Dissertations / Theses on the topic 'Radial basis function networks (RBFNs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Radial basis function networks (RBFNs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tran-Canh, Dung. "Simulating the flow of some non-Newtonian fluids with neural-like networks and stochastic processes." University of Southern Queensland, Faculty of Engineering and Surveying, 2004. http://eprints.usq.edu.au/archive/00001518/.
Full textSze, Tiam Lin. "System identification using radial basis function networks." Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364232.
Full textZhao, Yan. "Cervical cell classification with radial basis function networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ27559.pdf.
Full textHowell, Andrew Jonathan. "Automatic face recognition using radial basis function networks." Thesis, University of Sussex, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241635.
Full textShahsavand, Akbar. "Optimal and adaptive radial basis function neural networks." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/844452/.
Full textFreeman, Jason Alexis Sebastian. "Learning and generalization in radial basis function networks." Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/32226.
Full textLangdell, Stephen James. "Radial basis function networks for modelling real world data." Thesis, University of Huddersfield, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285590.
Full textTriastuti, Sugiyarto Endang. "Analysing rounding data using radial basis function neural networks model." Thesis, University of Northampton, 2007. http://nectar.northampton.ac.uk/2809/.
Full textMayes, David J. "Implementing radial basis function neural networks in pulsed analogue VLSI." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/15299.
Full textMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems." Digital WPI, 2003. https://digitalcommons.wpi.edu/etd-theses/77.
Full textMurphy, Ethan Kane. "Radial-Basis-Function Neural Network Optimization of Microwave Systems." Link to electronic thesis, 2002. http://www.wpi.edu/Pubs/ETD/Available/etd-0113103-121206/.
Full textKeywords: optimization technique; microwave systems; optimization technique; neural networks; QuickWave 3D. Includes bibliographical references (p. 68-71).
Middleton, Neil. "Computational analyses of spatial information processing using radial basis function networks." Thesis, Brunel University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389984.
Full textMcGarry, Kenneth J. "Rule extraction and knowledge transfer from radial basis function neural networks." Thesis, University of Sunderland, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391744.
Full textSjödin, Hällstrand Andreas. "Bilinear Gaussian Radial Basis Function Networks for classification of repeated measurements." Thesis, Linköpings universitet, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170850.
Full textGiani, Alfredo. "Symmetric radial basis function networks and their application to video de-interlacing." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274076.
Full textAl-Hindi, Khalid A. "Flexible basis function neural networks for efficient analog implementations /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3074367.
Full textKamat, Sai Shyamsunder. "Analyzing Radial Basis Function Neural Networks for predicting anomalies in Intrusion Detection Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259187.
Full textI det 21: a århundradet är information den nya valutan. Med allnärvaro av enheter anslutna till internet har mänskligheten tillgång till information inom ett ögonblick. Det finns dock vissa grupper som använder metoder för att stjäla information för personlig vinst via internet. Ett intrångsdetekteringssystem (IDS) övervakar ett nätverk för misstänkta aktiviteter och varnar dess ägare om ett oönskat intrång skett. Kommersiella IDS reagerar efter detekteringen av ett intrångsförsök. Angreppen blir alltmer komplexa och det kan vara dyrt att vänta på att attackerna ska ske för att reagera senare. Det är avgörande för nätverksägare att använda IDS:er som på ett förebyggande sätt kan skilja på oskadlig dataanvändning från skadlig. Maskininlärning kan lösa detta problem. Den kan analysera all befintliga data om internettrafik, känna igen mönster och förutse användarnas beteende. Detta projekt syftar till att studera hur effektivt Radial Basis Function Neural Networks (RBFN) med Djupinlärnings arkitektur kan påverka intrångsdetektering. Från detta perspektiv ställs frågan hur väl en RBFN kan förutsäga skadliga intrångsförsök, särskilt i jämförelse med befintliga detektionsmetoder.Här är RBFN definierad som en flera-lagers neuralt nätverksmodell som använder en radiell grundfunktion för att omvandla data till linjärt separerbar. Efter en undersökning av modern litteratur och lokalisering av ett namngivet dataset användes kvantitativ forskningsmetodik med prestanda indikatorer för att utvärdera RBFN: s prestanda. En Random Forest Classifier algorithm användes också för jämförelse. Resultaten erhölls efter en serie finjusteringar av parametrar på modellerna. Resultaten visar att RBFN är korrekt när den förutsäger avvikande internetbeteende i genomsnitt 80% av tiden. Andra algoritmer i litteraturen beskrivs som mer än 90% korrekta. Den föreslagna RBFN-modellen är emellertid mycket exakt när man registrerar specifika typer av attacker som Port Scans och BotNet malware. Resultatet av projektet visar att den föreslagna metoden är allvarligt påverkad av begränsningar. T.ex. så behöver modellen finjusteras över flera försök för att uppnå önskad noggrannhet. En möjlig lösning är att begränsa denna modell till att endast förutsäga malware-attacker och använda andra maskininlärnings-algoritmer för andra attacker.
Choy, Kin-yee, and 蔡建怡. "On modelling using radial basis function networks with structure determined by support vector regression." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B29329619.
Full textCraddock, Rachel Joy. "Multi layered radial basis function networks and the application of state space control theory to feedforward neural networks." Thesis, University of Reading, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360753.
Full textVural, Hulya. "Comparison Of Rough Multi Layer Perceptron And Rough Radial Basis Function Networks Using Fuzzy Attributes." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605293/index.pdf.
Full textlow&rdquo
, &ldquo
medium&rdquo
and &ldquo
high&rdquo
. In the rough fuzzy MLP, initial weights and near optimal number of hidden nodes are estimated using rough dependency rules. A rough fuzzy RBF structure similar to the rough fuzzy MLP is proposed. The rough fuzzy RBF was inspected whether dependencies like the ones in rough fuzzy MLP can be concluded.
Shankar, Praveen. "Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1186767939.
Full textCharalabopoulos, Grigorios. "Radial basis function neural networks for channel equalization and co-channel interference cancellation in OFDM." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416116.
Full textLACERDA, Estefane George Macedo de. "Model Selection of RBF Networks Via Genetic Algorithms." Universidade Federal de Pernambuco, 2003. https://repositorio.ufpe.br/handle/123456789/1845.
Full textUm dos principais obstáculos para o uso em larga escala das Redes Neurais é a dificuldade de definir valores para seus parâmetros ajustáveis. Este trabalho discute como as Redes Neurais de Funções Base Radial (ou simplesmente Redes RBF) podem ter seus parâmetros ajustáveis definidos por algoritmos genéticos (AGs). Para atingir este objetivo, primeiramente é apresentado uma visão abrangente dos problemas envolvidos e as diferentes abordagens utilizadas para otimizar geneticamente as Redes RBF. É também proposto um algoritmo genético para Redes RBF com codificação genética não redundante baseada em métodos de clusterização. Em seguida, este trabalho aborda o problema de encontrar os parâmetros ajustáveis de um algoritmo de aprendizagem via AGs. Este problema é também conhecido como o problema de seleção de modelos. Algumas técnicas de seleção de modelos (e.g., validação cruzada e bootstrap) são usadas como funções objetivo do AG. O AG é modificado para adaptar-se a este problema por meio de heurísticas tais como narvalha de Occam e growing entre outras. Algumas modificações exploram características do AG, como por exemplo, a abilidade para resolver problemas de otimização multiobjetiva e manipular funções objetivo com ruído. Experimentos usando um problema benchmark são realizados e os resultados alcançados, usando o AG proposto, são comparados com aqueles alcançados por outras abordagens. As técnicas propostas são genéricas e podem também ser aplicadas a um largo conjunto de algoritmos de aprendizagem
Yee, Paul V. "Regularized radial basis function networks, theory and applications to probability estimation, classification, and time series prediction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ42774.pdf.
Full textFung, Chi Fung. "On-line dynamical system modelling using radial basis function networks in adaptive non-linear noise cancellation." Thesis, University of Sheffield, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389790.
Full textTetteh, John. "Enhanced target factor analysis and radial basis function neural networks for analytical spectroscopy and quantitative structure activity relationships." Thesis, University of Greenwich, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363872.
