Academic literature on the topic 'Radiation dose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Radiation dose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Radiation dose"

1

Hansen, Joyce M., Niki Fidopiastis, Trabue Bryans, Michelle Luebke, and Terri Rymer. "Radiation Sterilization: Dose Is Dose." Biomedical Instrumentation & Technology 54, s1 (June 1, 2020): 45–52. http://dx.doi.org/10.2345/0899-8205-54.s3.45.

Full text
Abstract:
Abstract In the radiation sterilization arena, the question often arises as to whether radiation resistance of microorganisms might be affected by the energy level of the radiation source and the rate of the dose delivered (kGy/time). The basis for the question is if the microbial lethality is affected by the radiation energy level and/or the rate the dose is delivered, then the ability to transfer dose among different radiation sources could be challenged. This study addressed that question by performing a microbial inactivation study using two radiation sources (gamma and electron beam [E-beam]), two microbial challenges (natural product bioburden and biological indicators), and four dose rates delivered by three energy levels (1.17 MeV [gamma], 1.33 MeV [gamma], and 10 MeV [high-energy E-beam]). Based on analysis of the data, no significant differences were seen in the rate of microbial lethality across the range of radiation energies evaluated. In summary, as long as proof exists that the specified dose is delivered, dose is dose.
APA, Harvard, Vancouver, ISO, and other styles
2

Benova, K., P. Dvorak, D. Mate, M. Spalkova, J. Dolezalova, and L. Kovarik. "Does the 1 Gy dose of gamma radiation impact the pork quality?" Veterinární Medicína 66, No. 4 (April 2, 2021): 140–45. http://dx.doi.org/10.17221/149/2020-vetmed.

Full text
Abstract:
A nuclear accident (e.g., Fukushima), and, in particular, the transport of animals within a radiation-affected area can lead to a whole-body, or partial external irradiation, followed by oxidative stress, which could result in subsequent meat quality changes. In this experiment, live pigs were exposed to half-body irradiation by an external dose of 1.0 Gy. The caudal half of the animal’s body was irradiated. After their slaughter, samples from the muscle tissue of musculus semimembranosus and musculus longissimus lumborum et thoracis at the upper margin of musculus gluteus medius (irradiated body half) and at the 3<sup>rd</sup>–4<sup>th</sup> thoracic vertebra (non-irradiated half) were collected to determine the meat quality parameters. A significant difference (P &lt; 0.05) was observed only in the meat colour parameter (a*) in the irradiated group of pigs. If there is no internal contamination, and the half-body exposure to the external radiation dose does not exceed 1 Gy, pigs from an irradiation-affected area may be used for human consumption.
APA, Harvard, Vancouver, ISO, and other styles
3

Haaga, John R. "Radiation Dose Management." American Journal of Roentgenology 177, no. 2 (August 2001): 289–91. http://dx.doi.org/10.2214/ajr.177.2.1770289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

von Hippel, Frank. "Lethal Radiation Dose." Science 230, no. 4729 (November 29, 1985): 992. http://dx.doi.org/10.1126/science.230.4729.992.c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dickson, D. "Radiation dose limits." Science 238, no. 4832 (December 4, 1987): 1349. http://dx.doi.org/10.1126/science.3685984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldman, M. "Chernobyl radiation dose." Science 237, no. 4815 (August 7, 1987): 575. http://dx.doi.org/10.1126/science.3603040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O’Doherty, Jim, and Pauline Negre. "Radiation dose monitoring." Nuclear Medicine Communications 40, no. 12 (December 2019): 1193–94. http://dx.doi.org/10.1097/mnm.0000000000001094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parmegiani, Lodovico, Graciela Estela Cognigni, and Marco Filicori. "Ultraviolet radiation dose." Reproductive BioMedicine Online 22, no. 5 (May 2011): 503. http://dx.doi.org/10.1016/j.rbmo.2010.12.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

