Academic literature on the topic 'Radiation therapy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiation therapy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Radiation therapy"
Jingu, K., R. Umezawa, T. Yamamoto, Y. Ishikawa, N. Takahashi, K. Takeda, Y. Suzuki, S. Teramura, and S. Omata. "Radiation Therapy." Nihon Kikan Shokudoka Gakkai Kaiho 72, no. 2 (April 10, 2021): 84–87. http://dx.doi.org/10.2468/jbes.72.84.
Full textArticle, Editorial. "RADIATION THERAPY." Diagnostic radiology and radiotherapy, no. 1 (April 26, 2018): 133–37. http://dx.doi.org/10.22328/2079-5343-2018-9-1-133-137.
Full textStrohl, Roberta Anne. "Radiation Therapy." Nursing Clinics of North America 25, no. 2 (June 1990): 309–29. http://dx.doi.org/10.1016/s0029-6465(22)02928-0.
Full textHaylock, Pamela J. "Radiation Therapy." American Journal of Nursing 87, no. 11 (November 1987): 1441. http://dx.doi.org/10.2307/3425900.
Full textFrassica, Deborah A., Sarah Thurman, and James Welsh. "RADIATION THERAPY." Orthopedic Clinics of North America 31, no. 4 (October 2000): 557–66. http://dx.doi.org/10.1016/s0030-5898(05)70175-9.
Full textShipley, William U. "Radiation Therapy." Journal of Urology 147, no. 3 Part 2 (March 1992): 929–30. http://dx.doi.org/10.1016/s0022-5347(17)37425-6.
Full textCharkravarti, A., M. Wang, I. Robins, A. Guha, W. Curren, D. Brachman, C. Schultz, et al. "Radiation Therapy." Neuro-Oncology 12, Supplement 4 (October 21, 2010): iv105—iv112. http://dx.doi.org/10.1093/neuonc/noq116.s15.
Full textBehera, M. K., A. Sharma, S. Dutta, S. Sharma, P. K. Julka, G. K. Rath, W. J. Kil, et al. "RADIATION THERAPY." Neuro-Oncology 13, suppl 3 (October 21, 2011): iii127—iii133. http://dx.doi.org/10.1093/neuonc/nor160.
Full textAnwar, M., J. Lupo, A. Molinaro, J. Clarke, N. Butowski, M. Prados, S. Chang, et al. "RADIATION THERAPY." Neuro-Oncology 15, suppl 3 (November 1, 2013): iii178—iii188. http://dx.doi.org/10.1093/neuonc/not187.
Full textJeremic, Branislav. "Radiation therapy." Hematology/Oncology Clinics of North America 18, no. 1 (February 2004): 1–12. http://dx.doi.org/10.1016/s0889-8588(03)00143-6.
Full textDissertations / Theses on the topic "Radiation therapy"
Crosbie, Jeffrey. "Synchrotron microbeam radiation therapy." Monash University. Faculty of Science. School of Physics, 2008. http://arrow.monash.edu.au/hdl/1959.1/64948.
Full textSkiöld, Sara. "Radiation induced biomarkers of individual sensitivity to radiation therapy." Doctoral thesis, Stockholms universitet, Institutionen för molekylär biovetenskap, Wenner-Grens institut, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-97123.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Bergh, Alphonsus Cornelis Maria van den. "Radiation therapy in pituitary adenomas." [S.l. : [Groningen : s.n.] ; University of Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.
Full textFlejmer, Anna M. "Radiation burden from modern radiation therapy techniques including proton therapy for breast cancer treatment - clinical implications." Doctoral thesis, Linköpings universitet, Avdelningen för kliniska vetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127370.
Full textFitzgerald, Rhys J. "A comparison of volumetric modulated arc therapy (VMAT), intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3DCRT) for stereotactic ablative radiation therapy (SABR) for early stage lung cancer." Thesis, Queensland University of Technology, 2016. https://eprints.qut.edu.au/99826/4/Rhys_Fitzgerald_Thesis.pdf.
Full textEngelbeen, Céline. "The segmentation problem in radiation therapy." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210107.
Full textMathematically, the segmentation problem amounts to decomposing a given nonnegative integer matrix A into a nonnegative integer linear combination of some binary matrices. These matrices have to respect the consecutive ones property. In clinical applications several constraints may arise that reduce the set of binary matrices which respect the consecutive ones property that we can use. We study some of them, as the interleaf distance constraint, the interleaf motion constraint, the tongue-and-groove constraint and the minimum separation constraint.
We consider here different versions of the segmentation problem with different objective functions. Hence we deal with the beam-on time problem in order to minimize the total time during which the patient is irradiated. We study this problem under the interleaf distance and the interleaf motion constraints. We consider as well this last problem under the tongue-and-groove constraint in the binary case. We also take into account the cardinality and the lex-min problem. Finally, we present some results for the approximation problem.
/Le problème de segmentation intervient lors de l'élaboration d'un plan de radiothérapie. Après que le médecin ait localisé la tumeur ainsi que les organes se situant à proximité de celle-ci, il doit aussi déterminer les différents dosages qui devront être délivrés. Il détermine alors une borne inférieure sur le dosage que doit recevoir la tumeur afin d'en avoir un contrôle satisfaisant, et des bornes supérieures sur les dosages des différents organes situés dans le champ. Afin de respecter au mieux ces bornes, le plan de radiothérapie doit être préparé de manière minutieuse. Nous nous intéressons à l'une des étapes à réaliser lors de la détermination de ce plan: l'étape de segmentation.
Mathématiquement, cette étape consiste à décomposer une matrice entière et positive donnée en une combinaison positive entière linéaire de certaines matrices binaires. Ces matrices binaires doivent satisfaire la contrainte des uns consécutifs (cette contrainte impose que les uns de ces matrices soient regroupés en un seul bloc sur chaque ligne). Dans les applications cliniques, certaines contraintes supplémentaires peuvent restreindre l'ensemble des matrices binaires ayant les uns consécutifs (matrices 1C) que l'on peut utiliser. Nous en avons étudié certaines d'entre elles comme celle de la contrainte de chariots, la contrainte d'interdiciton de chevauchements, la contrainte tongue-and-groove et la contrainte de séparation minimum.
Le premier problème auquel nous nous intéressons est de trouver une décomposition de la matrice donnée qui minimise la somme des coefficients des matrices binaires. Nous avons développé des algorithmes polynomiaux qui résolvent ce problème sous la contrainte de chariots et/ou la contrainte d'interdiction de chevauchements. De plus, nous avons pu déterminer que, si la matrice donnée est une matrice binaire, on peut trouver en temps polynomial une telle décomposition sous la contrainte tongue-and-groove.
Afin de diminuer le temps de la séance de radiothérapie, il peut être désirable de minimiser le nombre de matrices 1C utilisées dans la décomposition (en ayant pris soin de préalablement minimiser la somme des coefficients ou non). Nous faisons une étude de ce problème dans différents cas particuliers (la matrice donnée n'est constituée que d'une colonne, ou d'une ligne, ou la plus grande entrée de celle-ci est bornée par une constante). Nous présentons de nouvelles bornes inférieures sur le nombre de matrices 1C ainsi que de nouvelles heuristiques.
Finalement, nous terminons par étudier le cas où l'ensemble des matrices 1C ne nous permet pas de décomposer exactement la matrice donnée. Le but est alors de touver une matrice décomposable qui soit aussi proche que possible de la matrice donnée. Après avoir examiné certains cas polynomiaux nous prouvons que le cas général est difficile à approximer avec une erreur additive de O(mn) où m et n représentent les dimensions de la matrice donnée.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Chan, Kin Wa (Karl), University of Western Sydney, of Science Technology and Environment College, and School of Computing and Information Technology. "Lateral electron disequilibrium in radiation therapy." THESIS_CSTE_CIT_Chan_K.xml, 2002. http://handle.uws.edu.au:8081/1959.7/538.
Full textMaster of Science (Hons)
Chan, Kin Wa. "Lateral electron disequilibrium in radiation therapy /." View thesis, 2002. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20040507.164802/index.html.
Full text"A thesis submitted in fulfillment of the requirements for the Degree of Master of Science (Honours) in Physics at the University of Western Sydney" "September 2002" "Kin Wa (Karl) Chan of Medical Physics Department of Westmead Hospital and the University of Western Sydney"-- t.p. Bibliography: leaves 100-105.
Ranggård, Nina. "Optimizing Conformity inIntensity Modulated Radiation Therapy." Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147356.
Full textChan, Timothy Ching-Yee. "Optimization under uncertainty in radiation therapy." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/40302.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 175-182).
In the context of patient care for life-threatening illnesses, the presence of uncertainty may compromise the quality of a treatment. In this thesis, we investigate robust approaches to managing uncertainty in radiation therapy treatments for cancer. In the first part of the thesis, we study the effect of breathing motion uncertainty on intensity-modulated radiation therapy treatments of a lung tumor. We construct a robust framework that generalizes current mathematical programming formulations that account for motion. This framework gives insight into the trade-off between sparing the healthy tissues and ensuring that the tumor receives sufficient dose. With this trade-off in mind, we show that our robust solution outperforms a nominal (no uncertainty) solution and a margin (worst-case) solution on a clinical case. Next, we perform an in-depth study into the structure of different intensity maps that were witnessed in the first part of the thesis. We consider parameterized intensity maps and investigate their ability to deliver a sufficient dose to the tumor in the presence of motion that follows a Gaussian distribution. We characterize the structure of optimal intensity maps in terms of certain conditions on the problem parameters.
(cont.) Finally, in the last part of the thesis, we study intensity-modulated proton therapy under uncertainty in the location of maximum dose deposited by the beamlets of radiation. We provide a robust formulation for the optimization of proton-based treatments and show that it outperforms traditional formulations in the face of uncertainty. In our computational experiments, we see evidence that optimal robust solutions use the physical characteristics of the proton beam to create dose distributions that are far less sensitive to the underlying uncertainty.
by Timothy Ching-Yee Chan.
Ph.D.
Books on the topic "Radiation therapy"
Smith, Alfred R., ed. Radiation Therapy Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03107-0.
Full textViswanathan, Akila N., Christian Kirisits, Beth E. Erickson, and Richard Pötter, eds. Gynecologic Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-68958-4.
Full textSauer, Rolf, ed. Interventional Radiation Therapy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84163-7.
Full textBentel, Gunilla C. Radiation therapy planning. 2nd ed. New York, NY: McGraw-Hill, 1996.
Find full textD, Altschuler M., and Smith Alfred R, eds. Radiation therapy physics. Berlin: Springer-Verlag, 1995.
Find full textS, Ibbott Geoffrey, and Hendee Eric G, eds. Radiation therapy physics. 3rd ed. Hoboken, N.J: J. Wiley, 2005.
Find full textS, Ibbott Geoffrey, ed. Radiation therapy physics. 2nd ed. St. Louis: Mosby, 1996.
Find full textBentel, Gunilla Carleson. Radiation therapy planning. 2nd ed. New York: McGraw-Hill, Health Professions Division, 1996.
Find full textR, Dobelbower Ralph, and Abe Mitsuyuki 1932-, eds. Intraoperative radiation therapy. Boca Raton, Fla: CRC Press, 1989.
Find full textCukier, Daniel. Coping with radiation therapy. Los Angeles: Lowell House, 2001.
Find full textBook chapters on the topic "Radiation therapy"
Rimner, Andreas. "Radiation Therapy." In Caring for Patients with Mesothelioma: Principles and Guidelines, 47–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-96244-3_4.
Full textMolina, Kristine M., Kristine M. Molina, Heather Honoré Goltz, Marc A. Kowalkouski, Stacey L. Hart, David Latini, J. Rick Turner, et al. "Radiation Therapy." In Encyclopedia of Behavioral Medicine, 1614. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_101431.
Full textIto, Yoshinori. "Radiation Therapy." In Esophageal Squamous Cell Carcinoma, 227–49. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54977-2_13.
Full textBush, R. S. "Radiation Therapy." In Ovarian Cancer, 74–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69695-4_7.
Full textBarrett, A., and S. S. Donaldson. "Radiation Therapy." In Cancer in Children, 42–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84722-6_5.
Full textRobbins, Jared R., John Maclou Longo, and Michael Straza. "Radiation Therapy." In Cancer Regional Therapy, 461–79. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28891-4_37.
Full textBahr, Benjamin, Boris Lemmer, and Rina Piccolo. "Radiation Therapy." In Quirky Quarks, 264–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49509-4_64.
Full textBryant, Curtis, and William M. Mendenhall. "Radiation Therapy." In Juvenile Angiofibroma, 225–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45343-9_18.
Full textGoltra, Peter S. "Radiation Therapy." In Medcin, 690. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-2286-6_85.
Full textBambace, Santa, Giuseppe Bove, Stefania Carbone, Samantha Cornacchia, Angelo Errico, Maria Cristina Frassanito, Giovanna Lovino, Anna Maria Grazia Pastore, and Girolamo Spagnoletti. "Radiation Therapy." In Imaging Gliomas After Treatment, 23–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31210-7_3.
Full textConference papers on the topic "Radiation therapy"
Laissue, Jean A., Nadia Lyubimova, Hans-Peter Wagner, David W. Archer, Daniel N. Slatkin, Marco Di Michiel, Christian Nemoz, et al. "Microbeam radiation therapy." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by H. Bradford Barber and Hans Roehrig. SPIE, 1999. http://dx.doi.org/10.1117/12.368185.
Full textMason, Suzie, Yiannis Roussakis, Rongxiao Zhang, Geoff Heyes, Gareth Webster, Stuart Green, Brian Pogue, and Hamid Dehghani. "Cherenkov Radiation Portal Imaging during Photon Radiotherapy." In Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jm3a.41.
Full text"MODELING INTERNAL RADIATION THERAPY." In International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2011. http://dx.doi.org/10.5220/0003172202280233.
Full textChirkova, I. N., M. N. Petkevich, and T. S. Chikova. "MATRIX IONIZING RADIATION DETECTORS USED IN RADIATION THERAPY." In SAKHAROV READINGS 2022: ENVIRONMENTAL PROBLEMS OF THE XXI CENTURY. International Sakharov Environmental Institute of Belarusian State University, 2022. http://dx.doi.org/10.46646/sakh-2022-2-230-233.
Full textGarcia, J. F., K. Kaushal, and K. Melamed. "Hyperacute Radiation Recall Pneumonitis Induced by Radiation Therapy." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5709.
Full textParzyan, G. R., and A. V. Geinits. "Treatment of acute pancreatitis with mexidol and low-intensity laser radiation." In Low-Level Laser Therapy, edited by Tatiana I. Solovieva. SPIE, 2001. http://dx.doi.org/10.1117/12.425521.
Full textSuárez, Martín. "Conformal Radiation Therapy, Treatment Planning." In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2002. http://dx.doi.org/10.1063/1.1512036.
Full textZhou, Jie, Chaohui Zhang, Dong Zhou, and Hui Zhang. "Multileaf collimator for radiation therapy." In International Conference on Medical Engineering and Bioinformatics. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/meb140521.
Full textSuárez, Martín, Luis Manuel Montaño Zentina, and Gerardo Herrera Corral. "Conformai Radiation Therapy, Treatment Planning." In MEDICAL PHYSICS: Sixth Mexican Symposium on Medical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3682844.
Full textMaleki, T., and B. Ziaie. "Microsystems technology in radiation therapy." In 2010 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2010). IEEE, 2010. http://dx.doi.org/10.1109/iembs.2010.5626340.
Full textReports on the topic "Radiation therapy"
Garsa, Adam, Julie K. Jang, Sangita Baxi, Christine Chen, Olamigoke Akinniranye, Owen Hall, Jody Larkin, Aneesa Motala, Sydne Newberry, and Susanne Hempel. Radiation Therapy for Brain Metasases. Agency for Healthcare Research and Quality (AHRQ), June 2021. http://dx.doi.org/10.23970/ahrqepccer242.
Full textMacdonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612050.
Full textHalligan, John, Stephanie Ninneman, and Michael Brown. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada539130.
Full textMacDonald, Dusten, and Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada567268.
Full textMacdonald, Dusten, and Stephanie Ninneman. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2013. http://dx.doi.org/10.21236/ada590464.
Full textMacDonald, Dusten. Targeted Radiation Therapy for Cancer Initiative. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada554234.
Full textSkelly, Andrea C., Eric Chang, Jessica Bordley, Erika D. Brodt, Shelley Selph, Rongwei Fu, Rebecca Holmes, et al. Radiation Therapy for Metastatic Bone Disease: Effectiveness and Harms. Agency for Healthcare Research and Quality (AHRQ), August 2023. http://dx.doi.org/10.23970/ahrqepccer265.
Full textIpe, Nisy E. Neutron Measurements for Intensity Modulated Radiation Therapy. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/763769.
Full textO'Brien, Robert. Radiation Therapy and Dosing Material Transport Methodology. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1755852.
Full textSkliar, Mikhail. Oxygenation-Enhanced Radiation Therapy of Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada558802.
Full text