Academic literature on the topic 'Qubit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Qubit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Qubit"
Moussa, Jonathan Edward. "Quantum circuits for qubit fusion." Quantum Information and Computation 16, no. 13&14 (October 2016): 1113–24. http://dx.doi.org/10.26421/qic16.13-14-3.
Full textNikolaeva, Anstasiia S., Evgeniy O. Kiktenko, and Aleksey K. Fedorov. "Generalized Toffoli Gate Decomposition Using Ququints: Towards Realizing Grover’s Algorithm with Qudits." Entropy 25, no. 2 (February 20, 2023): 387. http://dx.doi.org/10.3390/e25020387.
Full textLIU, YANG, GUI LU LONG, and YANG SUN. "ANALYTIC ONE-BIT AND CNOT GATE CONSTRUCTIONS OF GENERAL n-QUBIT CONTROLLED GATES." International Journal of Quantum Information 06, no. 03 (June 2008): 447–62. http://dx.doi.org/10.1142/s0219749908003621.
Full textDOLL, ROLAND, MARTIJN WUBS, SIGMUND KOHLER, and PETER HÄNGGI. "FIDELITY AND ENTANGLEMENT OF A SPATIALLY EXTENDED LINEAR THREE-QUBIT REGISTER." International Journal of Quantum Information 06, supp01 (July 2008): 681–87. http://dx.doi.org/10.1142/s0219749908003955.
Full textEspinel-López, Cristian, Alvaro Martínez-Gómez, Marisol Aguilar-Echeverría, and Hipatia Mañay-Mañay. "Evolución de componentes de computación cuántica y mediciones cuánticas no destructivas en la informática moderna. //Evolution of quantum computing components and non-destructive quantum measurements in modern computing." CIENCIA UNEMI 11, no. 28 (October 1, 2018): 57–69. http://dx.doi.org/10.29076/issn.2528-7737vol11iss28.2018pp57-69p.
Full textChilds, Andrew M., Debbie Leung, Laura Mancinska, and Maris Ozols. "Characterization of universal two-qubit Hamiltonians." Quantum Information and Computation 11, no. 1&2 (January 2011): 19–39. http://dx.doi.org/10.26421/qic11.1-2-3.
Full textAssouline, A., L. Pugliese, H. Chakraborti, Seunghun Lee, L. Bernabeu, M. Jo, K. Watanabe, et al. "Emission and coherent control of Levitons in graphene." Science 382, no. 6676 (December 15, 2023): 1260–64. http://dx.doi.org/10.1126/science.adf9887.
Full textGidney, Craig, Michael Newman, and Matt McEwen. "Benchmarking the Planar Honeycomb Code." Quantum 6 (September 21, 2022): 813. http://dx.doi.org/10.22331/q-2022-09-21-813.
Full textLi, Xiangrong, and Dafa Li. "Rank-based SLOCC classification for odd $n$ qubits." Quantum Information and Computation 11, no. 7&8 (July 2011): 695–705. http://dx.doi.org/10.26421/qic11.7-8-10.
Full textPERDRIX, SIMON. "STATE TRANSFER INSTEAD OF TELEPORTATION IN MEASUREMENT-BASED QUANTUM COMPUTATION." International Journal of Quantum Information 03, no. 01 (March 2005): 219–23. http://dx.doi.org/10.1142/s0219749905000785.
Full textDissertations / Theses on the topic "Qubit"
Nasser, Metwally Aly Mohamed. "Entangled qubit pairs." Diss., [S.l.] : [s.n.], 2002. http://edoc.ub.uni-muenchen.de/archive/00000083.
Full textFay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase." Phd thesis, Université Joseph Fourier (Grenoble), 2008. http://tel.archives-ouvertes.fr/tel-00310131.
Full textNous avons mesuré par spectroscopie micro-onde les premiers niveaux d'énergie du circuit couplé en fonction des paramètres de contrôle. Les mesures des états quantiques des qubits de charge et de phase sont réalisées par une mesure d'échappement du SQUID dc avec une impulsion de flux nanoseconde appliquée dans celui-ci. La mesure de l'ACPT utilise un nouveau processus quantique : l'état excité de l'ACPT est transféré adiabatiquement vers l'état excité du SQUID durant l'impulsion de flux.
Notre circuit permet de manipuler indépendamment chaque qubit tout comme il permet d'intriquer les états quantiques des deux circuits. Nous avons observé des anti-croisements des niveaux d'énergie des deux qubits lorsqu'ils sont mis en résonance. Le couplage a été mesuré sur une large gamme de fréquence, pouvant varier de 60 MHz à 1.1 GHz. Nous avons réussi à obtenir un couplage variable entre le qubit de charge et le qubit de phase. Nous avons analysé théoriquement la dynamique quantique de notre circuit. Cette analyse a permis de bien expliquer le couplage variable mesuré par une combinaison entre un couplage Josephson et un couplage capacitif entre les deux qubits.
Fay, Aurélien. "Couplage variable entre un qubit de charge et un qubit de phase." Phd thesis, Grenoble 1, 2008. http://www.theses.fr/2008GRE10071.
Full textWe have studied the quantum dynamics of a superconducting circuit based on a dc-SQUID coupled to a highly asymmetric Cooper pair transistor (ACPT). The dc-SQUID is a phase qubit controlled by a bias current and magnetic field. The ACPT is a charge qubit controlled by a bias current, magnetic flux and gate voltage. We have measured by microwave spectroscopy the lowest quantum levels of the coupled circuit as a function of the bias parameters. Quantum state measurements of the phase and charge qubit are achieved by an escape measurement on the dc SQUID with a nanosecond flux pulse applied to it. The measurement of the ACPT state consist of a new quantum process: the excited state of the ACPT is adiabatically transferred to the excited state of the SQUID during the flux pulse. Our circuit enables the independent manipulation of each qubit as well as the entanglement of the quantum states of the two circuits. We observe avoided level crossings between the two qubits when they are put in resonance. The coupling strength is measured over a large frequency range and varies from 60 MHz to 1. 1 GHz. In this coupled circuit, we succeed to realize a tunable coupling between the charge and the phase qubit. We have analyzed theoretically the quantum dynamics of our circuit. This analysis explains well the measured tunable coupling strength by a combination of a capacitive and a Josephson coupling between the two qubits
Palomaki, Tauno A. "Dc SQUID phase qubit." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8575.
Full textThesis research directed by: Dept. of Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Viehmann, Oliver. "Multi-qubit circuit quantum electrodynamics." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-160998.
Full textAiello, Clarice Demarchi. "Qubit dynamics under alternating controls." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93053.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-117).
In this thesis, we discuss two problems of quantum dynamics in the presence of alternating controls. Alternating controls arise in many protocols designed to extend the duration over which a qubit is a useful computational resource. This is accomplished by control sequences that either retard decoherence, or that accomplish a quantum operation in as short a time as possible. The first problem tackles the use of a composite-pulse control sequence known as 'rotary-echo' for quantum magnetometry purposes. The sequence consists in the continuous drive of a qubit, with field phases that alternate at specific intervals. We implement such a magnetometry protocol using an electronic qubit in diamond, and experimentally confirm the flexibility yielded by the tuning of sequence parameters that achieves a good compromise between decoherence resilience and sensitivity. The second problem theoretically investigates the time-optimal evolution of a qubit in the case of a restricted control set composed of alternating rotations around two non-parallel axes on the Bloch sphere. Using accessible algebraic methods, we show that experimental parameters, such as the angle between the two rotation axes, restrict the necessary structure of time-optimal sequences. We propose to implement such an evolution through alternate driving as an advantageous alternative to the slow, noisy direct addressing of a nuclear qubit anisotropically hyperfine-coupled to an electronic spin in diamond.
by Clarice Demarchi Aiello.
Ph. D.
Convertini, Luciana. "Simulazione numerica di qubit a superconduttori di tipo transmon: dal layout al gate a singolo qubit." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textNarla, Anirudh. "Flying Qubit Operations in Superconducting Circuits." Thesis, Yale University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10783459.
Full textThe quantum non-demolition (QND) measurement process begins by entangling the system to be measured, a qubit for example, with an ancillary degree of freedom, usually a system with an infinite-dimensional Hilbert space. The ancilla is amplified to convert the quantum signal into a measurable classical signal. The continuous classical signal is recorded by a measurement apparatus; a discrete measurement outcome is recovered by thresholding the integrated signal record. Measurements play a central role in technologies based on quantum theory, like quantum computation and communication. They form the basis for a wide range of operations, ranging from state initialization to quantum error correction. Quantum measurements used for quantum computation must satisfy three essential requirements of being high fidelity, quantum non-demolition and efficient. Satisfying these criteria necessitates control over all the parts of the quantum measurement process, especially generating the ancilla, entangling it with the qubit and amplifying it to complete the measurement.
For superconducting quantum circuits, a promising platform for realizing quantum computation, a natural choice for the ancillae are modes of microwave-frequency electromagnetic radiation. In the paradigm of circuit quantum electrodynamics (cQED) with three-dimensional circuits, the most commonly used ancillae are coherent states, since they are easy to generate, process and amplify. Using these flying coherent states, we present results for achieving QND measurements of transmon qubits with fidelities of F> 0.99 and efficiencies of η = 0.56 ± 0.01. By also treating the measurement as a more general quantum operation, we use the ancillae as carriers of quantum information to generate remote entanglement between two transmon qubits in separate cavities. By using microwave single photons as the flying qubits, it is possible to generate remote entanglement that is robust to loss since the generation of entanglement is uniquely linked to a particular measurement outcome. We demonstrate, in a single experiment, the ability to efficiently generate and detect single microwave photons and use them to generate robust remote entanglement between two transmon qubits. This operation forms a crucial primitive in modular architectures for quantum computation. The results of this thesis extend the experimental toolbox at the disposal to superconducting circuits. Building on these results, we outline proposals for remote entanglement distillation as well as strategies to further improve the performance of the various tools.
Weber, Steven Joseph. "Quantum Trajectories of a Superconducting Qubit." Thesis, University of California, Berkeley, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3686046.
Full textIn quantum mechanics, the process of measurement is intrinsically probabilistic. As a result, continuously monitoring a quantum system will randomly perturb its natural unitary evolution. An accurate measurement record documents this stochastic evolution and can be used to reconstruct the quantum trajectory of the system state in a single experimental iteration. We use weak measurements to track the individual quantum trajectories of a superconducting qubit that evolves under the competing influences of continuous weak measurement and Rabi drive. We analyze large ensembles of such trajectories to examine their characteristics and determine their statistical properties. For example, by considering only the subset of trajectories that evolve between any chosen initial and final states, we can deduce the most probable path through quantum state space. Our investigation reveals the rich interplay between measurement dynamics, typically associated with wavefunction collapse, and unitary evolution. Our results provide insight into the dynamics of open quantum systems and may enable new methods of quantum state tomography, quantum state steering through measurement, and active quantum control.
Bader, Samuel James. "Higher levels of the transmon qubit." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92701.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-95).
This thesis discusses recent experimental work in measuring the properties of higher levels in transmon qubit systems. The first part includes a thorough overview of transmon devices, explaining the principles of the device design, the transmon Hamiltonian, and general Circuit Quantum Electrodynamics concepts and methodology. The second part discusses the experimental setup and methods employed in measuring the higher levels of these systems, and the details of the simulation used to explain and predict the properties of these levels.
by Samuel James Bader.
S.B.
Books on the topic "Qubit"
Hays, Max. Realizing an Andreev Spin Qubit. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83879-9.
Full textAlvarez, Raúl Aguiar. Qubit: Antología de la nueva ciencia ficción latinoamericana. La Habana, Cuba: Fondo Editorial Casa de las Américas, 2011.
Find full textDal bit al qubit: Elementi di teoria dell'informazione classica e quantistica. Roma: Aracne, 2009.
Find full textillustrator, Cartwright Amy, ed. Quit it! Mankato, Minnesota: Amicus Readers, 2015.
Find full textNever quit. [Jacksonville, Florida]: Triplicity Publishing, LLC, 2016.
Find full textRainger, Amanda. Quit sait? London: BBC Educational, 1993.
Find full textQuit it. New York, NY: Delacorte Press, 2002.
Find full textThe quit. New York: Simon & Schuster, 1996.
Find full textByalick, Marcia. Quit It. New York: Random House Children's Books, 2009.
Find full textQuit smoking. New Lanark, Scotland: Geddes & Grosset, 2007.
Find full textBook chapters on the topic "Qubit"
Diósi, Lajos. "Qubit Thermodynamics." In A Short Course in Quantum Information Theory, 123–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16117-9_12.
Full textKasirajan, Venkateswaran. "Qubit Modalities." In Fundamentals of Quantum Computing, 107–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63689-0_4.
Full textFujii, Yoichi Robertus. "MicroRNA Qubit." In The MicroRNA Quantum Code Book, 11–16. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8586-7_2.
Full textConti, Claudio. "Qubit Maps." In Quantum Science and Technology, 51–83. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-44226-1_3.
Full textTamura, Kentaro, and Yutaka Shikano. "Quantum Random Numbers Generated by a Cloud Superconducting Quantum Computer." In International Symposium on Mathematics, Quantum Theory, and Cryptography, 17–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5191-8_6.
Full textMcCracken, James M. "Negative Qubit Channel Examples with Multi-Qubit Baths." In Negative Quantum Channels, 107–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-031-02517-4_11.
Full textDiósi, Lajos. "One-Qubit Manipulations." In A Short Course in Quantum Information Theory, 47–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16117-9_6.
Full textBriggs, Andrew, Martin P. Weides, Michael R. Vissers, Jeffrey S. Kline, Martin O. Sandberg, David P. Pappas, Joshua Veazey, et al. "Nanosession: Qubit Systems." In Frontiers in Electronic Materials, 357–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch55.
Full textD’Ariano, Giacomo Mauro. "It from Qubit." In The Frontiers Collection, 25–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12946-4_3.
Full textBallance, Christopher J. "Single-Qubit Gates." In Springer Theses, 87–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68216-7_7.
Full textConference papers on the topic "Qubit"
Siraichi, Marcos Yukio, Fernando Magno Quintão Pereira, Vinicius Dos Santos, and Caroline Collange. "Qubit Allocation." In Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2020.11368.
Full textYou, J. Q., Xuedong Hu, S. Ashhab, and Franco Nori. "Low-decoherence flux qubit." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.sss3.
Full textNori, Franco. "Quantum-information-processing using superconducting qubit circuits." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.sss2.
Full textWang, Mingxuan, and David van Zanten. "Novel Fast Qubit Readout Approaches Enabled By Qubit Cloaking." In Novel Fast Qubit Readout Approaches Enabled By Qubit Cloaking. US DOE, 2023. http://dx.doi.org/10.2172/1998930.
Full textHuber, Florian, Jesse Amato-Grill, Alexei Bylinskii, Sergio H. Cantu, Ming-Guang Hu, Donggyu Kim, Alexander Lukin, Nate Gemelke, and Alexander Keesling. "Cloud-Accessible, Programmable Quantum Simulator Based on Two-Dimensional Neutral Atom Arrays." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw3a.2.
Full textJohansson, J. R., S. Ashhab, A. M. Zagoskin, and F. Nori. "Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.qia3.
Full textSola, Ignacio R., and Bo Y. Chang. "Spatiotemporal Control of Trapped Rydberg Qubits." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/quantum.2022.qw2a.33.
Full textGolter, D. Andrew, Genevieve Clark, Tareq El Dandachi, Stefan Krastanov, Matthew Zimmermann, Andrew Greenspon, Noel Wan, et al. "Scalable Control of Spin Quantum Memories in a Photonic Integrated Circuit." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fth5l.3.
Full textMunro, W. J., M. Gong, S. Wang, C. Zha, M. C. Chen, H. L. Huang, Y. Wu, et al. "Strolling through a NISQ processor." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ff2i.1.
Full textIuliano, Mariagrazia, Marie-Christine Roehsner, Nir Alifasi, Tanmoy Chakraborty, Arian J. Stolk, Matthew J. Weaver, Mariya O. Sholkina, et al. "Interfacing an NV-center in diamond and a rare-earth ion compatible photonic time-bin qubit." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qw4a.7.
Full textReports on the topic "Qubit"
Martinis, John M., Alexander Korotkov, Frank Wilhelm, and Andrew Cleland. Multi-Qubit Algorithms in Josephson Phase Qubits. Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ada631621.
Full textDavis, J. C. STM Studies of Semiconductor Qubit Candidates. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada455573.
Full textShreeram, Soumya. Studying Qubit Interactions with Multimode Cavities Using QuTiP. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1615359.
Full textSaxena, Avadh, and Julia Cen. Anti-PT-symmetric qubit: Decoherence and Entanglement Entropy. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1647202.
Full textNielsen, Erik. Efficient Scalable Tomography of Many-Qubit Quantum Processors. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1673168.
Full textBlume-Kohout, Robin, Erik Nielsen, Kenneth Rudinger, Mohan Sarovar, and Kevin Young. Efficient Predictive Tomography of Multi-Qubit Quantum Processors. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1733288.
Full textWachen, John, and Steven McGee. Qubit by Qubit’s Middle School Quantum Camp Evaluation Report for Summer 2021. The Learning Partnership, August 2021. http://dx.doi.org/10.51420/report.2021.5.
Full textHarris, Charles Thomas, Tzu-Ming Lu, Andrew Jacob Miller, Donald Thomas Bethke, and Rupert M. Lewis. Towards Quantum-Limited Cryogenic Amplification for Multi-Qubit Platforms. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569518.
Full textKhatiwada, Rakshya. Qubit Based Single Photon Sensors for Dark Matter Searches. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1592131.
Full textFriesen, Mark, and Xuedong Hu. Exploiting Many-Body Bus States for Multi-Qubit Entanglement. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada594989.
Full text