HIPPEL, F. V. "Lethal Radiation Dose." Science 230, no. 4729 (November 29, 1985): 992. http://dx.doi.org/10.1126/science.230.4729.992-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lloyd, Ray D., Glenn N. Taylor, and Scott C. Miller. "DOES LOW DOSE INTERNAL RADIATION INCREASE LIFESPAN?" Health Physics 86, no. 6 (June 2004): 629–32. http://dx.doi.org/10.1097/00004032-200406000-00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Radiation dose"

1

ACOSTA, PEREZ CLARICE de F. "Contribuição ao calculo do valor alfa no estudo de otimização da radioproteção." reponame:Repositório Institucional do IPEN, 2007. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11560.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:53:16Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T13:58:40Z (GMT). No. of bitstreams: 0
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
2

Brucoli, Matteo. "Total ionizing dose monitoring for mixed field environments." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS093/document.

Full text
Abstract:
La mesure de la dose ionisante est aujourd'hui une tâche cruciale pour une large gamme d'applications fonctionnant dans des environnements de rayonnement sévères. Dans le contexte de l'amélioration de la luminosité du grand collisionneur de hadrons (LHC), la mesure des niveaux de rayonnement le long du complexe d'accélérateurs du CERN va devenir encore plus difficile. A cet effet, une connaissance plus détaillée du champ de rayonnement dans le tunnel de l'accélérateur et ses zones adjacentes devient nécessaire pour définir les exigences d'installation, de déplacement ou de blindage de l'électronique sensible au rayonnement. Dans l’objectif d’améliorer la mesure de la dose absorbée par les systèmes exposés au champ de rayonnement mixte généré par l’accélérateur, des investigations sur des nouveaux dosimètres ont été menées.Dans le cadre de cette recherche, deux dispositifs ont été étudiés et caractérisés pour être utilisés comme dosimètres et éventuellement pour compléter l'utilisation du dosimètre au silicium actuellement utilisé au CERN, à savoir le RADFET (RADiation-sensitive Field Effect Transistor) : un NMOS commercial et un ASIC (Application-specific Integrated Circuit) nommé FGDOS. Les dispositifs ont été sélectionnés selon deux approches opposées : d'une part, la réduction des coûts permettrait d'augmenter la densité des capteurs déployés. En conséquence directe, une carte des doses plus détaillée serait obtenue pour les grands systèmes distribués comme le LHC. D'autre part, la dosimétrie peut être améliorée en déployant des détecteurs plus sensibles, ce qui permettrait de mesurer la dose lorsque les niveaux sont trop faibles pour le RADFET. De plus, des capteurs à plus haute résolution permettraient de caractériser le champ de rayonnement dans un temps plus court, c'est-à-dire avec une luminosité intégrée plus faible.La première approche a été réalisée en recherchant des solutions alternatives basées sur des dispositifs COTS (Commercial Off-The-Shelf), qui réduiraient considérablement les coûts et garantiraient une disponibilité illimitée sur le marché. À cette fin, des recherches ont été menées sur un transistor NMOS discret commercial, qui s'est révélé très sensible au rayonnement.La nécessité d'améliorer la résolution de la mesure de dose a conduit à étudier le FGDOS, un dosimètre en silicium innovant à très haute sensibilité qui permet de détecter des doses extrêmement faibles.La calibration du transistor NMOS et du FGDOS a été effectuées en exposant les dosimètres à des rayons gamma. Leur réponse au rayonnement a été caractérisée en termes de linéarité, de variabilité d'un lot à l'autre et d'effet du débit de dose. L'influence de la température a été étudiée et une méthode pour compenser l'effet de la température a été développée et mise en œuvre.Le FGDOS étant un système sur puce (SoC) avec plusieurs caractéristiques qui font du dosimètre un système extrêmement flexible, la caractérisation de ses différents modes de fonctionnement (actif, passif et autonome) a été effectuée. Suite à la première caractérisation, des questions se sont posées concernant les mécanismes de dégradation de la sensibilité affectant le dosimètre. Pour étudier ce phénomène, des campagnes d’irradiations ont été effectuées avec une puce d'essai incorporant seulement le circuit sensible au rayonnement du FGDOS. L'analyse des expériences a permis de comprendre les processus responsables de la dégradation de la sensibilité, en séparant la contribution du transistor de lecture de celle du condensateur à grille flottante. Les résultats de cette étude nous ont amenés à envisager de nouvelles solutions de conception et des méthodes de compensation.L’aptitude du transistor NMOS et du FGDOS à mesurer la dose ionisante dans les champs de rayonnement mixtes produits par le complexe d’accélérateurs du CERN a été vérifiée à l’aide de test radiatifs accélérés effectués dans le centre de tests en champs mixte à haute énergie du CERN (CHARM)
The Total Ionizing Dose (TID) monitoring is nowadays a crucial task for a wide range of applications running in harsh radiation environments. In view of the High-Luminosity upgrade for the Large Hadron Collider, the monitoring of radiation levels along the CERN’s accelerator complex will become even more challenging. To this extent, a more detailed knowledge of the radiation field in the accelerator tunnel and its adjacent areas becomes necessary to design installation, relocation or shielding requirements of electronics sensitive to radiation. Aiming to improve the monitoring of the TID delivered by the mixed radiation field generated within the accelerator system, investigations on new suitable dosimeters have been carried out.With this research, two devices have been studied and characterized to be employed as dosimeter and possibly to complete the use of the silicon sensor currently employed at CERN for TID monitoring, i.e. the RADiation-sensitive Field Effect Transistor (RADFET): a commercial NMOS, and an ASIC (Application-Specific Integrated Circuit) named FGDOS. The devices have been selected following two opposite approaches: on the one hand, reducing the costs would allow the density of the deployed sensors to increase. As a direct consequence, a more detailed dose map would be obtained for large distributed systems like the LHC. On the other hand, the radiation monitoring can be further improved by deploying more sensitive detectors, which would allow to measure the dose where the levels are too low for the RADFET. Moreover, sensors with higher resolution would permit the characterization of the radiation field in a shorter time, which means within a lower integrated luminosity.The first approach has been accomplished by searching for alternative solutions based on COTS (Commercial Off-The-Shelf) devices, which would significantly reduce the costs and guarantee unlimited availability on the market. For this aim, investigations on a commercial discrete NMOS transistor, which was found to be very sensitive to the radiation, has been carried out.The need for improving the resolution of TID monitoring led to investigate the FGDOS, which is an innovative silicon dosimeter with a very high sensitivity that permits to detect extremely low doses.The calibration of the NMOS and the FGDOS have been performed by exposing the dosimeters to γ-ray. Their radiation response has been characterized in terms of linearity, batch-to-batch variability, and dose rate effect. The influence of the temperature has been studied and a method to compensate the temperature effect has been developed and implemented.Being the FGDOS is a System-On-Chip with several features that make the dosimeter an extremely flexible system, the characterization of its operational modes (Active, Passive and Autonomous) have been performed. Following the first characterization, some questions arose concerning the sensitivity degradation mechanisms affecting the dosimeter. To investigate this phenomenon, radiation experiments were performed with a test chip embedding only the radiation sensitive circuit of the FGDOS. The analysis of the experiments allowed the understating of the processes responsible for the sensitivity degradation, by separating the contribution of the reading transistor and the floating gate capacitor. The results of this investigation led us to considerer new design solution and compensation methods.The suitability of the NMOS and the FGDOS for TID measurement in the mixed radiation field produced by the CERN’s accelerator complex has been verified by performing accelerated radiation tests at the Cern High energy AcceleRator Mixed field facility (CHARM). The consistency of both sensors with the RADFET measurement has been demonstrated. The high sensitivity of the FGDOS leads to a significant improvement in terms of TID measurement in mixed radiation fields with respect to the RadFET, especially for low radiation intensities
APA, Harvard, Vancouver, ISO, and other styles
3

Chapple, Claire Louise. "The optimisation of radiation dose in paediatric radiology." Thesis, University of Newcastle Upon Tyne, 1998. http://hdl.handle.net/10443/497.

Full text
Abstract:
The importance of monitoring, and where possible reducing, the level of radiation dose from diagnostic X-ray examinations has been recognised for many years and is becoming of increasing concern. Dose reduction is of particular concern in paediatric radiology, and there are specific problems associated with the monitoring and comparison of radiation doses to children. Any optimisation study relies on a framework of good dosimetry. Two techniques have been developed to improve the collection of patient dose data: the automation of survey techniques to increase the quantity of data collected; and a method of correcting for patient size which reduces one source of variability in the data. An optimisation strategy has been developed, consisting of theoretical simulations, experimental verification and clinical implementation. Monte Carlo techniques were used for the theoretical study, which investigated the effect of beam filtration on radiation dose and image quality for a wide range of parameters, specifically for a neonatal size phantom. Simulations included both radiography of bone in soft tissue and fluoroscopy of iodine and barium based contrast media. The results were assessed in terms of the beam spectra and the absorption and transmission characteristics of the phantom and image receptor. Experimental measurements of dose and contrast were made for a simple slab phantom corresponding to that simulated, and results showed good agreement with those predicted. A further set of experimental measurements were carried out using anthropomorphic phantoms in a clinical setting, which demonstrated how the theoretical predictions translated to clinical practice. A clinical trial of the use of a 0.1mm copper filter for fluoroscopic examinations of infants was performed, and the filter shown to give substantial dose reduction with no significant loss in image quality. Some general recommendations on dose quantities and the application of optimisation strategies to paediatric radiology have been made.
APA, Harvard, Vancouver, ISO, and other styles
4

Poon, Emily Sau Chee. "Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86632.

Full text
Abstract:
In high-dose-rate iridium-192 brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive iridium source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution.
In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities.
We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the iridium source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%.
Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing. The scatter dose is again adjusted using our scatter correction technique. The algorithm was tested using phantoms and actual patient plans for head-and-neck, esophagus, and MammoSite breast brachytherapy. Although the method fails to correct for the changes in lateral scatter introduced by inhomogeneities, it is a major improvement over TG-43 and is sufficiently fast for clinical use.
En curiethérapies à haut débit de dose, la dose aux patients est évaluée selon le protocole AAPM Task-Group 43 (TG43), qui utilise des paramètres dosimétriques obtenues avec une source dans l'eau. Cependant, le patient, l'applicateur et le contraste ont des propriétés radiologiques différentes de l'eau; ces inhomogénéités sont donc négligées dans TG43.
Dans ce travail, nous utilisons le programme Monte Carlo (MC) GEANT4 pour évaluer les propriétés dosimétriques d'un applicateur rectal muni d'un blindage radio-protecteur et d'un ballon intra-cavitaire. Ces résultats sont confirmés par des mesures d'une chambre d'ionisation et des films GAFCHROMIC EBT. Une étude des calculs de dose a été faite avec le programme PTRAN_CT avec l'aide des images scanner de 40 patients de cancer rectal. Ceci a conduit au développement de BrachyGUI, un programme de planification de curiethérapie, capable de traiter les données DICOM-RT des patients et générer les paramètres d'entrée pour PTRAN_CT. BrachyGUI dispose d'outils de calcul, d'extraction et d'analyse de dose.
Nous proposons une nouvelle méthode de calcul qui tient compte des effets de diffusion au voisinage des interfaces tissus-air. Cette méthode calcule séparément la dose due aux photons primaires et diffusés, ensuite la composante diffusée est ajustée par un paramètre extrait des calculs MC incluant les contours du patient, la source et sa position. Nos résultats s'accordent avec une incertitude inferieure à 1% avec les calculs de dose à la surface et dans la cible effectués avec PTRAN_CT pour 18 patients en curiethérapie du sein.
Enfin, nous avons conçu une méthode analytique de calcul de dose qui incorpore l'atténuation et la diffusion des photons, et qui est basée sur les chemins radiologiques déterminées par traçage des trajectoires. Cet algorithme est validé par l'utilisation de fantômes, des données de patients traités pour divers cancers (oesophage, tête et cou), et par la curiethérapie MammoSite du sein. Bien que cette méthode ne reproduise pas bien les diffusions latérales induites par les inhomogénéités, elle représente une amélioration majeure par-rapport-à TG43 et est rapide pour une implémentation clinique.
APA, Harvard, Vancouver, ISO, and other styles
5

Tozer-Loft, Stephen M. "Dose volume analysis in brachytherapy and stereotactic radiosurgery." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Swart, Gillian. "Measurement of absorbed dose for paediatric patients for the purpose of developing dose guidelines in paediatric radiology." Thesis, Peninsula Technikon, 2004. http://hdl.handle.net/20.500.11838/1546.

Full text
Abstract:
Thesis (MTech (Radiography))--Peninsula Technikon, 2004
The radiation risks associated with children are higher than the risk for adults. Children have growing organs and they have a longer life expectancy than that of adults. As a consequence the effects of damage from radiation could be greater than in adults. Children who receive radiation damage may pass genetic damage onto future generations. This study was carried out to investigate the optimal effective x-ray dose young children need to receive who have radiographic examination to the chest at Tygerberg Hospital, South Africa. Chest radiographs are documented as being the most common radiographic examination done on children. The age groups of children participating in this study were 0-1 year, 1-5 years and 5-10 years. A total of 67 children were involved and the absorbed doses for 134 views of the anterior-posteria (AP) chest and lateral chest were measured. Entrance surface dose (ESD) values were determined, and measured mean ESD (mGy) and the ESD range was reported for each age group. This was done by attaching thermolurninescent dosirneters (TLD pellets) to the patients skin at the entrance point of the x-ray beam. The results were compared to similar studies done in Ireland and Nigeria From the ESD values obtained the absorbed doses ofthe eyes, heart, liver, thyroid and genitals could be calculated by using the "Childdose" programme ofthe NRPB. The ESD dose levels for South Africa compare favourably with Ireland. However the Nigerian values differed greatly from those of Ireland and South Africa It was very encouraging to note the comparative results achieved at Tygerberg Hospital especially due to the fact that this was the first time such study had been conducted in the Tygerberg Hospital Radiology Department. The results also compare favourable with that achieved by a group working in the United Kingdom. This group does similar surveys every five years as part of their radiation protection programme. The results were also in line with the UNSCEAR document of2000. v This study could serve as a valuable source of reference to radiographers and radiologists when performing paediatric radiology especially as the radiation absorbed dose could be used as a baseline to create awareness of size of dose received, and to limit deleterious radiation doses to patients and to prevent unnecessary exposures. A second significant outcome of the study was the effect that added filters had on the x-ray beam generated. Experiments were done in which the filtration filters were added sequentially. It was found that if the filtration was increased to 2mmAl the dose to the patient decreased by more than 20%. At 50 and 60 kV the density of the x-ray image on film only increased by 2%. From these results it may be concluded that an increase in filtration thickness used for paediatric chest x-rays should be giVIng reduced dose readings and assisting with radiation protection ofthe patient.
APA, Harvard, Vancouver, ISO, and other styles
7

Shah, Nihal. "The investigation of low dose radiation hypersensitivity." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.405748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wong, Tony Po Yin, and tony wong@swedish org. "Improving Treatment Dose Accuracy in Radiation Therapy." RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080104.144139.

Full text
Abstract:
The thesis aims to improve treatment dose accuracy in brachytherapy using a high dose rate (HDR) Ir-192 stepping source and in external beam therapy using intensity modulated radiation therapy (IMRT). For HDR brachytherapy, this has been achieved by investigating dose errors in the near field and the transit dose of the HDR brachytherapy stepping source. For IMRT, this study investigates the volume effect of detectors in the dosimetry of small fields, and the clinical implementation and dosimetric verification of a 6MV photon beam for IMRT. For the study of dose errors in the near field of an HDR brachytherapy stepping source, the dose rate at point P at 0.25 cm in water from the transverse bisector of a straight catheter was calculated with Monte Carlo code MCNP 4.A. The Monte Carlo (MC) results were used to compare with the results calculated with the Nucletron Brachytherapy Planning System (BPS) formalism. Using the MC calculated radial dose function and anisotropy function with the BPS formalism, 1% dose calculation accuracy can be achieved even in the near field with negligible extra demand on computation time. A video method was used to analyse the entrance, exit and the inter-dwell transit speed of the HDR stepping source for different path lengths and step sizes ranging from 2.5 mm to 995 mm. The transit speeds were found to be ranging from 54 to 467 mm/s. The results also show that the manufacturer has attempted to compensate for the effects of inter-dwell transit dose by reducing the actual dwell time of the source. A well-type chamber was used to determine the transit doses. Most of the measured dose differences between stationary and stationary plus inter-dwell source movement were within 2%. The small-field dosimetry study investigates the effect of detector size in the dosimetry of small fields and steep dose gradients with a particular emphasis on IMRT measurements. Due to the finite size of the detector, local discrepancies of more than 10 % are found between calculated cross profiles of intensity modulated beams and intensity modulated profiles measured with film. A method to correct for the spatial response of finite sized detectors and to obtain the
APA, Harvard, Vancouver, ISO, and other styles
9

McFadden, Sonyia Lorraine. "Radiation dose optimisation in paediatric interventional cardiology." Thesis, University of Ulster, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tootell, A. K. "Radiation dose assessment : measurement, estimation and interpretation." Thesis, University of Salford, 2018. http://usir.salford.ac.uk/48041/.

Full text
Abstract:
New technologies or methods of image acquisition are driven by the need for increased anatomical information to improve diagnostic accuracy or surgical planning. These new technologies are often accompanied with additional radiation dose yet this can be justified through the consideration of the benefit it brings. Examples include the use of CT colonography instead of double contrast barium enemas, CT urography replacing intravenous urography and, in nuclear medicine imaging the increased use of CT imaging as part of single photon emission tomography and positron emission tomography to correct emission data or localise or characterise identified lesions. Manufacturers are quick to promote their systems as “low-dose” but little independent evaluation of this claim existed. In the context of nuclear medicine, the additional imaging raised questions as to the use of the attenuation correction data specifically. The question of should the cross sectional images be reviewed for pathology was has been the focus of debate. It was recognised that the quality of these images is poor due to the “low-dose” acquisition. The research presented in this thesis and portfolio of published work aimed to establish an accurate method of assessing the radiation dose, initially from the CT attenuation correction acquisition, but later in other imaging modalities. In this thesis eight papers are used to illustrate the methods developed in this work, and how they were applied to other fields of medical imaging. Six of these papers were completed as the first author and the remainder as co-author. Initially, the concepts of radiation dose were critically evaluated. Following identification of sub-optimal techniques, steps were taken to improve the accuracy of dose measurement using thermoluminescent dosimeters, digital dosimeters and simulation through software. These techniques have been analysed critically and where appropriate improvements are recommended. Radiation dose, in particular the associated risk, is a challenging concept to convey to patients and care givers and simply providing a figure of dose does not convey the required information needed to allow consent to be given. Methods by which radiation dose and risk can be interpreted is critiqued with reference to published literature. The thesis concludes with a description of the intellectual contribution illustrating the role played as first author and as a co-author in the works included in the portfolio and a review of impact considering citation metrics and downloads. It was also decided to include citations from within the Diagnostic Imaging Research Programme and PhD theses from The University of Salford to demonstrate how research activities within the portfolio of published works have influenced other methodologies and outputs.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Radiation dose"

1

National Council on Radiation Protection and Measurements., ed. When is a dose not a dose? Bethesda, MD: National Council on Radiation Protection and Measurements, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tack, Denis, Mannudeep K. Kalra, and Pierre Alain Gevenois, eds. Radiation Dose from Multidetector CT. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24535-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agency, International Atomic Energy, ed. High-dose dosimetry: Proceedings of an International Symposium on High-Dose Dosimetry. Vienna: International Atomic Energy Agency, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