Full textBuchan, L. William. "Standard CMOS floating gate memories for non-volatile parameterisation of pulse-stream VLSI radial basis function neural networks." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/13213.
Full textLu, Weiying. "Development of Radial Basis Function Cascade Correlation Networks and Applications of Chemometric Techniques for Hyphenated Chromatography-Mass Spectrometry Analysis." Ohio University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1317231072.
Full textSahin, Ferat. "A Radial Basis Function Approach to a Color Image Classification Problem in a Real Time Industrial Application." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36847.
Full textMaster of Science
Lee, Hee Eun. "Hierarchical modeling of multi-scale dynamical systems using adaptive radial basis function neural networks: application to synthetic jet actuator wing." Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/230.
Full textAltran, Alessandra Bonato [UNESP]. "Sistema inteligente para previsão de carga multinodal em sistemas elétricos de potência." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/100304.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A previsão de carga, em sistemas de energia elétrica, constitui-se numa atividade de grande importância, tendo em vista que a maioria dos estudos realizados (fluxo de potência, despacho econômico, planejamento da expansão, compra e venda de energia, etc.) somente poderá ser efetivada se houver a disponibilidade de uma boa estimativa da carga a ser atendida. Deste modo, visando contribuir para que o planejamento e operação dos sistemas de energia elétrica ocorram de forma segura, confiável e econômica, foi desenvolvida uma metodologia para previsão de carga, a previsão multinodal, que pode ser entendida como um sistema inteligente que considera vários pontos da rede elétrica durante a realização da previsão. O sistema desenvolvido conta com o uso de uma rede neural artificial composta por vários módulos, sendo esta do tipo perceptron multicamadas, cujo treinamento é baseado no algoritmo retropropagação. Porém, foi realizada uma modificação na função de ativação da rede, em substituição à função usual, a função sigmoide, foram utilizadas as funções de base radial. Tal metodologia foi aplicada ao problema de previsão de cargas elétricas a curto-prazo (24 horas à frente)
Load forecasting in electric power systems is a very important activity due to several studies, e.g. power flow, economic dispatch, expansion planning, purchase and sale of energy that are extremely dependent on a good estimate of the load. Thus, contributing to a safe, reliable, economic and secure operation and planning this work is developed, which is an intelligent system for multinodal electric load forecasting considering several points of the network. The multinodal system is based on an artificial neural network composed of several modules. The neural network is a multilayer perceptron trained by backpropagation where the traditional sigmoide is substituted by radial basis functions. The methodology is applied to forecast loads 24 hours in advance
Altran, Alessandra Bonato. "Sistema inteligente para previsão de carga multinodal em sistemas elétricos de potência /." Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/100304.
Full textAbstract: Load forecasting in electric power systems is a very important activity due to several studies, e.g. power flow, economic dispatch, expansion planning, purchase and sale of energy that are extremely dependent on a good estimate of the load. Thus, contributing to a safe, reliable, economic and secure operation and planning this work is developed, which is an intelligent system for multinodal electric load forecasting considering several points of the network. The multinodal system is based on an artificial neural network composed of several modules. The neural network is a multilayer perceptron trained by backpropagation where the traditional sigmoide is substituted by radial basis functions. The methodology is applied to forecast loads 24 hours in advance
Orientador: Carlos Roberto. Minussi
Coorientador: Francisco Villarreal Alvarado
Banca: Anna Diva Plasencia Lotufo
Banca: Maria do Carmo Gomes da Silveira
Banca: Gelson da Cruz Junior
Banca: Edmárcio Antonio Belati
Doutor
Sajjad, Pasha Mohammad. "Machine vision for automating visual inspectionof wooden railway sleepers." Thesis, Högskolan Dalarna, Datateknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3120.
Full textAndrade, Gustavo Araújo de. "PROGRAMAÇÃO DINÂMICA HEURÍSTICA DUAL E REDES DE FUNÇÕES DE BASE RADIAL PARA SOLUÇÃO DA EQUAÇÃO DE HAMILTON-JACOBI-BELLMAN EM PROBLEMAS DE CONTROLE ÓTIMO." Universidade Federal do Maranhão, 2014. http://tedebc.ufma.br:8080/jspui/handle/tede/517.
Full textIn this work the main objective is to present the development of learning algorithms for online application for the solution of algebraic Hamilton-Jacobi-Bellman equation. The concepts covered are focused on developing the methodology for control systems, through techniques that aims to design online adaptive controllers to reject noise sensors, parametric variations and modeling errors. Concepts of neurodynamic programming and reinforcement learning are are discussed to design algorithms where the context of a given operating point causes the control system to adapt and thus present the performance according to specifications design. Are designed methods for online estimation of adaptive critic focusing efforts on techniques for gradient estimating of the environment value function.
Neste trabalho o principal objetivo é apresentar o desenvolvimento de algoritmos de aprendizagem para execução online para a solução da equação algébrica de Hamilton-Jacobi-Bellman. Os conceitos abordados se concentram no desenvolvimento da metodologia para sistemas de controle, por meio de técnicas que tem como objetivo o projeto online de controladores adaptativos são projetados para rejeitar ruídos de sensores, variações paramétricas e erros de modelagem. Conceitos de programação neurodinâmica e aprendizagem por reforço são abordados para desenvolver algoritmos onde a contextualização de determinado ponto de operação faz com que o sistema de controle se adapte e, dessa forma, apresente o desempenho de acordo com as especificações de projeto. Desenvolve-se métodos para a estimação online do crítico adaptativo concentrando os esforços em técnicas de estimação do gradiente da função valor do ambiente.
Tinós, Renato. "Detecção e diagnóstico de falhas em robôs manipuladores via redes neurais artificiais." Universidade de São Paulo, 1999. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-04022002-162950/.
Full textIn this work, a new approach for fault detection and diagnosis in robotic manipulators is presented. A faulty robot could cause serious damages and put in risk the people involved. Usually, researchers have proposed fault detection and diagnosis schemes based on the mathematical model of the system. However, modeling errors could obscure the fault effects and could be a false alarm source. In this work, two artificial neural networks are employed in a fault detection and diagnosis system to robotic manipulators. A multilayer perceptron trained with backpropagation algorithm is employed to reproduce the robotic manipulator dynamical behavior. The perceptron outputs are compared with the real measurements, generating the residual vector. A radial basis function network is utilized to classify the residual vector, generating the fault isolation. Four different algorithms have been employed to train this network. The first utilizes regularization to reduce the flexibility of the model. The second employs regularization too, but instead of only one penalty term, each radial unit has a individual penalty term. The third employs subset selection to choose the radial units from the training patterns. The forth algorithm employs the Kohonens self-organizing map to fix the radial unit center near to the cluster centers. Simulations employing a two link manipulator and a Puma 560 manipulator are presented, demonstrating that the system can detect and isolate correctly faults that occur in nontrained pattern sets.
Bandreddy, Neel Kamal. "Estimation of Unmeasured Radon Concentrations in Ohio Using Quantile Regression Forest." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418311498.
Full textGhosh, Dastidar Samanwoy. "Models of EEG data mining and classification in temporal lobe epilepsy: wavelet-chaos-neural network methodology and spiking neural networks." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1180459585.
Full textPohlídal, Antonín. "Inteligentní emailová schránka." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236458.
Full textLamraoui, Mourad. "Surveillance des centres d'usinage grande vitesse par approche cyclostationnaire et vitesse instantanée." Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-01001576.
Full textLuka, Mejić. "Методе аутоматске конфигурације софт сензора." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110926&source=NDLTD&language=en.
Full textMatematički modeli za estimaciju teško merljivih veličina nazivajuse soft senzorima. Proces formiranja soft senzora nije trivijalan ikvalitet estimacije teško merljive veličine direktno zavisi odnačina formiranja. Nedostaci postojećih algoritama za formiranjesprečavaju automatsku konfiguraciju soft senzora. U ovom radu surealizovani novi algoritmi koji imaju za svrhu automatizacijukonfiguracije soft senzora. Realizovani algoritmi rešavajuprobleme pronalaska optimalnog seta ulaza u soft senzor i kašnjenjasvakog od njih kao i odabira strukture i načina obuke soft senzorazasnovanih na veštačkim neuronskim mrežama sa radijalno baziranimfunkcijama.
Mathematical models that are used for estimation of variables that can not bemeasured in real time are called soft sensors. Creation of soft sensor is acomplex process and quality of estimation depends on the way soft sensor iscreated. Restricted applicability of existing algorithms is preventing automaticconfiguration of soft sensors. This paper presents new algorithms that areproviding automatic configuration of soft sensors. Presented algorithms arecapable of determing optimal subset of soft sensor inputs and their timedelays, as well as optimal architecture and automatic training of the softsensors that are based on artificial radial basis function networks.
Vijaya, Kumar M. "System Identification And Control Of Helicopter Using Neural Networks." Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1977.
Full textKumar, Rajan. "A Neural Network Approach To Rotorcraft Parameter Estimation." Thesis, 2007. http://hdl.handle.net/2005/549.
Full textTsai, Yen-lung, and 蔡炎龍. "Dynamical Radial Basis Function Networks and Chaotic Forecasting." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/02000011855628912218.
Full text國立政治大學
應用數學研究所
81
The forecasting technique is important for many researches and applications. In this paper, we shall construct a new model of neural networks -- the dynamical radial basis function (DRBF) networks and use the DRBF networks as "function approximators" to solve some forecasting problems. Different learning algorithms are used to test the capability of DRBF networks.
Liao, Shih-hui, and 廖時慧. "Study on Additive Generalized Radial Basis Function Networks." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/n89ckq.
Full text國立中山大學
電機工程學系研究所
97
In this thesis, we propose a new class of learning models, namely the additive generalized radial basis function networks (AGRBFNs), for general nonlinear regression problems. This class of learning machines combines the generalized radial basis function networks (GRBFNs) commonly used in general machine learning problems and the additive models (AMs) frequently encountered in semiparametric regression problems. In statistical regression theory, AM is a good compromise between the linear model and the nonparametric model. In order for more general network structure hoping to address more general data sets, the AMs are embedded in the output layer of the GRBFNs to form the AGRBFNs. Simple weights updating rules based on incremental gradient descent will be derived. Several illustrative examples are provided to compare the performances for the classical GRBFNs and the proposed AGRBFNs. Simulation results show that upon proper selection of the hidden nodes and the bandwidth of the kernel smoother used in additive output layer, AGRBFNs can give better fits than the classical GRBFNs. Furthermore, for the given learning problem, AGRBFNs usually need fewer hidden nodes than those of GRBFNs for the same level of accuracy.
Jeng, Chen Shuenn, and 陳舜政. "Hybrid Learning Alogrithm for Radial Basis Function Networks." Thesis, 1993. http://ndltd.ncl.edu.tw/handle/35796206072974480739.
Full text國立臺灣大學
化學工程研究所
81
This thesis studies the fundamental properties of Radial Basis Functions and the Radial Basis Function Networks. The application of RBFNs in both static function approximation and process model indentification is also discussed. A rigid definition for a set of RBFs and the basic structure of RBFNs are given at first. Then an effective training algorithm, the hybrid learning algorithm, is presented for the parametric estimation of the network. By including the target values in the input layer of a RBFN, one can obtain more reasonable distribution of centers in hidden nodes layer of the network. The width of each Radial Basis Function Unit is deter- imined by using the average angle from the corresponding center location to its nearest neighbors. The least square algorithm is used for determining values of linear connective weights by minimizing the discrepancy between outputs of the network to its targets. If resulting network obtained from the previous steps could not providing network outputs with required acurracy, optimization methods such as steepest descent can be furtherly used to give network parameters with required accurancy. Owing to on-line application of the network, a recursive method is also proposed for updating parameters of network when given additional training pattern. The results of simulated examples show that various RBFNs are good approximators for static functions as well as dynamic processes. Hence, the RBFNs seem to be a potential black-box model structure for identification of nonlinear chemical processes.
Mahale, Gopinath Vasanth. "Algorithm And Architecture Design for Real-time Face Recognition." Thesis, 2016. http://etd.iisc.ernet.in/handle/2005/2743.
Full textYu-Yen, Ou. "A Study on Machine Learning with Radial Basis Function Networks." 2005. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1107200519171000.
Full textHuang, Jun-zhi, and 黃俊智. "Iterative Radial Basis Function Networks Channel Estimators for OFDM Systems." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/80301801655832586829.
Full text雲林科技大學
電子與資訊工程研究所
96
Radio signal will be distorted by channel noise and multi-path propagation phenomena during transmission. Estimation of channel response that provides a powerful mean to possibly equalize the distorted signals is a significant technology in modern communication systems. In this thesis, the pilot-aided OFDM system that makes use of some subcarrier to transmit the pilot symbols is considered. Channel responses in data subcarriers can be estimated from the responses of the pilot subcarriers by taking advantages of interpolator methods such as linear interpolator, WMSA, decision-directed channel predictor, robust channel interpolator and RBFN, and compares their performances.
Ou, Yu-Yen, and 歐昱言. "A Study on Machine Learning with Radial Basis Function Networks." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/41151026801159328196.
Full text國立臺灣大學
資訊工程學研究所
93
This thesis reports a series of studies on machine learning with the radial basis function network (RBFN). The first part of this thesis discusses how to construct an RBFN efficiently with the regularization procedure. In fact, construction of an RBFN with the regularization procedure involves two main issues. The first issue concerns the number of hidden nodes to be incorporated and where the centers of the associated kernel functions should be located. The second issue concerns how the links between the hidden layer and the output layer should be weighted. For the first issue, this thesis discusses the effects with a random samples based approach and an incremental clustering based approach. For the second issue, this thesis elaborates the effects with the Cholesky decomposition employed. Experimental results show that an RBFN constructed with the approaches proposed in this thesis is able to deliver the same level of classification accuracy as the SVM and offers several important advantages. Finally, this thesis reports the experimental results with the QuickRBF package, which has been developed based on the approaches proposed in this thesis, applied to bioinformatics problems. The second study reported in this thesis concerns how the novel relaxed variable kernel density estimation (RVKDE) algorithm that our research team has recently proposed performs in data classification applications. The experimental results reveal that the classifier configured with the RVKDE algorithm is capable of delivering the same level of accuracy as the SVM, while enjoying some advantages in comparison with the SVM. In particular, the time complexity for construction of a classifier with the RVKDE algorithm is O(nlogn), where n is the number of samples in the training data set. This means that it is highly efficient to construct a classifier with the RVKDE algorithm, in comparison with the SVM algorithm. Furthermore, the RVKDE based classifier is able to carry out data classification with more than two classes of samples in one single run. In other words, it does not need to invoke mechanisms such as one-against-one or one-against-all for handling data sets with more than two classes of samples. The successful experiences with the RVKDE algorithm in data classification applications then motivate the study presented next in this thesis. In Section 4.3, a RVKDE based data reduction approach for expediting the model selection process of the SVM is described. Experimental results show that, in comparison with the existing approaches, the data reduction based approach proposed in this thesis is able to expedite the model selection process by a larger degree and cause a smaller degradation of prediction accuracy.
Wu, Mao-Cheng, and 吳茂正. "Evolutionary Radial Basis Function Networks for Nonlinear Time Series Prediction." Thesis, 1997. http://ndltd.ncl.edu.tw/handle/95550039979484340758.
Full text國立臺灣大學
資訊工程學系研究所
85
We propose a new technique, referred as Evolutionary Radial Basis Function Networks (ERBFN), for training Radial Basis Function networks as time series predictors in this thesis. Our method extracts the ideas from both stochastic and deterministic algorithms to evolve both the architectures and center loca- tions and to train the connection weights of Radial Basis Functionnetworks. This algorithm is applied to solve some benchmark nonlinear timeseries predic- tion problems. Comparisons between our method and other algorithmsfor training RBF net works, including K-MEANS clustering algorithm and GeneticAlgorithms, are made to prove its powerful effects in prediction tasks. Asseen in experi- mental results, it also outperforms other techniques based ondifferent network schemes, such as typical neural networks and Genetic Programming.