Journal articles on the topic 'RAD51C/XRCC3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 journal articles for your research on the topic 'RAD51C/XRCC3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Somyajit, Kumar, Shivakumar Basavaraju, Ralph Scully, and Ganesh Nagaraju. "ATM- and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair." Molecular and Cellular Biology 33, no. 9 (February 25, 2013): 1830–44. http://dx.doi.org/10.1128/mcb.01521-12.
Full textYamada, Nazumi Alice, John M. Hinz, Vicki L. Kopf, Kathryn D. Segalle, and Larry H. Thompson. "XRCC3 ATPase Activity Is Required for Normal XRCC3-Rad51C Complex Dynamics and Homologous Recombination." Journal of Biological Chemistry 279, no. 22 (March 22, 2004): 23250–54. http://dx.doi.org/10.1074/jbc.m402247200.
Full textHatanaka, Atsushi, Mitsuyoshi Yamazoe, Julian E. Sale, Minoru Takata, Kazuhiko Yamamoto, Hiroyuki Kitao, Eiichiro Sonoda, Koji Kikuchi, Yasukazu Yonetani, and Shunichi Takeda. "Similar Effects of Brca2 Truncation and Rad51 Paralog Deficiency on Immunoglobulin V Gene Diversification in DT40 Cells Support an Early Role for Rad51 Paralogs in Homologous Recombination." Molecular and Cellular Biology 25, no. 3 (February 1, 2005): 1124–34. http://dx.doi.org/10.1128/mcb.25.3.1124-1134.2005.
Full textNagaraju, Ganesh, Andrea Hartlerode, Amy Kwok, Gurushankar Chandramouly, and Ralph Scully. "XRCC2 and XRCC3 Regulate the Balance between Short- and Long-Tract Gene Conversions between Sister Chromatids." Molecular and Cellular Biology 29, no. 15 (May 26, 2009): 4283–94. http://dx.doi.org/10.1128/mcb.01406-08.
Full textKurumizaka, H., S. Ikawa, M. Nakada, K. Eda, W. Kagawa, M. Takata, S. Takeda, S. Yokoyama, and T. Shibata. "Homologous-pairing activity of the human DNA-repair proteins Xrcc3*Rad51C." Proceedings of the National Academy of Sciences 98, no. 10 (May 1, 2001): 5538–43. http://dx.doi.org/10.1073/pnas.091603098.
Full textWiese, C. "Interactions involving the Rad51 paralogs Rad51C and XRCC3 in human cells." Nucleic Acids Research 30, no. 4 (February 15, 2002): 1001–8. http://dx.doi.org/10.1093/nar/30.4.1001.
Full textLiu, Yilun, Madalena Tarsounas, Paul O'Regan, and Stephen C. West. "Role of RAD51C and XRCC3 in Genetic Recombination and DNA Repair." Journal of Biological Chemistry 282, no. 3 (November 17, 2006): 1973–79. http://dx.doi.org/10.1074/jbc.m609066200.
Full textMasson, J. Y., A. Z. Stasiak, A. Stasiak, F. E. Benson, and S. C. West. "Complex formation by the human RAD51C and XRCC3 recombination repair proteins." Proceedings of the National Academy of Sciences 98, no. 15 (July 17, 2001): 8440–46. http://dx.doi.org/10.1073/pnas.111005698.
Full textLio, Yi-Ching, David Schild, Mark A. Brenneman, J. Leslie Redpath, and David J. Chen. "Human Rad51C Deficiency Destabilizes XRCC3, Impairs Recombination, and Radiosensitizes S/G2-phase Cells." Journal of Biological Chemistry 279, no. 40 (October 2004): 42313–20. http://dx.doi.org/10.1074/jbc.m405212200.
Full textKurumizaka, H. "Region and amino acid residues required for Rad51C binding in the human Xrcc3 protein." Nucleic Acids Research 31, no. 14 (July 15, 2003): 4041–50. http://dx.doi.org/10.1093/nar/gkg442.
Full textAbdu, Uri, Acaimo González-Reyes, Amin Ghabrial, and Trudi Schüpbach. "The Drosophila spn-D Gene Encodes a RAD51C-Like Protein That Is Required Exclusively During Meiosis." Genetics 165, no. 1 (September 1, 2003): 197–204. http://dx.doi.org/10.1093/genetics/165.1.197.
Full textSu, Hang, Zhihao Cheng, Jiyue Huang, Juan Lin, Gregory P. Copenhaver, Hong Ma, and Yingxiang Wang. "Arabidopsis RAD51, RAD51C and XRCC3 proteins form a complex and facilitate RAD51 localization on chromosomes for meiotic recombination." PLOS Genetics 13, no. 5 (May 31, 2017): e1006827. http://dx.doi.org/10.1371/journal.pgen.1006827.
Full textTarsounas, Madalena, Adelina A. Davies, and Stephen C. West. "RAD51 localization and activation following DNA damage." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, no. 1441 (January 29, 2004): 87–93. http://dx.doi.org/10.1098/rstb.2003.1368.
Full textSullivan, Meghan R., and Kara A. Bernstein. "RAD-ical New Insights into RAD51 Regulation." Genes 9, no. 12 (December 13, 2018): 629. http://dx.doi.org/10.3390/genes9120629.
Full textSimo Cheyou, Estelle, Jacopo Boni, Jonathan Boulais, Edgar Pinedo-Carpio, Abba Malina, Dana Sherill-Rofe, Vincent M. Luo, et al. "Systematic proximal mapping of the classical RAD51 paralogs unravel functionally and clinically relevant interactors for genome stability." PLOS Genetics 18, no. 11 (November 14, 2022): e1010495. http://dx.doi.org/10.1371/journal.pgen.1010495.
Full textCastro, Michael, Ansu Kumar, Himanshu Grover, Vivek Patil, Ashish Agrawal, Anuj Tyagi, Humera Azam, et al. "Cellworks Omics Biology Model (CBM) to predict therapy response and identify novel biomarkers for 5FU-based combination therapy in gastric cancer patients." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): e16091-e16091. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e16091.
Full textAlagpulinsa, David, Srinivas Ayyadevara, Shmuel Yaccoby, and Robert shmookler Reis. "A Peptide Nucleic Acid Targeting Nuclear Rad51 Sensitizes Myeloma Cells to Melphalan Chemotoxicity Both in Vitro and in Vivo." Blood 124, no. 21 (December 6, 2014): 3529. http://dx.doi.org/10.1182/blood.v124.21.3529.3529.
Full textKim, So Hyeon, Ahrum Min, Seongyeong Kim, Yu Jin Kim, Sujin Ham, Hae Min Hwang, Minyoung Lee, et al. "Abstract LB228: Replication stress activates the DNA damage response and contributes to lapatinib resistance in HER2-positive SK-BR-3 cells." Cancer Research 83, no. 8_Supplement (April 14, 2023): LB228. http://dx.doi.org/10.1158/1538-7445.am2023-lb228.
Full textSinha, Asha, Ali Saleh, Raelene Endersby, Shek H. Yuan, Chirayu R. Chokshi, Kevin R. Brown, Bozena Kuzio, et al. "RAD51-Mediated DNA Homologous Recombination Is Independent of PTEN Mutational Status." Cancers 12, no. 11 (October 29, 2020): 3178. http://dx.doi.org/10.3390/cancers12113178.
Full textDing, Yan, Can-Lan Sun, Liton Francisco, Melanie Sabado, Liang Li, Brian Hahn, Garrett Larson, Stephen J. Forman, Ravi Bhatia, and Smita Bhatia. "Genetic Susceptibility to Therapy-Related Leukemia (t-MDS/AML) After Hodgkin Lymphoma (HL) or Non-Hodgkin Lymphoma (NHL)." Blood 114, no. 22 (November 20, 2009): 199. http://dx.doi.org/10.1182/blood.v114.22.199.199.
Full textAlolayan, Ashwaq, Fouad Sabatin, Mohammed algarni, Nadine Mabsout, Horya Zaher, Hussam Shehata, Saeed Alturki, et al. "Abstract P6-02-01: Frequency of pathogenic germline mutations beyond Germline BRCA gene mutations among Saudi patients with breast cancer." Cancer Research 83, no. 5_Supplement (March 1, 2023): P6–02–01—P6–02–01. http://dx.doi.org/10.1158/1538-7445.sabcs22-p6-02-01.
Full textSlupianek, Artur, Shuyue Ren, and Tomasz Skorski. "Selective Anti-Leukemia Targeting of the Interaction Between BCR/ABL and Mammalian RecA Homologs." Blood 112, no. 11 (November 16, 2008): 195. http://dx.doi.org/10.1182/blood.v112.11.195.195.
Full textMpakou, Vassiliki, Evangelia Papadavid, Evi Konsta, Vikentiou Murofora, Frieda Kontsioti, Sotiris Papageorgiou, Dikea-Eleni Ioannidou, et al. "Bortezomib and Methotrexate Interfere with the DNA Repair Signaling Transduction Pathways and Induce Apoptosis in Cutaneous T-Cell Lymphoma." Blood 124, no. 21 (December 6, 2014): 5232. http://dx.doi.org/10.1182/blood.v124.21.5232.5232.
Full textMishra, Anup, Sneha Saxena, Anjali Kaushal, and Ganesh Nagaraju. "RAD51C/XRCC3 Facilitates Mitochondrial DNA Replication and Maintains Integrity of the Mitochondrial Genome." Molecular and Cellular Biology 38, no. 3 (November 20, 2017). http://dx.doi.org/10.1128/mcb.00489-17.
Full textLongo, Michael A., Sunetra Roy, Yue Chen, Karl-Heinz Tomaszowski, Andrew S. Arvai, Jordan T. Pepper, Rebecca A. Boisvert, et al. "RAD51C-XRCC3 structure and cancer patient mutations define DNA replication roles." Nature Communications 14, no. 1 (July 24, 2023). http://dx.doi.org/10.1038/s41467-023-40096-1.
Full textPrakash, Rohit, Yashpal Rawal, Meghan R. Sullivan, McKenzie K. Grundy, Hélène Bret, Michael J. Mihalevic, Hayley L. Rein, et al. "Homologous recombination–deficient mutation cluster in tumor suppressor RAD51C identified by comprehensive analysis of cancer variants." Proceedings of the National Academy of Sciences 119, no. 38 (September 13, 2022). http://dx.doi.org/10.1073/pnas.2202727119.
Full textAHLAWAT, SONIKA, REKHA SHARMA, REENA ARORA, LATIKA JAISWAL, MEENU CHOPRA, PRIYANKA SHARMA, and SACHINANDAN DE. "Conserved architecture of RAD51 recombinase in ruminants revealed through molecular cloning and characterization." Indian Journal of Animal Sciences 86, no. 12 (December 20, 2016). http://dx.doi.org/10.56093/ijans.v86i12.65979.
Full text