Academic literature on the topic 'Radiative Heat Transfer Rate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiative Heat Transfer Rate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radiative Heat Transfer Rate"
Liu, L. H., and S. X. Chu. "On the Entropy Generation Formula of Radiation Heat Transfer Processes." Journal of Heat Transfer 128, no. 5 (October 21, 2005): 504–6. http://dx.doi.org/10.1115/1.2190695.
Full textZhang, Chong, Zhongnong Zhang, and Chun Lou. "Thermodynamic Irreversibility Analysis of Thermal Radiation in Coal-Fired Furnace: Effect of Coal Ash Deposits." Materials 16, no. 2 (January 13, 2023): 799. http://dx.doi.org/10.3390/ma16020799.
Full textSaleem, M., M. A. Hossain, Suvash C. Saha, and Y. T. Gu. "Heat Transfer Analysis of Viscous Incompressible Fluid by Combined Natural Convection and Radiation in an Open Cavity." Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/412480.
Full textBudaev, Bair V., and David B. Bogy. "The role of EM wave polarization on radiative heat transfer across a nanoscale gap." Journal of Applied Physics 132, no. 5 (August 7, 2022): 054903. http://dx.doi.org/10.1063/5.0094382.
Full textBayazitoglu, Y., and P. V. R. Suryanarayana. "Transient Radiative Heat Transfer From a Sphere Surrounded by a Participating Medium." Journal of Heat Transfer 111, no. 3 (August 1, 1989): 713–18. http://dx.doi.org/10.1115/1.3250741.
Full textNguyen, Phuc-Danh, Huu-Tri Nguyen, Pascale Domingo, Luc Vervisch, Gabriel Mosca, Moncef Gazdallah, Paul Lybaert, and Véronique Feldheim. "Flameless combustion of low calorific value gases, experiments, and simulations with advanced radiative heat transfer modeling." Physics of Fluids 34, no. 4 (April 2022): 045123. http://dx.doi.org/10.1063/5.0087077.
Full textHu, Xuanyu, Bastian Gundlach, Ingo von Borstel, Jürgen Blum, and Xian Shi. "Effect of radiative heat transfer in porous comet nuclei: case study of 67P/Churyumov-Gerasimenko." Astronomy & Astrophysics 630 (September 20, 2019): A5. http://dx.doi.org/10.1051/0004-6361/201834631.
Full textTong, T. W., and S. B. Sathe. "Heat Transfer Characteristics of Porous Radiant Burners." Journal of Heat Transfer 113, no. 2 (May 1, 1991): 423–28. http://dx.doi.org/10.1115/1.2910578.
Full textFernandez Arroiabe, Peru, Jon Iturralde Iñarga, Mercedes Gómez de Arteche Botas, Susana López Pérez, Eduardo Ubieta Astigarraga, Iñigo Unamuno, Manex Martinez-Agirre, and M. Mounir Bou-Ali. "Design of a radiative heat recuperator for steel processes." MATEC Web of Conferences 330 (2020): 01034. http://dx.doi.org/10.1051/matecconf/202033001034.
Full textVyas, Prashant Dineshbhai, Harish C. Thakur, and Veera P. Darji. "Nonlinear analysis of convective-radiative longitudinal fin of various profiles." International Journal of Numerical Methods for Heat & Fluid Flow 30, no. 6 (May 29, 2019): 3065–82. http://dx.doi.org/10.1108/hff-08-2018-0444.
Full textDissertations / Theses on the topic "Radiative Heat Transfer Rate"
Wangdhamkoom, Panitan. "Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct." Thesis, Curtin University, 2007. http://hdl.handle.net/20.500.11937/1007.
Full textWangdhamkoom, Panitan. "Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct." Curtin University of Technology, Department of Mechanical Engineering, 2007. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=17353.
Full textMaheria, Mehulkumar. "Thermal Analysis of Natural Convectiona and Radiation in Porous Fins." Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1281982835.
Full textColomer, Rey Guillem. "Numerical methods for radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2006. http://hdl.handle.net/10803/6691.
Full textEn el capítol 1 s'exposa una breu introducció a la transferència d'energia per radiació, i una explicació de les equacions que la governen. Es tracta de l'equació del transport radiatiu, formulada en termes dels coeficients d'absorció i de dispersió, i l'equació de l'energia. També s'indica quan cal tenir en compte aquest fenòmen, i a més a més, es defineixen totes les magnituds i conceptes que s'han utilitzat en aquesta tesi. També es dóna una breu descripció d'algunes simplificacions que es poden fer a les equacions governants.
El mètode de les radiositats s'explica en el capítol 2. També s'hi descriu un procediment numèric que permet calcular els factors de vista en geometries amb simetria cilíndrica, i es presenten resultats obtinguts amb el mètode descrit. Tot i que aquest capítol està una mica deslligat de la resta de la tesi, l'algoritme ideat per tractar geometries tridimensionals amb un temps computacional molt proper al de geometries bidimensionals, sense un increment de memòria apreciable, dóna uns resultats prou bons com per formar part de la tesi.
El mètode de les ordenades discretes (DOM) es detalla en el capítol 3. L'aspecte més important d'aquest mètode es l'elecció del conjunt d'ordenades per integrar l'equació del transport radiatiu. S'enumeren quines propietats han d'acomplir aquests conjunts. S'hi explica amb detall la discretització de la equació del transport radiatiu, tant en coordenades cartesianes com en cilíndriques. Es presenten també alguns resultats ilustratius obtinguts amb aquest mètode.
En el moment en que es vol resoldre un problema real, cal tenir present que el coeficients d'absorció pot dependre bruscament de la longitud d'ona de la radiació. En aquesta tesi s'ha considerat aquesta dependència amb especial interés, en el capítol 4. Aquest interès ha motivat una recerca bibliogràfica sobre la modelització aquesta forta dependència espectral del coeficient d'absorció. Aquesta recerca s'ha dirigit també a l'estudi dels diferents models numèrics existents capaços d'abordar-la, i de resoldre la equació del transport radiatiu en aquestes condicions. Es descriuen diversos mètodes, i, d'aquests, se n'han implementat dos: el mètode de la suma ponderada de gasos grisos (WSGG), i el mètode de la suma de gasos grisos ponderada per línies espectrals (SLW). S'hi presenten també resultats ilustratius.
S'han realitzat multitud de proves en el codi numèric resultant de l'elaboració d'aquesta tesi. Tenint en compte els resultats obtinguts, es pot dir que els objectius proposats a l'inici de la tesi s'han acomplert. Com a demostració de la utilitat del codi resultant, aquest ha estat integrat en un codi de proposit general (DPC), resultat del treball de molts investigadors en els darrers anys.
Aquesta esmentada integració permet la resolució de problemes combinats de transferència de calor, analitzats en els capítols 5 i 6, on la radiació s'acobla amb la transferència de calor per convecció. La influència de la radiació en la transferència total de calor s'estudia en el capítol 5, publicat a la International Journal of Heat and Mass Transfer, volum 47 (núm. 2), pàg. 257-269, 2004. En el capítol 6, s'analitza l'efecte d'alguns paràmetres del mètode SLW en un problema combinat de transferència de calor. Aquest capítol s'ha enviat a la revista Journal of Quantitative Spectroscopy and Radiative Transfer, per què en consideri la publicació.
The main objective of the present thesis is to study the energy transfer by means of radiation. Therefore, the basic phenomenology of radiative heat transfer has been studied. However, considering the nature of the equation that describes such energy transfer, this work is focussed on the numerical methods which will allow us to take radiation into account, for both transparent and participating media. Being this the first effort within the CTTC ("Centre Tecnològic de Transferència de Calor") research group on this subject, it is limited to simple cartesian and cylindrical geometries.
For this purpose, chapter 1 contains an introduction to radiative energy transfer and the basic equations that govern radiative transfer are discussed. These are the radiative transfer equation, formulated in terms of the absorption and scattering coefficients, and the energy equation. It is also given a discussion on when this mode of energy transfer should be considered. In this chapter are also defined all of the magnitudes and concepts used throughout this work. It ends with a brief description of some approximate methods to take radiation into account.
The Radiosity Irradiosity Method is introduced in chapter 2. In this chapter it is also described a numerical method to calculate the view factors for axial symmetric geometries. The main results obtained in such geometries are also presented. Although a little disconnected from the rest of the present thesis, the algorithm used to handle "de facto"' three dimensional geometries with computation time just a little longer than two dimensional cases, with no additional memory consumption, is considered worthy enough to be included in this work.
In chapter 3, the Discrete Ordinates Method (DOM) is detailed. The fundamental aspect of this method is the choice of an ordinate set to integrate the radiative transfer equation. The characterization of such valuable ordinate sets is laid out properly. The discretization of the radiative transfer equation is explained in etail. The direct solution procedure is also outlined. Finally, illustrative results obtained with the DOM under several conditions are presented.
In the moment we wish to solve real problems, we face the fact that the absorption and scattering coefficients depend strongly on radiation wavelength. In the present thesis, special emphasis has been placed on studying the radiative properties of real gases in chapter 4. This interest resulted on a bibliographical research on how the wavenumber dependence of the absorption coefficient is modeled and estimated. Furthermore, this bibliographical research was focussed also on numerical models able to handle such wavenumber dependence. Several methods are discussed, and two of them, namely the Weighted Sum of Gray Gases (WSGG) and the Spectral Line Weighted sum of gray gases (SLW), have been implemented to perform non gray calculations. Some significant results are shown.
Plenty of tests have been performed to the numerical code that resulted from the elaboration of this thesis. According to the results obtained, the objectives proposed in this thesis have been satisfied. As a demonstration of the usefulness of the implemented code, it has been succesfully integrated to a general purpose computational fluid dynamics code (DPC), fruit of the effort of many researchers during many years.
Results of the above integration lead to the resolution of combined heat transfer problems, that are analyzed in chapters 5 and 6, where radiative heat transfer is coupled to convection heat transfer. The effect of radiation on the total heat transfer is studied in chapter 5, which has been published as International Journal of Heat and Mass Transfer, volume 47 (issue 2), pages 257--269, year 2004. In chapter 6, the impact of some parameters of the SLW model on a combined heat transfer problem is analyzed. This chapter has been submitted for publication at the Journal of Quantitative Spectroscopy and Radiative Transfer.
Ramamoorthy, Babila. "Numerical simulation of radiative heat transfer." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2009r/ramamoorthy.pdf.
Full textQuintero, de la Garza Rodrigo Javier 1974. "Spheroidization of iron powders by radiative heat transfer." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85328.
Full textIncludes bibliographical references (leaves 45-46).
by Rodrigo Javier Quintero de la Garza.
S.M.
Dai, Jin. "Near-Field Radiative Heat Transfer between Plasmonic Nanostructures." Doctoral thesis, KTH, Optik och Fotonik, OFO, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195653.
Full textQC 20161111
Luo, Gang. "A cloud fraction and radiative transfer model." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/25753.
Full textSafdari, Mohammad Saeed. "Characterization of Pyrolysis Products from Fast Pyrolysis of Live and Dead Vegetation." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/8807.
Full textEnd, Thomas [Verfasser]. "Optimal Control of Nonlocal Radiative Heat Transfer / Thomas End." München : Verlag Dr. Hut, 2012. http://d-nb.info/1021072893/34.
Full textBooks on the topic "Radiative Heat Transfer Rate"
United States. National Aeronautics and Space Administration., ed. Nickel-hydrogen battery state of charge during low rate trickle charging. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textUnited States. National Aeronautics and Space Administration., ed. Nickel-hydrogen battery state of charge during low rate trickle charging. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textRadiative heat transfer. 2nd ed. Amsterdam: Academic Press, 2003.
Find full textRadiative heat transfer. New York: McGraw-Hill, 1993.
Find full textModest, Michael M. Radiative heat transfer. Maidenhead: McGraw-Hill, 1993.
Find full textThermal radiative transfer and properties. New York: Wiley, 1992.
Find full textYadav, Rahul, C. Balaji, and S. P. Venkateshan. Radiative Heat Transfer in Participating Media. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-99045-9.
Full textModest, Michael F., and Daniel C. Haworth. Radiative Heat Transfer in Turbulent Combustion Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27291-7.
Full textF, Nogotov E., and Trofimov V. P, eds. Radiative heat transfer in two-phase media. Boca Raton, Fla: CRC Press, 1993.
Find full textRadiative transfer in nontransparent, dispersed media. Berlin: Springer-Verlag, 1988.
Find full textBook chapters on the topic "Radiative Heat Transfer Rate"
Smoot, L. Douglas, and Philip J. Smith. "Radiative Heat Transfer." In Coal Combustion and Gasification, 349–71. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-9721-3_14.
Full textVolokitin, Aleksandr I., and Bo N. J. Persson. "Radiative Heat Transfer." In Electromagnetic Fluctuations at the Nanoscale, 91–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53474-8_6.
Full textAkimoto, Hajime, Yoshinari Anoda, Kazuyuki Takase, Hiroyuki Yoshida, and Hidesada Tamai. "Radiative Heat Transfer." In An Advanced Course in Nuclear Engineering, 361–74. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55603-9_18.
Full textShang, Joseph J. S. "Radiative Heat Transfer." In Classic and High-Enthalpy Hypersonic Flows, 237–66. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003212362-13.
Full textCampbell-Lochrie, Zakary, Carlos Walker-Ravena, Michael Gallagher, Nicholas Skowronski, Eric V. Mueller, and Rory M. Hadden. "Effect of Fuel Bed Structure on the Controlling Heat Transfer Mechanisms in Quiescent Porous Flame Spread." In Advances in Forest Fire Research 2022, 1443–48. Imprensa da Universidade de Coimbra, 2022. http://dx.doi.org/10.14195/978-989-26-2298-9_219.
Full textSteane, Andrew M. "Radiative heat transfer." In Thermodynamics, 291–98. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198788560.003.0020.
Full text"Radiative Heat Transfer." In Heat Transfer in Single and Multiphase Systems, 191–244. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064-8.
Full text"Radiative Heat Transfer." In Mechanical Engineering Series, 171–224. CRC Press, 2002. http://dx.doi.org/10.1201/9781420041064.ch4.
Full textKobayashi, Shiro, Soo-Ik Oh, and Taylan Altan. "Thermo-Viscoplastic Analysis." In Metal Forming and the Finite-Element Method. Oxford University Press, 1989. http://dx.doi.org/10.1093/oso/9780195044027.003.0015.
Full textModest, Michael F. "Nanoscale Radiative Transfer." In Radiative Heat Transfer, 803–17. Elsevier, 2013. http://dx.doi.org/10.1016/b978-0-12-386944-9.50024-8.
Full textConference papers on the topic "Radiative Heat Transfer Rate"
Chang, S. S., H. H. Chiu, and T. S. Lee. "Droplet Combustion With Radiative Heat Transfer." In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-144.
Full textHe, Zhen-Zong, Hong Qi, Qin Chen, Ya-Tao Ren, and Li-Ming Ruan. "Effect of Fractal-Like Aggregation on Radiative Properties and Specific Growth Rate of Chlorella." In The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.rad.009531.
Full textWang, Jingfu, and Guoqiang Li. "Analysis of Radiation Reabsorption Effects on Flame Characteristics and NOx Emission in Laminar Flames." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-23061.
Full textYan, Wei-Mon, and Kuan-Tzong Lee. "Natural Convection Heat Transfer in a Vertical Square Duct With Radiation Effects." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0972.
Full textArchibold, Antonio Ramos, Muhammad M. Rahman, D. Yogi Goswami, and Elias L. Stefanakos. "High Temperature Latent-Heat Thermal Energy Storage Module With Enhanced Combined Mode Heat Transfer." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38766.
Full textViskanta, R. "Overview of Radiative Transfer in Cellular Porous Materials." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88648.
Full textSrinivasa Ramanujam, K., and C. Balaji. "A Fast Polarized Microwave Radiative Transfer Model for a Raining Atmosphere." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22228.
Full textConceição, Eusébio, João Gomes, Maria Manuela Lúcio, Domingos Viegas, and Teresa Viegas. "Heat Transfer in a Pine Tree Trunk." In 8th International Conference on Human Interaction and Emerging Technologies. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1002775.
Full textSeytier, Charline, and Mohammad H. Naraghi. "Combined Convective-Radiative Thermal Analysis of Inclined Roof Top Solar Chimney." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54043.
Full textBaikin, Mordechai, Yehuda Taitel, and Dvora Barnea. "Flow Rate Maldistribution in Multi Heated Parallel Pipes." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22650.
Full textReports on the topic "Radiative Heat Transfer Rate"
Hayes, Steven Lowe. Radiative heat transfer in porous uranium dioxide. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10189532.
Full textTencer, John, Kevin Thomas Carlberg, Marvin E. Larsen, and Roy E. Hogan. Advanced Computational Methods for Thermal Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1330205.
Full textSchock, Alfred, and M. J. Abbate. Comparison of Methods for Calculating Radiative Heat Transfer. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1033384.
Full textFuchs, Marcel, Ishaiah Segal, Ehude Dayan, and K. Jordan. Improving Greenhouse Microclimate Control with the Help of Plant Temperature Measurements. United States Department of Agriculture, May 1995. http://dx.doi.org/10.32747/1995.7604930.bard.
Full textForney, Glenn P. Computing radiative heat transfer occurring in a zone fire model. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4709.
Full textAhluwalia, R. K., and K. H. Im. Spectral radiative heat transfer in coal furnaces using a hybrid technique. Office of Scientific and Technical Information (OSTI), March 1994. http://dx.doi.org/10.2172/10133030.
Full textAhluwalia, R., and K. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/6810345.
Full textAhluwalia, R. K., and K. H. Im. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/10125191.
Full textKirsch, Jared, and Joshua Hubbard. Complementary Study of Radiative Heat Transfer and Flow Physics from Moderate-scale Hydrocarbon Pool Fire Simulations. Office of Scientific and Technical Information (OSTI), November 2021. http://dx.doi.org/10.2172/1832312.
Full textSkimmons, J. Determing the Radiative Heat Transfer out of the Fireball of an Atmospheric Nuclear Detonation using Experimental Data. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1603242.
Full text