National Council on Radiation Protection and Measurements. Uncertainties in internal radiation: Dose assessment. Bethesda, Md: National Council on Radiation Protection and Measurements, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

National Research Council (U.S.). Committee on an Assessment of CDC Radiation Studies., ed. Radiation dose reconstruction for epidemiologic uses. Washington, DC: National Academy Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

National Council on Radiation Protection and Measurements. Radiation dose reconstruction: Principles and practices. Bethesda, Md: National Council on Radiation Protection and Measurements, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tubiana, Maurice, André Aurengo, and Dietrich Averbeck. La relation dose-effet et l'estimation des effets cancérogènes des faibles doses de rayonnements ionisants. Paris: Éditions Nucléon, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Determination of dose equivalents resulting from external radiation sources. Bethesda, Md., U.S.A: The Commission, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

E, Nelson Charles, and Noell K. Thomas, eds. Treatment planning & dose calculation in radiation oncology. 4th ed. New York: Pergamon Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

E, Nelson Charles, and Noell K. Thomas, eds. Treatment planning & dose calculation in radiation oncology. 4th ed. New York: McGraw-Hill, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Radiation dose"

1

Horneck, Gerda. "Radiation Dose." In Encyclopedia of Astrobiology, 1406. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horneck, Gerda. "Radiation Dose." In Encyclopedia of Astrobiology, 2115–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carrascosa, Patricia, Carlos Capuñay, Carlos E. Sueldo, and Juan Mariano Baronio. "Radiation Dose." In CT Virtual Hysterosalpingography, 275–84. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07560-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Horneck, Gerda. "Radiation Dose." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1333-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Domenech, Haydee. "Dose Assessment." In Radiation Safety, 77–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42671-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adamiec, Grzegorz. "Radiation Dose Rate." In Encyclopedia of Scientific Dating Methods, 1–4. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6326-5_32-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Horneck, Gerda. "UV Radiation Dose." In Encyclopedia of Astrobiology, 1726. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Adamiec, Grzegorz. "Radiation Dose Rate." In Encyclopedia of Scientific Dating Methods, 658–60. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6304-3_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Horneck, Gerda. "UV Radiation Dose." In Encyclopedia of Astrobiology, 2577. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Elias, Jorge, and Richard C. Semelka. "Radiation Dose Reduction." In Health Care Reform in Radiology, 22–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118642276.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Radiation dose"

1

Loefgren, Stefan, and Per G. Soederberg. "Ultraviolet radiation cataract: dose dependence." In Ultraviolet Radiation Hazards. SPIE, 1994. http://dx.doi.org/10.1117/12.180821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cardoso, R., J. P. Valdez-Chaparro, and E. Rosas. "UV radiation dose measurements." In Fifth Symposium, edited by Eric Rosas, Rocío Cardoso, Juan C. Bermudez, and Oracio Barbosa-García. SPIE, 2006. http://dx.doi.org/10.1117/12.674596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pease, Ronald, Gary Dunham, and John Seiler. "Total Dose and Dose Rate Response of Low Dropout Voltage Regulators." In 2006 IEEE Radiation Effects Data Workshop. IEEE, 2006. http://dx.doi.org/10.1109/redw.2006.295473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bogorad, Alexander L., Justin J. Likar, Stephen K. Moyer, Audrey J. Ditzler, Graham P. Doorley, and Roman Herschitz. "Total Ionizing Dose and Dose Rate Effects in Candidate Spacecraft Electronic Devices." In 2008 IEEE Radiation Effects Data Workshop. IEEE, 2008. http://dx.doi.org/10.1109/redw.2008.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Papastefanou, C., Anselmo Salles Paschoa, and Friedrich Steinhäusler. "RADIATION DOSE FROM CIGARETTE TOBACCO." In THE NATURAL RADIATION ENVIRONMENT: 8th International Symposium (NRE VIII). AIP, 2008. http://dx.doi.org/10.1063/1.2991245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ainsbury, Elizabeth, David Lloyd, Beverly Karplus Hartline, Renee K. Horton, and Catherine M. Kaicher. "Dose Estimation in Radiation Cytogenetics." In WOMEN IN PHYSICS: Third IUPAP International Conference on Women in Physics. AIP, 2009. http://dx.doi.org/10.1063/1.3137775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Zujun, Zhigang Xiao, Baoping He, Shaoyan Huang, Benqi Tang, and Minbo Liu. "Total Dose Radiation Effects on COTS Array CCDs at Low Dose Rate." In 2014 IEEE Radiation Effects Data Workshop (REDW). IEEE, 2014. http://dx.doi.org/10.1109/redw.2014.7004605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hirano, Masatsugu. "Relationship Between Radiation Dose And Resolution In Angiography." In SYNCHROTRON RADIATION INSTRUMENTATION: Eighth International Conference on Synchrotron Radiation Instrumentation. AIP, 2004. http://dx.doi.org/10.1063/1.1757973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prahardi, R., and Arundito Widikusumo. "Zero Dose." In Seminar Si-INTAN. Badan Pengawas Tenaga Nuklir, 2021. http://dx.doi.org/10.53862/ssi.v1.062021.008.

Full text
Abstract:
Ionizing radiation in the medical world has long been used, both for diagnostic and therapeutic purposes. But the use of ionizing radiation, besides helping a lot in diagnosis and therapy, ionizing radiation is also hazardous for us. The effects of ionizing radiation on humans are divided into two types, namely stochastic effects, and non-stochastic (deterministic) effects. Of the two kinds of effects caused by ionizing radiation, the stochastic effect needs special attention. Because the dose-limiting parameter does not exist, how much radiation dose can cause the stochastic effect. We only have the principle that no matter how small the radiation that hits us, it will still impact us. The mechanism for this effect is either a direct effect or an indirect effect, or a newly discovered effect, namely the bystander effect, all of which lead to DNA damage. This DNA damage will cause various kinds of health problems for us. Keywords: Stochastic Effect, DNA Damage. Gene Mutation, Bystander Effect
APA, Harvard, Vancouver, ISO, and other styles
10

Hansen, D. L., M. J. Robinson, and F. Lu. "Total-Dose Effects in InP Devices." In 2007 IEEE Radiation Effects Data Workshop. IEEE, 2007. http://dx.doi.org/10.1109/redw.2007.4342542.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Radiation dose"

1

Diwan, M. V., and N. V. Baggett. Radiation dose in SSC calorimeters. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10185515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stabin, M. G., J. B. Stubbs, and R. E. Toohey. Radiation dose estimates for radiopharmaceuticals. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/238511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cagnon, Christopher, John Boone, Jerrold Bushberg, John DeMarco, Daniel Low, Michael McNitt-Gray, Anthony Seibert, and Lynne Fairobent. Radiation Dose from Airport Scanners. AAPM, June 2013. http://dx.doi.org/10.37206/145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Furr, J. M., J. J. Mayberry, and D. A. Waite. Agriculture-related radiation dose calculations. Office of Scientific and Technical Information (OSTI), October 1987. http://dx.doi.org/10.2172/5816146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ulmen, Benjamin, Kendall Depriest, Aaron Olson, Timothy Webb, and Jarrod Edwards. Saturn Radiation Dose Environment Characterization. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Levy, R. P. Oligodendroglial response to ionizing radiation: Dose and dose-rate response. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5482509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Levy, Richard P. Oligodendroglial response to ionizing radiation: Dose and dose-rate response. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10132524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gould, Michael N. Epigenomic Adaptation to Low Dose Radiation. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1187966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weil, Michael, and Robert Ullrich. Radiation Leukemogenesis at Low Dose Rates. Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1093865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jirtle, Randy. Epigenomic Adaptation to Low Dose Radiation. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1149995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography