiator-derived chains contained large fractions of dead chains with weak UV absorbance, and which lacked RAFT functionality, and small fractions of RAFT polymer chains. The separated initiator-derived chains had higher PDI values than the as-prepared polymer in the polymerization of St, but lower PDI values than the as-prepared polymer in the polymerization of MMA. RAFT agents attached to the surface of MNPs by the Z group were used as mediating agents for the synthesis of polymers grafted to the surface of MNPs. The polymers grafted to the surface of MNPs were separated from the solution of the free polymer by applying an external magnetic field. The amounts of the polymers grafted to the surface of MNPs greatly increased as the number of RAFT agents attached to the surface of MNPs decreased. When ethyl acetate was used as solvent, it reached 65% by weight and 50% by number of chains. Separated polymers grafted to the surface of MNPs had high PDI values and contained RAFT functionality. Investigations into the kinetics of the RAFT-mediated polymerization reaction on the surface of MNPs revealed that the polymerization reaction mediated using a RAFT agent attached by its Z group to the surface of MNPs had a faster polymerization rate than that mediated using a free Z group RAFT agent. The molecular weight of the grafted polymer increased linearly with conversion, and the reaction rate was pseudo-first-order.
AFRIKAANSE OPSOMMING: Lewende polimeerkettings, berei deur middel van RAFT-beheerde polimerisasie en NMP reaksies waarin Z-karboksilaat en Z-fosfaat RAFT-verbindings en 'n X-fosfaat NMP afsetter gebruik is, is geheg aan die oppervlaktes van magnetisenanopartikels (MNPs), en gebruik vir die skeiding van dooie kettings wat tydens die RAFT en NMP reaksies gevorm is. Alle lewende kettings wat aan die oppervlakte van die MNPs geheg is, is geskei van die oorblywende polimeeroplossing deur die aanwending van ‗n eksterne magnetise veld. Alle kettings wat selektief aan die oppervlaktes van die MNPs gekoppel is met RAFT of NMP funksionaliteit, het ‗n laë poliverspreidingswaarde (PDI) gehad en kon heraktiveer word om ‗n nuwe polimeerverlengings of blokkopolimere te vorm met geen merkbare afwyking van 100% doeltreffendheid nie. RAFT-kettings wat gedurende RAFT-polimerisasie met 'n Z-karboksilaat RAFT-agent en oormaat vrye-radikaalafsetter berei is, is ook geheg aan die oppervlaktes van MNPs en geskei in die teenwoordigheid van 'n eksterne magnetiese veld. Die geskeide RAFT-funksionele kettings het geen dooie kettings bevat nie (gevorm deur kombinasie reaksies), maar 'n aansienlike hoeveelheid ongekontroleerde hoë molekulêremassa polimeer (met lae UV absorpsie by 320 nm). Die kruis-beëindiging van die intermediêre radikaal wat gevorm is tydens die RAFT-proses is ondersoek in die monomeer-uitsluitende vrye-radikaalreaksiemodel van polistirielbensiel-4-karboksielditiobensoaat en polistirieletiel-2-bromoisobutiraat. Die Z-karboksilaat 3- en 4-arm sterpolimere (gevorm a.g.v. kruis-terminasiereaksies) is effektief geheg aan die oppervlaktes van MNPs en geskei van die res van die polimeeroplossing, en daarna gekarakteriseer met behulp van 1H en 13C KMR, en MALDI-ToF-MS. Lewende kettings, berei m.b.v. RAFT miniemulsiepolimerisasies met 'n Z-karboksilaat RAFT-agent, is geheg aan die oppervlaktes van MNPs en gebruik vir die skeiding van alle dooie kettings en sekondêre partikels wat tydens die reaksie voor die aanhegting gevorm het. Die geskeide dooie kettings wat agtergebly het, het 'n wye PDI getoon en het 'n aansienlike hoeveelheid ongekontroleerde hoë molekulêremassa polimeer, met geen RAFT-funksionaliteit nie, bevat. Afsetterafkomstigekettings wat gevorm is tydens die RAFT polimerisasiereaksies van stireen (St) en metielmetakrilaat (MMA) met 'n fosfaat-vrye vrye-radikaalafsetter is selektief geheg aan die oppervlaktes van MNPs en geskei van R-groep-afkomstige polimeerkettings in die teenwoordigheid van 'n eksterne magnetise veld. Alle geskeide afsetter-afkomstige kettings het 'n groot hoeveelheid dooie kettings gehad (met swak UV absorpsie) en met geen RAFT-funksionalilteit nie, en klein fraksies van RAFT-polimeerkettings. Die geskeide afsetter-afkomstige kettings het hoër PDI waardes gehad as die ('as-prepared') polimeer in die polimerisasie van St, maar laer PDI waardes as die ('as-prepared') polimeer in die polimerisasie van MMA. RAFT-verbindings wat aan die oppervlaktes van die MNPs geheg is deur middel van die Z-groep is as bemiddellingsagente (Eng: mediating agents) gebruik vir die sintese van polimere wat geënt is aan die oppervlakte aan MNPs. Die polimere wat aan die oppervlakte van die MNPs geënt is is geskei van die res van die polimeeroplossing deur die aanwending van ‗n eksterne magnetise veld. Die hoeveelhede van die polimere wat aan die oppervlaktes van die MNPs geënt is het sterk toegeneem namate die aantal RAFT-agente wat aan die oppervlaktes van MNPs geheg is afgeneem het. Wanneer etielasetaat as oplosmiddel gebruik is, was die waardes 55% m.b.t. gewig en 45% m.b.t. die aantal kettings. Die geskeide polimere wat aan die oppervlaktes van MNPs geënt is het hoë PDI getoon en het RAFT-funksionaliteit bevat. Die kinetika van die RAFT-beheerde polimerisasiereaksies van St, wat gebruik maak van ‗n RAFT-agent wat aan die oppervlakte van die MNPs geheg is deur middel van die Z-groep, is ook ondersoek. Die tempo van polimerisasie was vinniger in die geval waarin die RAFT-agent geheg is deur sy Z-groep aan die oppervlakte van die MNPs as die reaksie met 'n RAFT agent met 'n vrye Z-groep. Die molekulêremassas van die entpolimere het liniêr toegeneem met omsetting, en die reaksie was pseudo-eerste-orde.
APA, Harvard, Vancouver, ISO, and other styles
33

Hansen, Kai Anders. "Synthesis of novel nitroxide radical polymer materials for imaging and energy storage applications." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/118247/1/Kai%20Anders_Hansen_Thesis.pdf.

Full text
Abstract:
This thesis investigated the development of novel nitroxide radical polymer materials for imaging and energy storage applications. Profluorescent redox-responsive polymers were prepared which displayed enhanced sensitivity and extended observation times over conventional small-molecule probes. Furthermore, the application of nitroxide radical polymers as energy storage materials was explored. For this purpose, an improved synthetic methodology for such materials is presented. Finally, a novel organic high-voltage electroactive material was developed and successfully demonstrated in lithium-ion battery prototypes.
APA, Harvard, Vancouver, ISO, and other styles
34

Levent, Fulya. "Microwave Initiated Polymerization Of Trihalophenyleneoxide And Aniline." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12612941/index.pdf.

Full text
Abstract:
The aim of the study is to synthesize poly(dibromophenyleneoxide) and polyaniline separately applying different microwave energies (90-900 watt), water amounts (1-5 ml) and time intervals (2-10 min) and investigate the effects of these parameters on the percent conversion of the polymers. The synthesis of poly(dibromophenyleneoxide) (P), radical ion polymer (RIP) and crosslinked polymer (CLP) were achieved by using tribromophenol (TBP) and Ca(OH)2 via microwave energy in a very short time interval. P and RIP were characterized by ATR-FTIR, 1H-NMR, 13C-NMR, TGA-FTIR, ESR, GPC, UV-VIS, DLS and SEM. Crosslinked polymers were characterized by ATR-FTIR and TGA-FTIR and polyaniline was characterized by ATR-FTIR.
APA, Harvard, Vancouver, ISO, and other styles
35

Gonzato, Carlo. "Chemical nanosensors based on molecularly imprinted polymer nanocomposites synthesized by controlled radical polymerization." Compiègne, 2012. http://www.theses.fr/2012COMP2035.

Full text
Abstract:
Les polymères à empreintes moléculaires (MIP, pour molecularly imprinted polymers en anglais) sont des récepteurs synthétiques, parfois appelés "anticorps en plastique", capables de reconnaitre et fixer spécifiquement une molécule cible. L’impression moléculaire s’est imposée, durant les trente dernières années, comme une technique pour la synthèse des structures réticulées possédant une remarquable affinité et sélectivité vis-à-vis d’une espèce chimique utilisée comme molécule empreinte dans un procédé de moulage au niveau moléculaire. La grande variété de matériaux et de formats accessibles à cette technique lui ont permis de trouver un grand nombre d’applications, telles que la séparation, les capteurs, la catalyse, le ré-largage contrôlé de médicaments. Depuis leur apparition, la plupart des MIPs a été synthétisée par polymérisation radicalaire libre (FRP) des monomères vinyliques. Cette méthode de polymérisation représente un excellent choix en termes de simplicité de mise en place, tolérance par rapport aux solvants et aux différents groupements fonctionnels des ingrédients. Cependant, plusieurs désavantages liés à cette technique limitent la possibilité d’obtenir un contrôle adéquate vis-à-vis de certaines caractéristiques fondamentales pour des applications en nano-technologies. L’introduction des techniques de polymérisation radicalaire contrôlée/vivante (CRP) a donc représentée une avancée importante et a permis de dépasser certains limites associés aux MIPs synthétisés par FRP. Dans ce contexte, ce travail de thèse a étudié les avantages provenant de l’utilisation d'une méthode CRP, le RAFT, pour la synthèse des MIP. Ce travail a été mené en se focalisant sur les caractéristiques principales des CRPs : le caractère vivant et, en même temps, contrôlé. Dans un premier temps, nous avons utilisé l’aspect vivant de la polymérisation pour la synthèse des nanocomposites MIP, possédant des propriétés superparamagnétiques. Celle-ci a été effectuée par polymérisation de couches p(EGDMA-co-MAA) par RAFT amorcée à la surface des particules de Fe3O4 préfonctionnalisées avec des groupements amine. Le greffage de ces couches a été obtenu en employant des ultrasons comme source d'agitation, et en testant différents solvants pour en apprécier l’influence sur la structure et la morphologie des composites résultants. Nous avons démontré que le greffage se produit d’une façon homogène, et que grâce au caractère vivant de la polymérisation RAFT, les composites peuvent être fonctionnalisés davantage, par exemple par des chaines p(EGMP), pour ajuster leur propriétés de surface. Dans un deuxième temps, nous nous sommes consacrés à une étude comparative visant la mise en évidence des avantages de la RAFT par rapport à la FRP en termes de performances des MIP acryliques et méthacryliques. Pour mieux apprécier les différences induites par la méthode de polymérisation, le dégrée de réticulation et donc la flexibilité des réseaux ont été variés de façon systématique. Cette stratégie a permis de bien apprécier les différences induites par chaque technique de polymérisation. Les résultats ont démontré que la RAFT permet de synthétiser des MIPs ayant une meilleure affinité pour leur molécule cible, et que cette amélioration est due à une distribution plus homogène des points de réticulation au sein du réseau. Finalement, nous avons appliqué la RAFT pour la synthèse de nanocapteurs individuels basés sur des composite MIP intégrant des nanoparticules d'or, et utilisant la spectroscopie Raman exaltée (SERS) pour la détection
Molecularly imprinted polymers (MIPs) are synthetic receptors, also known as antibody mimics, that can specifically bind target molecules. Molecular imprinting has emerged, over the last 30 years; it is an extremely versatile strategy for synthesizing networks possessing high affinity and selectivity for a chemical species, used as a molecular template during their synthesis. The wide variety of materials and formats that are accessible through this strategy has resulted in a broad spectrum of applications for such MIPs, ranging from separation to sensing, catalysis, drug delivery, etc. Since the beginning, the great majority of the imprinted networks has been synthesized by assembling vinyl monomers via free-radical polymerization (FRP). This polymerization method represents a convenient choice for synthesizing MIPs, due to its easy setup, versatility, tolerance with respect to many solvents and functional groups. However, some drawbacks greatly affect the possibility of achieving of suitable degree of control over some “polymeric” parameters which become important for specific applications. The introduction of controlled/”living” radical polymerization (CRP) techniques has then represented an opportunity for MIPs to reduce, and in some cases even to overcome, some of their limits arising from FRP. In this respect, this Ph. D. Thesis has studied how the use of RAFT polymerization, one of the most applied CRPs, can be advantageously used to syntheze MIPs. This has been done by focusing on the main characteristics of CRPs: their living and controlled nature. The living nature has been exploited during the first part of this work, which involved the synthesis of superparamagnetic molecularly imprinted nanocomposites via surface-initiated RAFT polymerization of p(EGDMA-co-MAA) on amino-modified Fe3O4 nanoparticles. The polymer grafting has been performed using an unusual stirring technique (i. E. Ultrasonication) during the polymerization step, and by testing different polymerization solvents for evaluating their effect on the composite structure. It has been observed that the grafting resulted in homogeneous polymer layers, the thickness of which could be controlled by adjusting the RAFT/radical source ratio. Moreover, the living nature of RAFT fragments has been exploited for post-functionalizing the surface of a composite particle with p(EGMP) brushes, thus demonstrating the potential of fine-tuning the particle surface properties through the living chain ends. In the second part of the thesis, an in-depth study has been performed on the effects induced by the use of controlled (RAFT) polymerization conditions on the binding behaviour and structural parameters of bulk acrylic and methacrylic MIPs and the corresponding non-imprinted polymers, synthesized by RAFT and FRP with varying cross-linking degree. This strategy actually provided scaffolds with progressively increased degree of flexibility (especially in the case of acrylics) which allowed visualize the enhancement of binding and structural differences arising from the polymerization technique. As a result, it has been observed that the use of controlled (RAFT) conditions induced, on the imprinted networks, an increased template affinity over equivalent FRPs, and it has been demonstrated that this improved affinity can be related to more homogeneous distributions of the cross-linking points achieved during RAFT polymerization. The third part presents preliminary results toward the synthesis by RAFT of individual multi-composite MIP nanosensors using enhanced Raman spectroscopy (SERS) for detection
APA, Harvard, Vancouver, ISO, and other styles
36

Wyres, Christopher A. "Atom transfer radical polymerisation - towards the synthesis of a fully-functional photorefractive polymer." Thesis, Aston University, 2000. http://publications.aston.ac.uk/9637/.

Full text
Abstract:
Atom transfer radical polymerisation (ATRP) of styrene in xylene solution initiated with 1-phenylethyl bromide and mediated by CuBr/N-propyl-2- pyridinemethanimine catalyst complex was studied. The polymerisation was ill-controlled, yielding polymers with broad molecular weight distributions and values of number average molecular weight considerably higher than the theoretical values calculated from 100% initiator efficiency. The degree of control afforded over the polymerisation was enhanced by use of a more soluble catalyst complex, CuBr/N-octyl-2-pyridinemethanimine. Furthermore, the use of a more polar solvent, diglyme, generated a homogeneous catalyst complex that facilitated the production of polymers having narrow molecular weight distributions (1.10 < PDi < 1.20). The kinetics of the atom transfer radical polymerisation of methyl methacrylate at 90°C in diglyme solution initiated with ethyl-2-bromoisobutyrate and mediated by CuBr/N-octyl-2-pyridinemethanimine was studied and the orders of the reaction were established. The effect on the rate of polymerisation of the ratio of CuBr:N-octyl-2-pyridinemethanimine was also determined. The temperature dependencies of the rate of polymerisation of methyl methacrylate in diglyme solution and xylene solution were studied, and were found to be non-linear and dependent upon the polarity of the solvent. The use of highly polar aprotic solvents, such as N,N-dimethylformamide and dimethylsulphoxide, was found to be detrimental to the degree of control afforded over the polymerisation of methyl methacrylate. This was circumvented by use of a 5-fold excess, over that conventionally used, of catalyst complex. The atom transfer radical polymerisation of (4-nitrophenyl)-[3-[N-[2- (methacryloyloxy)ethyl]carbazolyl]]diazene in dimethyl sulphoxide solution was studied. Although homopolymerisation yielded only oligomers, copolymerisation of this monomer with methyl methacrylate was found to be readily achievable.
APA, Harvard, Vancouver, ISO, and other styles
37

Holm, Falk Linus. "An investigation of electrochemically mediated atom transfer radical polymerization as a method for polymerization of PEGMA for polymer electrolytes : A bachelor's degree project." Thesis, Uppsala universitet, Institutionen för kemi - BMC, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-380582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Blundell, Paul. "Investigations on the radical chemistry of thionocarbonates of alcohols and acyl derivatives of hydroxamic and thiohydroxamic acids." Thesis, University of Stirling, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.294019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lindqvist, Josefina. "Tailoring Surface Properties of Bio-Fibers via Atom Transfer Radical Polymerization." Doctoral thesis, KTH, Fiber- och polymerteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4325.

Full text
Abstract:
The potential use of renewable, bio-based polymers in high-technological applications has attracted great interest due to increased environmental concern. Cellulose is the most abundant biopolymer resource in the world, and it has great potential to be modified to suit new application areas. The development of controlled polymerization techniques, such as atom transfer radical polymerization (ATRP), has made it possible to graft well-defined polymers from cellulose surfaces. In this study, graft-modification of cellulose substrates by ATRP was explored as a tool for tailoring surface properties and for the fabrication of functional cellulose surfaces. Various native and regenerated cellulose substrates were successfully graft-modified to investigate the effect of surface morphology on the grafting reactions. It was found that significantly denser polymer brushes were grafted from the native than from the regenerated cellulose substrates, most likely due to differences in surface area. A method for detaching the grafted polymer from the substrate was developed, based on the selective cleavage of silyl ether bonds with tetrabutylammonium fluoride. The results from the performed kinetic study suggest that the surface-initiated polymerization of methyl methacrylate from cellulose proceeds faster than the concurrent solution polymerization at low monomer conversions, but slows down to match the kinetics of the solution polymerization at higher conversions. Superhydrophobic and self-cleaning bio-fiber surfaces were obtained by grafting of glycidyl methacrylate using a branched graft-on-graft architecture, followed by post-functionalization to obtain fluorinated polymer brushes. AFM analysis showed that the surface had a micro-nano-binary structure. It was also found that superhydrophobic surfaces could be achieved by post-functionalization with an alkyl chain, with no use of fluorine. Thermo-responsive cellulose surfaces have been prepared by graft-modification with the stimuli responsive polymer poly(N-isopropylacrylamide) (PNIPAAm). Brushes of poly(4-vinylpyridine) (P4VP) rendered a pH-responsive cellulose surface. Dual-responsive cellulose surfaces were achieved by grafting block-copolymers of PNIPAAm and P4VP.
QC 20100804
APA, Harvard, Vancouver, ISO, and other styles
40

Garcia, Guillermina C. "Synthesis of Hyperbranched Polyacrylates Using Self-Condensing Vinyl Polymerization (SCVP) Atom Transfer Radical Polymerization (ATRP) by Diverse Initiation Techniques in Aqueous Dispersed Systems." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1385200361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Illanes, Teresa. "Synthesis of Novel Degradable Polymers for Tissue Engineering by Radical Polymerization : Synthesis and characterization of 2-methylene-1,3-dioxepane and copolymerization thereof with vinyl acetate followed by polymer characterization and hydrolysis." Thesis, KTH, Skolan för kemivetenskap (CHE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33107.

Full text
Abstract:
The commercial field of radical polymerized polymers, such as polyvinyl alcohol, is very broad partly because they are easy to polymerize and cheap. One aspect that could improve their commercial range is to enhance their degradation rate. As the environmental aspect of polymers grows bigger an enhancement of biological degradation is a great improvement. This thesis deals with the prospect of polymerizing polyvinyl alcohol with degradable linkages in the main chain. In order to achieve the aim the monomer 2-methylene-1,3-dioxepane is successfully synthesized and characterized. The synthesis is followed by copolymerization of 2-methylene-1,3-dioxepane with vinylacetate at the feed compositions; 30/70, 50/50, 70/30 mol% respectively. The copolymerization was successful and reached over 90% conversion at the reaction time 3-4 hours with the conditions 60°C and 5mol% 2,2-Azobis(2-methylpropionitrile) as initiator. The copolymerization is followed by hydrolysis with potassium hydroxide or Candida Rugosa Lipase. The results show that chain scission occurs when the polymer is hydrolyzed by potassium hydroxide but not by lipase. There is also a tendency toward hydrolysis of the chain with lipase.
APA, Harvard, Vancouver, ISO, and other styles
42

Zhao, Chenying. "SYNTHESIS AND FUNCTIONALIZATION OF HYPERBRANCHED POLY(METHYL METHACRYLATE)." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1556104656335921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Menzel, Jasmin Patricia. "Synthesis of novel polymeric materials with potential application in hair care products : combining controlled radical polymerisation and polymer modification." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/80263/.

Full text
Abstract:
It was the original aim of this project to develop new, potentially stimuli sensitive materials with interesting architectures for potential application in hair care products such as shampoos, conditioners or styling products. Furthermore, various methods for the introduction of silicon functionalities into such polymers were investigated. Several methods of controlled radical polymerisation were combined with polymer end group modification to achieve these goals. Initially, polymerisation of several dimethacrylate monomers under catalytic chain transfer (CCT) conditions was optimised with regard to monomer conversion and control of Mw, thus preventing macro-gelation. CCTP is an excellent method for the synthesis of low molecular weight polymers retaining terminal vinyl groups which can be subsequently exploited for end group modification. Polymerising dimethacrylates under these conditions, the formation of highly branched architectures and the retention of a larger number of pendent vinyl groups adds more interesting aspects to synthesised materials. The incorporation of silicon functionalities was attempted in two ways: Via polymerisation of poly(dimethyl siloxane) dimethacrylates and via copolymerisation of a silicon containing monofunctional methacrylate with EGDMA. One of the PDMS dimethacrylates employed for CCTP was synthesed from a silanol terminated PDMS, attempting to introduce hydrolysable functionality and thus yielding potentially hydrolysable, hyperbranched polymers. Michael thiol-ene addition was subsequently used to decorate the pendant vinyl groups in CCTP polymers with a range of thiols, yielding highly functionalised polymers with hyperbranched architecture and low molecular weights. Following up on the idea of developing potentially hydrolysable, silicon containing polymers the synthesis of triblock copolymers with a PDMS middle block was attempted. PDMS dimethacrylates (silanol) were reacted with various thiols, ranging from small functional thiols like benzyl mercaptan or thioglycerol to PEG-thiols obtained via end group modification of mPEGs to aminolysed polymers previously synthesised by RAFT polymerisation. This part of the project was subsequently modified and an alternative approach for the synthesis of PDMS containing amphiphilic di- and triblock copolymers was investigated: Mono- and difunctional PDMS macroinitiators suitable for both ATRP and SET-LRP were synthesised via functionalisation of carbinol terminated PDMS. ATRP and SET-LRP were subsequently compared in the polymerisation of OEGMEMA monomers using these macroinitiators. Thermo-responsitivity of aqueous solutions of the resulting di- and triblock copolymers was studied using turbidimetry and Dynamic Light Scattering. Phase transitions in bulk were characterised by Differential Scanning Calorimetry and thermal stability was investigated via Thermogravimetric Analysis.
APA, Harvard, Vancouver, ISO, and other styles
44

Huang, Yun. "Synthesis of Novel Polymer-brush-afforded Hybrid Particles for Well-organized Assemblies." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189679.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

De, Vries Andrew Robert. "The effect of monosaccharide reducing sugars on the atom transfer radical polymerization of n-butyl methacrylate and methyl methacrylate." Thesis, Stellenbosch : Stellenbosch University, 2001. http://hdl.handle.net/10019.1/52519.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2001
ENGLISH ABSTRACT: The effect of various organic reducing agents, in the. form of monosaccharide reducing sugars, on the rate of atom transfer radical polymerization (ATRP) of n-butyl methacrylate and methyl methacrylate is reported in this study. The addition of the reducing sugars has a positive effect on the rate of ATRP. Up to 100% increase in the rate of polymerization was recorded, in some cases. These organic reducing agents have little effect on the molecular weight and molecular weight distribution of the polyin-butyl methacrylate) and polydispersity indexes remain well below 1.2. The molecular weight of the poly(methyl methacrylate), when glucose and galactose are added to the reaction mixture, compares well with the theoretical expected values. An explanation for these observations is the ability of the reducing sugars to reduce part of the Cu(II) species, that serves to deactivate the growing radicals, to Cu(I), thereby ensuring a shift in the equilibrium between active and dormant chains in the direction of the former and a resulting increase in the rate of polymerization. uvNIS spectroscopy and cyclic voltammetry were used to investigate the mechanism behind the polymerization rate enhancement.
AFRIKAANSE OPSOMMING: In hierdie studie word die effek van verskeie organiese reduseermiddels, in die vorm van monosakkaried reduserende suikers, op die tempo van polimerisasie van ATRP gerapporteer. Hierdie reduserende suikers het 'n positiewe effek op die polimerisasie tempo. In sommige gevalle word 'n toename van 100% in die polimerisasie tempo waargeneem. Die organiese reduseermiddels het 'n minimale effek op die molekulere massa en molekulere massa verspreiding (in meeste gevalle minder as 1.2) van die poly(n-butiel metakrielaat). In die geval van die poly(metiel metakrielaat), wanneer glukose en galaktose by die reaksie mengsel gevoeg word, stem die molekulere massas goed ooreen met die teoreties voorspelde molekulere massas. Die waargenome toename in die polimerisasie tempo kan toegeskryf word aan die vermoe van die reduserende suikers om die Cu(II), wat dien om die groeiende radikale te deaktiveer, gedeeltelik te reduseer na Cu(l). Hierdeur word verseker dat die ewewig tussen die aktiewe en dormante kettings in die rigting van die eersgenoemde verskuif word, wat dus aanleiding gee tot 'n toename in die polimerisasie tempo. Ultraviolet spektroskopie en sikliese voltammetrie is ook gebruik om lig te werp op die meganisme agter die toename in die tempo van polimerisasie.
APA, Harvard, Vancouver, ISO, and other styles
46

Shevchuk, O. M., M. R. Chobit, N. M. Bukartyk, and V. S. Tokarev. "Synthesis of Hydroxyapatite Nanoparticles with Initiating Centres in Polymer Shell." Thesis, Sumy State University, 2012. http://essuir.sumdu.edu.ua/handle/123456789/35447.

Full text
Abstract:
This research work was devoted to the synthesis of hydroxyapatite nanoparticles with initiating centres in polymer shell. Marcroinitiators comprised by heterofunctional copolymers containing either pendant peroxidic groups or benzoin pieces attached to the backbone chain were used as surface modifiers of hydroxyapatite. Their use in the stage of synthesis of the mineral particles makes possible a control over size and the surface properties of particles. The effect of copolymer nature and its concentration, as well as the synthesis conditions on hydroxyapatite particle size and the copolymer adsorption value was studied. Both types of functional groups namely peroxide and benzoin in structure of copolymers immobilized at the hydroxyapatite surface were used for initiation of polymerization processes at elevated temperature (in the first case) or under UV-irradiation (in another case). These techniques of bioceramics modification allowed to form polymer compatibilizing layer of proper structure and thickness bonded with the mineral particles that enhanced compatibility of mineral filler and polymer matrix of different nature and as a result obtaining composite materials with improved physico-mechanical properties. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35447
APA, Harvard, Vancouver, ISO, and other styles
47

Nyström, Daniel. "From Responsive Interfaces to Honeycomb Membranes by Controlled Radical Polymerisation." Doctoral thesis, KTH, Fiber- och polymerteknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4733.

Full text
Abstract:
In this study, surface modification of both organic and inorganic substrates (in terms of cellulose and silica nanoparticles, respectively) has been explored using surface-initiated atom transfer radical polymerisation (ATRP). The desire to modify bio-based materials to fit into new application areas and the need for bio-based materials with improved material properties is steadily increasing due to environmental concern. Superhydrophobic and self-cleaning cellulose surfaces were fabricated by combining ATRP with post-functionalisation. Glycidyl methacrylate was grafted from filter paper, and the epoxide groups were used as reactive handles to create a branched “graft-on-graft” architecture. Post-functionalisation of this architecture with perfluorinated chains or alkyl chains resulted in the formation of superhydrophobic surfaces. Grafting of N-isopropylacrylamide (NIPAAm) from filter paper yielded cellulose surfaces capable of switching the wettability, from hydrophilic to hydrophobic, in response to changes in temperature. The wettability of cellulose surfaces grafted with poly(4-vinylpyridine) (P4VP) could be adjusted from hydrophilic to hydrophobic by changing pH. Furthermore, cellulose surfaces responding to changes in both pH and temperature were obtained via grafting of block copolymers of PNIPAAm and P4VP. The use of inorganic nano-particles in composites has attracted considerable academic and industrial interest due to their excellent mechanical and thermal properties. Styrene was grafted from the surface of silica nanoparticles using ATRP. The resulting organic-inorganic hybrid materials did not aggregate to the same extent as the un-modified silica particles. The polystyrene-modified silica particles were used for the fabrication of honeycomb membranes. It was evident that the pore sizes and the number of porous layers could be tuned by varying the conditions used for film casting. To broaden the range of polymers available for film casting into honeycomb membranes, a block copolymer of polystyrene and poly(methyl methacrylate) was grafted from silica nanoparticles. Polymer-blends of polystyrene-modified particles and poly(9,9´-dihexylfluorene) (PDHF) were also used as an alternative to incorporate functionality into honeycomb membranes.
QC 20100901
APA, Harvard, Vancouver, ISO, and other styles
48

Qiao, Xiaoguang. "Synthesis of silica-polymer hybrid particles via controlled radical polymerization in aqueous dispersed media." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10332/document.

Full text
Abstract:
Des polymères à base de méthacrylate de poly(oxyde d'éthylène) (PEOMA) avec des chaînes pendantes PEO (Mn = 300 ou 950 g mol-1) ou des copolymères de PEOMA300 et d'acide méthacrylique (AMA) ont été synthétisés par polymérisation radicalaire contrôlée par les nitroxydes en utilisant une alkoxyamine (BlocBuilder®) comme amorceur en présence de SG1 et d'une faible quantité de styrène. Les copolymères à base de PEOMA300 et d'AMA sont thermo- et pH-sensibles. Les deux types de macroalkoxyamines ont été utilisés pour amorcer la copolymérisation en émulsion du méthacrylate de n-butyle et du styrène et former, par auto-assemblage induit par la polymérisation, des particules composées de copolymères à blocs amphiphiles, en absence ou présence de particules de silice. En absence de silice, des particules stabilisées de façon stérique ou électrostérique ont été formées. La polymérisation présente les caractéristiques d'une polymérisation contrôlée avec néanmoins la formation d'une faible proportion de chaînes mortes. L'effet du pH, de la force ionique et de la nature ou de la concentration des macroalkoxyamines sur la cinétique de polymérisation et la morphologie des particules a été étudié, et des sphères, des vésicules ou des nanofibres ont été obtenues. Les macroalkoxyamines à base de PEO s'adsorbent sur la silice via la formation de liaisons hydrogène entre les chaînes PEO et les groupes silanol. La synthèse de copolymères à blocs en surface de la silice a conduit à la formation de particules hybrides de différentes morphologies (bonhomme de neige, multipodes, framboise, coeur-écorce, têtard, mille pattes) liées à la taille de la silice, au pH et à la nature du macroamorceur
Water-soluble brush-type polymers composed of poly(ethylene)oxide methacrylate (PEOMA) units with PEO side groups of various chain lengths (Mn = 300 and 950 g mol-1) or of PEOMA300 with methacrylic acid (MAA) were synthesized by nitroxide-mediated polymerization using an alkoxyamine initiator (BlocBuilder®) and SG1 nitroxide in the presence of a low amount of styrene. The PEOMA300-MAA based copolymers showed a dual temperature/pH response. The two series of macroalkoxyamines were used in aqueous emulsion copolymerization of nbutyl methacrylate and styrene leading to the formation of particles composed of amphiphilic block copolymers through polymerization-induced self-assembly, in both the absence and presence of silica. The experiments performed in the absence of silica particles resulted in the formation of sterically or electrosterically stabilized latexes. The polymerization exhibited all the features of a controlled system with however the presence of a small proportion of dead chains. The effect of pH value, ionic strength and type and concentration of the macroalkoxyamine initiator on polymerization kinetics and latex morphologies was investigated. Depending on the reaction conditions, spherical particles, vesicles or nanofibers were successfully prepared. The PEO-based macroalkoxyamines were shown to adsorb on the silica surface via hydrogen bond interaction between PEO and the silanol groups. This enabled block copolymers to be generated in situ on the silica surface leading to hybrid particles with snowman, raspberry, daisy, core-shell, “tadpole-” and “centipede-” like morphologies depending on the silica particle size, pH value and type of macroinitiator
APA, Harvard, Vancouver, ISO, and other styles
49

Adash, Uma. "Synthetic and kinetic investigations into living free-radical polymerisation used in the preparation of polymer therapeutics." Thesis, University of Canterbury. Chemistry, 2006. http://hdl.handle.net/10092/1282.

Full text
Abstract:
The aim of this work was to successfully prepare polymers of N-(2-hydroxypropyl)methacrylamide, (PHPMA) using controlled/"living" free-radical polymerisation technique. For this purpose, atom transfer radical polymerisation (ATRP) and reversible addition-fragmentation (chain) transfer (RAFT) polymerisation were used in preparation of a number of base polymers with the intention of quantitatively converting them into PHPMA. Both methods were applied under varying polymerisation conditions, and the kinetics of the systems investigated. Various rate constants were measured, while computer modelling of the experimental data allowed estimation of other kinetic parameters of interest. Investigations into solvent and ligand effects on the kinetics of ATRP of the activated ester methacryloyloxy succinimide (MAOS) and one of the archetypal methacrylate monomers, methyl methacrylate (MMA) were carried out. The method of RAFT was also employed in polymerisation of MAOS and a number of other monomers in the hope of finding the best synthetic precursor of PHPMA. Polymers of methacryloyl chloride (MAC) and p-nitrophenyl methacrylate (NPMA) were prepared, as well as the polymers of HPMA itself and N-isopropyl methacrylamide. Polymerisation of MMA by RAFT was also attempted in view of adding to current knowledge on the monomer's behaviour and the kinetic characteristics of its RAFT polymerisation. Preparation of PHPMA from PMAOS, PMAC and PNPMA was attempted. Successful preparation of PHPMA from the polymer of the acid chloride was achieved under mild reaction conditions, while displacement of N-hydroxysuccinimide groups of PMAOS resulted in unexpected modification of the polymer under the conditions used. Conversion of PNPMA into PHPMA was not achieved. At this stage these results suggest inadequacy of both PMAOS and PNPMA as reactive polymeric precursors.
APA, Harvard, Vancouver, ISO, and other styles
50

Radzinski, Scott Charles. "Synthesis of Bottlebrush Polymers Using the Grafting-Through and Transfer-To Methods." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77574.

Full text
Abstract:
Bottlebrush polymers are interesting topologies that have become increasingly relevant in various applications including rheology modifiers, super-soft elastomers, photonic crystals, anti-fouling coatings, the in vivo delivery of therapeutic agents, and as promising substrates in lithographic printing. These macromolecules are comprised of numerous polymeric side-chains densely grafted to a polymer backbone. The densely grafted nature of bottlebrush polymers results in steric repulsion between neighboring polymer chains, forcing these macromolecules to adopt a chain-extended conformation. Although these remarkable macromolecules have a many different applications, the transformative potential of the bottlebrush polymer topology has not been realized because the synthesis of high molecular weight bottlebrush polymers is challenging. This dissertation focusses on improving the synthesis of these large macromolecules using the grafting-through strategy in the first section and the transfer-to strategy in the second section. For the first time the effect of anchor group chemistry—the configuration of atoms linking the polymer to a polymerizable norbornene—was studied on the kinetics of ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) initiated by Grubbs 3rd generation catalyst. A variance in the rate of propagation of >4-fold between similar MMs with different anchor groups was observed. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. Experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. This new insight will allow others to achieve high MM conversion and prepare pure, high MW bottlebrush polymers by ROMP grafting-through. The second section of this dissertation deals with a little studied bottlebrush synthesis technique called the transfer-to method. This method is a hybrid of the grafting-from and grafting-to approaches in which the growing polymer side chains detach from the backbone, propagate freely in solution, and then reattach to the backbone in a chain transfer step. Several parameters were investigated to determine optimal conditions for this process. This study provides for the first time a guide to use the transfer-to method to produce high purity bottlebrush polymers with controllable backbone and side chain length.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography