Academic literature on the topic 'Quasiperiodic systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quasiperiodic systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quasiperiodic systems"
Redkar, Sangram. "Lyapunov Stability of Quasiperiodic Systems." Mathematical Problems in Engineering 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/721382.
Full textYamaguchi, Atsushi, and Toshiyuki Ninomiya. "Artificial systems with quasiperiodic structure." Bulletin of the Japan Institute of Metals 29, no. 10 (1990): 839–44. http://dx.doi.org/10.2320/materia1962.29.839.
Full textJanssen, T. "The symmetry of quasiperiodic systems." Acta Crystallographica Section A Foundations of Crystallography 47, no. 3 (May 1, 1991): 243–55. http://dx.doi.org/10.1107/s0108767390013745.
Full textWALGRAEF, D., G. DEWEL, and P. BORCKMANS. "Quasiperiodic order in dissipative systems." Nature 318, no. 6047 (December 1985): 606. http://dx.doi.org/10.1038/318606a0.
Full textZhong, J. X., and R. Mosseri. "Quantum dynamics in quasiperiodic systems." Journal of Physics: Condensed Matter 7, no. 44 (October 30, 1995): 8383–404. http://dx.doi.org/10.1088/0953-8984/7/44/008.
Full textSalazar, F. "Phonon localization in quasiperiodic systems." Journal of Non-Crystalline Solids 329, no. 1-3 (November 1, 2003): 167–70. http://dx.doi.org/10.1016/j.jnoncrysol.2003.08.034.
Full textTUTOR, J., and V. R. VELASCO. "SOME PROPERTIES OF THE TRANSVERSE ELASTIC WAVES IN QUASIPERIODIC STRUCTURES." International Journal of Modern Physics B 15, no. 21 (August 20, 2001): 2925–34. http://dx.doi.org/10.1142/s0217979201007129.
Full textSANCHEZ, VICENTA, and CHUMIN WANG. "RESONANT AC CONDUCTING SPECTRA IN QUASIPERIODIC SYSTEMS." International Journal of Computational Materials Science and Engineering 01, no. 01 (March 2012): 1250003. http://dx.doi.org/10.1142/s2047684112500030.
Full textV.R. Krasheninnikov, O.E. Malenova, O.E. Malenova, and A.Yu. Subbotin. "MODELS OF SYSTEMS OF QUASIPERIODIC PROCESSES BASED ON CYLINDRICAL AND CIRCULAR IMAGES." Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 23, no. 1 (2021): 103–10. http://dx.doi.org/10.37313/1990-5378-2021-23-1-103-110.
Full textMorozov, A. D., and K. E. Morozov. "On Synchronization of Quasiperiodic Oscillations." Nelineinaya Dinamika 14, no. 3 (2018): 367–76. http://dx.doi.org/10.20537/nd180307.
Full textDissertations / Theses on the topic "Quasiperiodic systems"
Deloudi, Sofia. "Modeling of quasiperiodic systems /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=18107.
Full textZou, Yong. "Exploring recurrences in quasiperiodic systems." Phd thesis, kostenfrei, 2007. http://opus.kobv.de/ubp/volltexte/2008/1649/.
Full textThiem, Stefanie. "Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems." Doctoral thesis, Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-83831.
Full textEine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht
Thiem, Stefanie [Verfasser], Michael [Akademischer Betreuer] Schreiber, Michael [Gutachter] Schreiber, and Uwe [Gutachter] Grimm. "Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems / Stefanie Thiem ; Gutachter: Michael Schreiber, Uwe Grimm ; Betreuer: Michael Schreiber." Chemnitz : Universitätsbibliothek Chemnitz, 2012. http://d-nb.info/1214009794/34.
Full textLeguil, Martin. "Cocycle dynamics and problems of ergodicity." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC159/document.
Full textThe following work contains four chapters: the first one is centered around the weak mixing property for interval exchange transformations and translation flows. It is based on the results obtained together with Artur Avila which strengthen previous results due to Artur Avila and Giovanni Forni. The second chapter is dedicated to a joint work with Zhiyuan Zhang, in which we study the properties of stable ergodicity and accessibility for partially hyperbolic systems with center dimension at least two. We show that for dynamically coherent partially hyperbolic diffeomorphisms and under certain assumptions of center bunching and strong pinching, the property of stable accessibility is dense in C^r topology, r>1, and even prevalent in the sense of Kolmogorov. In the third chapter, we explain the results obtained together with Julie Déserti on the properties of a one-parameter family of polynomial automorphisms of C^3; we show that new behaviours can be observed in comparison with the two-dimensional case. In particular, we study the escape speed of points to infinity and show that a transition exists for a certain value of the parameter. The last chapter is based on a joint work with Jiangong You, Zhiyan Zhao and Qi Zhou; we get asymptotic estimates on the size of spectral gaps for quasi-periodic Schrödinger operators in the analytic case. We obtain exponential upper bounds in the subcritical regime, which strengthens a previous result due to Sana Ben Hadj Amor. In the particular case of almost Mathieu operators, we also show exponential lower bounds, which provides quantitative estimates in connection with the so-called "Dry ten Martinis problem". As consequences of our results, we show applications to the homogeneity of the spectrum of such operators, and to Deift's conjecture
Maranhão, Isis Albuquerque de Souza. "Localização eletrônica de sistemas aperiódicos em uma dimensão." Universidade do Estado do Rio de Janeiro, 2014. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8688.
Full textDesde a descoberta do estado quasicristalino por Daniel Shechtman et al. em 1984 e da fabricação por Roberto Merlin et al. de uma superrede artificial de GaAs/ AlAs em 1985 com características da sequência de Fibonacci, um grande número de trabalhos teóricos e experimentais tem relatado uma variedade de propriedades interessantes no comportamento de sistemas aperiódicos. Do ponto de vista teórico, é bem sabido que a cadeia de Fibonacci em uma dimensão se constitui em um protótipo de sucesso para a descrição do estado quasicristalino de um sólido. Dependendo da regra de inflação, diferentes tipos de estruturas aperiódicas podem ser obtidas. Esta diversidade originou as chamadas regras metálicas e devido à possibilidade de tratamento analítico rigoroso este modelo tem sido amplamente estudado. Neste trabalho, propriedades de localização em uma dimensão são analisadas considerando-se um conjunto de regras metálicas e o modelo de ligações fortes de banda única. Considerando-se o Hamiltoniano de ligações fortes com um orbital por sítio obtemos um conjunto de transformações relativas aos parâmetros de dizimação, o que nos permitiu calcular as densidades de estados (DOS) para todas as configurações estudadas. O estudo detalhado da densidade de estados integrada (IDOS) para estes casos, mostra o surgimento de plateaux na curva do número de ocupação explicitando o aparecimento da chamada escada do diabo" e também o caráter fractal destas estruturas. Estudando o comportamento da variação da energia em função da variação da energia de hopping, construímos padrões do tipo borboletas de Hofstadter, que simulam o efeito de um campo magnético atuando sobre o sistema. A natureza eletrônica dos auto estados é analisada a partir do expoente de Lyapunov (γ), que está relacionado com a evolução da função de onda eletrônica ao longo da cadeia unidimensional. O expoente de Lyapunov está relacionado com o inverso do comprimento de localização (ξ= 1 /γ), sendo nulo para os estados estendidos e positivo para estados localizados. Isto define claramente as posições dos principais gaps de energia do sistema. Desta forma, foi possível analisar o comportamento autossimilar de cadeias com diferentes regras de formação. Analisando-se o espectro de energia em função do número de geração de cadeias que seguem as regras de ouro e prata foi feito, obtemos conjuntos do tipo-Cantor, que nos permitiu estudar o perfil do calor específico de uma cadeia e Fibonacci unidimensional para diversas gerações
Since the discovery of a quasicrystalline state by Daniel Shechtman et al. in 1984 and the growth of artificial GaAs/AlAs superlattices on nonperiodic Fibonacci sequence by Roberto Merlin et al., a number of theoretical and experimental works have reported a variety of interesting physical properties of aperiodic systems. Theoretically, it is well known that in one dimension, the Fibonacci chain is a successful prototype to describe a quasicrystalline state. Depending on the in ation rule, different kinds of aperiodic structures can be obtained. This diversity originates the called metallic means, and due to the possibility of analytical and rigorous mathematical treatments the Fibonacci model has been applied by several authors. In this work, electronic localization properties are studied, taking into account a set of metallic means in one dimension. Considering a single band tight-binding Hamiltonian, a set of decimation transformations is obtained allowing the calculation of the Density of States (DOS) for all configurations. The detailed study of the Integrated Density of States (IDOS), shows the appearance of plateaux in the occupation number curve exhibiting the so-called "devil's staircase"indicating the fractal nature of the structures. Studying the behavior of the energy as a function of the hopping we derive Hofstadter butter y type patters, which simulate the effect of a magnetic field acting on the system. The electronic nature of the eigenstate is analyzed by looking at the Lyapunov exponent which is related to the evolution of the electronic wave unction along the one dimensional chain. Since it is zero for an extended state and positive for a localized one, defining the main gaps positions, it is related to the inverse of the localization length. Through a careful analysis of the Lyapunov curves it was also possible to obtain the perfect self-similarity structures for all chains. In particular,for the chains that follow the golden and silver rules, the study of the energy behavior was done by analyzing the energy spectrum as a function of the generation number of each one of the chains. The results yield Cantor-like sets, which allowed us to calculate the specific heat profile for several generations of the one-dimensional Fibonacci chain.
Zou, Yong [Verfasser]. "Exploring recurrences in quasiperiodic systems / von Yong Zou." 2007. http://d-nb.info/987730541/34.
Full textThiem, Stefanie. "Electronic and Photonic Properties of Metallic-Mean Quasiperiodic Systems." Doctoral thesis, 2011. https://monarch.qucosa.de/id/qucosa%3A19673.
Full textEine der elementaren Fragen der Physik kondensierter Materie beschäftigt sich mit dem Zusammenhang zwischen der atomaren Struktur und den physikalischen Eigenschaften von Materialien. Eine Forschungslinie in diesem Kontext begann mit der Entdeckung der Quasikristalle durch Shechtman et al. 1982. Es stellte sich bald heraus, dass diese Materialien mit ihren laut der klassischen Kristallographie verbotenen 5-, 8-, 10- oder 12-zähligen Rotationssymmetrien durch mathematische Modelle für die aperiodische Pflasterung der Ebene beschrieben werden können, die durch Penrose und Ammann in den 1970er Jahren vorgeschlagen wurden. Aufgrund der fehlenden Translationssymmetrie in Quasikristallen sind bis heute nur endliche, relativ kleine Systeme oder periodische Approximanten durch numerische Berechnungen untersucht worden und theoretische Ergebnisse wurden hauptsächlich für eindimensionale Systeme gewonnen. In dieser Arbeit werden d-dimensionale quasiperiodische Modelle, sogenannte Labyrinth-Pflasterungen, mit separablem Hamilton-Operator im Modell starker Bindung betrachtet. Diese Methode erlaubt es, quantenmechanische Lösungen in höheren Dimensionen direkt aus den eindimensionalen Ergebnissen abzuleiten und ermöglicht somit die Untersuchung von sehr großen Systemen in zwei und drei Dimensionen mit bis zu 10^10 Gitterpunkten. Insbesondere betrachten wir dabei quasiperiodische Folgen mit metallischem Schnitt. Basierend auf diesem Modell befassen wir uns im Speziellen mit den elektronischen Eigenschaften der Quasikristalle im Hinblick auf die Verbindung der spektralen und dynamischen Eigenschaften des Hamilton-Operators. Hierfür untersuchen wir die Eigenschaften der Eigenzustände und Wellenfunktionen und vergleichen diese mit der Dynamik von Wellenpaketen in den Labyrinth-Pflasterungen basierend auf numerischen Berechnungen und einem Renormierungsgruppen-Ansatz in Verbindung mit Störungstheorie. Dabei stellt sich heraus, dass viele Eigenschaften wie etwa das Skalenverhalten der Partizipationszahlen und der mittleren quadratischen Abweichung eines Wellenpakets für verschiedene Dimensionen ein qualitativ gleiches Verhalten zeigen oder sogar unabhängig von der Dimension sind. Zudem zeigen wir, dass die Struktur der Labyrinth-Pflasterungen und deren Transporteigenschaften sowie bestimmte Momente der spektralen Dimensionen und die Dynamik der Wellenpakete in Beziehung zueinander stehen. Darüber hinaus werden auch die photonischen Eigenschaften für eindimensionale quasiperiodische Mehrschichtsysteme für beliebige Einfallswinkel untersucht und der Verlauf der Transmissionsbänder mit der quasiperiodischen Struktur in Zusammenhang gebracht.
Books on the topic "Quasiperiodic systems"
Mitropolʹskiĭ, I͡U A. Systems of evolution equations with periodic and quasiperiodic coefficients. Dordrecht: Kluwer Academic, 1993.
Find full textMitropolsky, Yu A., A. M. Samoilenko, and D. I. Martinyuk. Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2728-8.
Full textD, Coca, ed. Nonlinear system identification and analysis of quasiperiodic oscillations in reflected light measurements of vasomotion. Sheffield: University of Sheffield, Dept. Of Automatic Control and Systems Engineering, 1998.
Find full textMitropolsky, Yuri A., Anatolii M. Samoilenko, and D. I. Martinyuk. Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients. Springer, 2012.
Find full textMitropolsky, Yuri A. Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients. Springer, 2012.
Find full textSamoilenko, A. M., Yuri A. Mitropolsky, and D. I. Martinyuk. Systems of Evolution Equations with Periodic and Quasiperiodic Coefficients (Mathematics and its Applications). Springer, 1992.
Find full textJanssen, Ted, Gervais Chapuis, and Marc de Boissieu. Other topics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824442.003.0007.
Full textJanssen, Ted, Gervais Chapuis, and Marc de Boissieu. Description and symmetry of aperiodic crystals. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824442.003.0002.
Full textBook chapters on the topic "Quasiperiodic systems"
Anishchenko, Vadim S., Tatyana E. Vadivasova, and Galina I. Strelkova. "Quasiperiodic Oscillator with Two Independent Frequencies." In Deterministic Nonlinear Systems, 203–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06871-8_12.
Full textHiramoto, H. "Localization in One-Dimensional Quasiperiodic Systems." In Springer Series in Solid-State Sciences, 169–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84253-5_18.
Full textJanssen, T. "From Quasiperiodic to More Complex Systems." In Beyond Quasicrystals, 75–140. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03130-8_5.
Full textTokihiro, T. "Quasiperiodic Systems with Long-Range Hierarchical Interactions." In Springer Series in Solid-State Sciences, 179–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84253-5_19.
Full textKoukiou, Flora, Dimitri Petritis, and Miloš Zahradník. "Low Temperature Phase Transitions on Quasiperiodic Lattices." In Cellular Automata and Cooperative Systems, 375–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1691-6_29.
Full textDelshams, Amadeu, Àngel Jorba, Tere M. Seara, and Vassili Gelfreich. "Splitting of Separatrices for (Fast) Quasiperiodic Forcing." In Hamiltonian Systems with Three or More Degrees of Freedom, 367–71. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4673-9_40.
Full textMitropolsky, Yu A., A. M. Samoilenko, and D. I. Martinyuk. "Quasiperiodic Solutions of Systems with Lag. Bubnov-Galerkin’s Method." In Mathematics and its Applications, 107–34. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2728-8_3.
Full textHeidari, Alireza, and Mohammadali Ghorbani. "RETRACTED CHAPTER: Lempel–Ziv Model of Dynamical-Chaotic and Fibonacci-Quasiperiodic Systems." In Chaos and Complex Systems, 11–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33914-1_2.
Full textKohmoto, M. "Multifractal Method for Spectra and Wave Functions of Quasiperiodic Systems." In Springer Series in Solid-State Sciences, 158–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84253-5_17.
Full textMitropolsky, Yu A., A. M. Samoilenko, and D. I. Martinyuk. "Reducibility of Linear Systems of Difference Equations with Quasiperiodic Coefficients." In Mathematics and its Applications, 201–22. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2728-8_5.
Full textConference papers on the topic "Quasiperiodic systems"
DUMAS, H. SCOTT, and JAMES A. ELLISON. "AVERAGING FOR QUASIPERIODIC SYSTEMS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0121.
Full textRedkar, Sangram, and S. C. Sinha. "Order Reduction of Nonlinear Systems With Periodic-Quasiperiodic Coefficients." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85306.
Full textTkachenko, Viktor. "On reducibility of linear quasiperiodic systems with bounded solutions." In The 6'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 1999. http://dx.doi.org/10.14232/ejqtde.1999.5.29.
Full textStépán, G., and G. Haller. "Stable and Unstable Quasiperiodic Oscillations in Robot Dynamics." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0115.
Full textFeldman, Michael. "Time-Varying and Non-Linear Dynamical System Identification Using the Hilbert Transform." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84644.
Full textChu, Shih-I. "Quasiperiodic and chaotic motions in intense field multiphoton processes." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thb2.
Full textRand, Richard, Kamar Guennoun, and Mohamed Belhaq. "2:2:1 Resonance in the Quasiperiodic Mathieu Equation." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/vib-48563.
Full textIsaeva, O. B., D. V. Savin, E. P. Seleznev, and N. V. Stankevich. "Hyperbolic chaos and quasiperiodic dynamics in experimental nonautonomous systems of coupled oscillators." In 2017 Progress In Electromagnetics Research Symposium - Spring (PIERS). IEEE, 2017. http://dx.doi.org/10.1109/piers.2017.8262291.
Full textBoucher, Yann G., Emmanuel Drouard, Ludovic Escoubas, and Francois Flory. "One-dimensional transfer matrix formalism with localized losses for fast designing of quasiperiodic waveguide filters." In Optical Systems Design, edited by Laurent Mazuray, Philip J. Rogers, and Rolf Wartmann. SPIE, 2004. http://dx.doi.org/10.1117/12.512980.
Full textRahman, Lutfur, and Herbert G. Winful. "Fractal Transmission Properties of a Quasiperiodic Sequence of Directional Couplers." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/nlgwp.1989.fc3.
Full text