Academic literature on the topic 'Quasi-Kernel'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quasi-Kernel.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quasi-Kernel"
Wang, Dongdong, and Pengjie Chen. "Quasi-convex reproducing kernel meshfree method." Computational Mechanics 54, no. 3 (April 19, 2014): 689–709. http://dx.doi.org/10.1007/s00466-014-1022-4.
Full textYreux, Edouard, and Jiun-Shyan Chen. "A quasi-linear reproducing kernel particle method." International Journal for Numerical Methods in Engineering 109, no. 7 (July 14, 2016): 1045–64. http://dx.doi.org/10.1002/nme.5319.
Full textAi, Jiangdong, Stefanie Gerke, Gregory Gutin, Anders Yeo, and Yacong Zhou. "Results on the small quasi-kernel conjecture." Discrete Mathematics 346, no. 7 (July 2023): 113435. http://dx.doi.org/10.1016/j.disc.2023.113435.
Full textWegkamp, Marten H. "Quasi-universal bandwidth selection for kernel density estimators." Canadian Journal of Statistics 27, no. 2 (June 1999): 409–20. http://dx.doi.org/10.2307/3315649.
Full textQinghui, Hu, Wei Shiwei, Li Zhiyuan, and Liu Xiaogang. "Quasi-newton method for L multiple kernel learning." Neurocomputing 194 (June 2016): 218–26. http://dx.doi.org/10.1016/j.neucom.2016.01.079.
Full textWang, Jiecheng, Yantong Liu, and Jincai Chang. "An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation." Mathematics 10, no. 14 (July 8, 2022): 2402. http://dx.doi.org/10.3390/math10142402.
Full textMazzoni, Thomas, and Elmar Reucher. "Quasi-continuous maximum entropy distribution approximation with kernel density." International Journal of Information and Decision Sciences 3, no. 4 (2011): 335. http://dx.doi.org/10.1504/ijids.2011.043026.
Full textWinnewisser, Manfred, Brenda P. Winnewisser, Ivan R. Medvedev, Frank C. De Lucia, Stephen C. Ross, and Larry M. Bates. "The hidden kernel of molecular quasi-linearity: Quantum monodromy." Journal of Molecular Structure 798, no. 1-3 (October 2006): 1–26. http://dx.doi.org/10.1016/j.molstruc.2006.06.036.
Full textYam, Wun Kwan, Kin Long Fong, Juntao Wang, Siew Ann Cheong, and K. Y. Michael Wong. "Intrinsic Quasi-Periodicity in Hong Kong Housing Price and Its Prediction." New Mathematics and Natural Computation 16, no. 03 (November 2020): 645–55. http://dx.doi.org/10.1142/s1793005720500398.
Full textMatsutani, Shigeki. "On Time Development of a Quasi-Quantum Particle in Quartic Potential (x2-a2)2/2g." Reviews in Mathematical Physics 09, no. 08 (November 1997): 943–91. http://dx.doi.org/10.1142/s0129055x97000336.
Full textDissertations / Theses on the topic "Quasi-Kernel"
Eftekharzadeh, Ardeshir. "Self-force and noise-kernel in curved space-time using quasi-local expansion methods." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6852.
Full textThesis research directed by: Physics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Collier, Nathaniel O. "The Quasi-Uniformity Condition and Three-Dimensional Geometry Representation as it Applies to the Reproducing Kernel Element Method." Scholar Commons, 2009. https://scholarcommons.usf.edu/etd/1904.
Full textWang, Roy Chih Chung. "Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36975.
Full textDesrumaux, Pierre-François. "Méthodes statistiques pour l’estimation du rendement paramétrique des circuits intégrés analogiques et RF." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20126/document.
Full textSemiconductor device fabrication is a complex process which is subject to various sources of variability. These variations can impact the functionality and performance of analog integrated circuits, which leads to yield loss, potential chip modifications, delayed time to market and reduced profit. Statistical circuit simulation methods enable to estimate the parametric yield of the circuit early in the design stage so that corrections can be done before manufacturing. However, traditional methods such as Monte Carlo method and corner simulation have limitations. Therefore an accurate analog yield estimate based on a small number of circuit simulations is needed. In this thesis, existing statistical methods from electronics and non-Electronics publications are first described. However, these methods suffer from sever drawbacks such as the need of initial time-Consuming circuit simulations, or a poor scaling with the number of random variables. Second, three novel statistical methods are proposed to accurately estimate the parametric yield of analog/RF integrated circuits based on a moderate number of circuit simulations: An automatically sorted quasi-Monte Carlo method, a kernel-Based control variates method and an importance sampling method. The three methods rely on a mathematical model of the circuit performance metric which is constructed based on a truncated first-Order Taylor expansion. This modeling technique is selected as it requires a minimal number of SPICE-Like circuit simulations. Both theoretical and simulation results show that the proposed methods lead to significant speedup or improvement in accuracy compared to other existing methods
Maffray, Frédéric. "Une étude structurelle des graphes parfaits : [thèse soutenue sur un ensemble de travaux]." Grenoble 1, 1992. http://www.theses.fr/1992GRE10158.
Full textBailera, Martín Ivan. "Hadamard, quasi-Hadamard, and generalized Hadamard full propelinear codes." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2020. http://hdl.handle.net/10803/670384.
Full textEsta tesis pertenece a los campos de la combinatoria algebraica y de la teoría matemática de la información. Motivada por la ventaja computacional de la estructura full propelinear, estudiamos diferentes tipos de códigos correctores de errores dotados de dicha estructura. Como un código full propelinear es también un grupo, es posible generar el código a partir de las palabras asociadas a los generadores como grupo, incluso si el código es no lineal. Esto ofrece los beneficios de almacenamiento de un código lineal. Rifà y Suárez definieron los códigos full propelinear sobre matrices Hadamard binarias (HFP-códigos) y probaron una equivalencia con los grupos Hadamard. La existencia de matrices Hadamard de órdenes múltiplo de cuatro sigue siendo un problema abierto. Por tanto, el estudio de nuevos códigos Hadamard puede contribuir a abordar la conjetura de Hadamard. Un código con una estructura full propelinear está compuesto por dos conjuntos; palabras y permutaciones. Definimos el grupo asociado de un HFP-código como el grupo formado por las permutaciones. Primeramente, estudiamos los HFP-códigos con un grupo asociado fijado. El siguiente paso es generalizar a cuerpos finitos los HFP-códigos binarios. Después probamos que la existencia de códigos Hadamard full propelinear generalizados es equivalente a la existencia de conjuntos de diferencias relativos con parámetros (v,w,v,v/w). Además, construimos familias infinitas de códigos Hadamard full propelinear generalizados no lineales. Finalmente, definimos el concepto de código quasi-Hadamard full propelinear. También damos una equivalencia entre los grupos quasi-Hadamard y los códigos quasi-Hadamard full propelinear. En todos los códigos estudiados, analizamos el rango y la dimensión del núcleo. Dos parámetros que proporcionan información sobre la linealidad de un código y sobre la no equivalencia de códigos.
This thesis belongs to the fields of algebraic combinatorics and mathematical information theory. Motivated by the computational advantage of the full propelinear structure, we study different kinds of error-correcting codes endowed with this structure. Since a full propelinear code is also a group, it is possible to generate the code from the codewords associated to the generators as a group, even if the code is nonlinear. This offers the data storage benefits of a linear code. Rifà and Suárez introduced full propelinear codes based on binary Hadamard matrices (HFP-codes) and they proved an equivalence with Hadamard groups. The existence of Hadamard matrices of orders a multiple of four remains an open problem. Therefore, the study of new Hadamard codes may contribute to address the Hadamard conjecture. A code with a full propelinear structure is composed of two sets, i.e., codewords and permutations. We define the associated group of an HFP-code as the group comprised of the permutations. Firstly, we study the HFP-codes with a fixed associated group. The next step is to generalize the binary HFP-codes to finite fields. Subsequently, we prove that the existence of generalized Hadamard full propelinear codes is equivalent to the existence of central relative (v,w,v,v/w)-difference sets. Furthermore, we build infinite families of nonlinear generalized Hadamard full propelinear codes. Finally, we introduce the concept of quasi-Hadamard full propelinear code. We also give an equivalence between quasi-Hadamard groups and quasi-Hadamard full propelinear codes. In all codes studied, we analyze the rank and the dimension of the kernel. Two parameters that provide information about the linearity of a code, and also about the nonequivalence of codes.
Chen, Li. "Quasi transformées de Riesz, espaces de Hardy et estimations sous-gaussiennes du noyau de la chaleur." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01001868.
Full textAhmed, Mohamed Salem. "Contribution à la statistique spatiale et l'analyse de données fonctionnelles." Thesis, Lille 3, 2017. http://www.theses.fr/2017LIL30047/document.
Full textThis thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country
Lesage, Véronique. "Contribution à la validation fonctionnelle du gène majeur contrôlant la dureté / tendreté de l'albumen du grain de blé par l'étude de lignées quasi-isogéniques." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00697012.
Full textNguyen, Quoc-Hung. "THÉORIE NON LINÉAIRE DU POTENTIEL ET ÉQUATIONS QUASILINÉAIRES AVEC DONNÉES MESURES." Phd thesis, Université François Rabelais - Tours, 2014. http://tel.archives-ouvertes.fr/tel-01063365.
Full textBooks on the topic "Quasi-Kernel"
Freund, Roland W. Quasi-kernal polynomials and convergance results for quasi-minimal residual iterations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1992.
Find full textResearch Institute for Advanced Computer Science (U.S.), ed. Quasi-kernal polynomials and convergance results for quasi-minimal residual iterations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1992.
Find full textQuasi-kernal polynomials and convergance results for quasi-minimal residual iterations. [Moffett Field, Calif.]: Research Institute for Advanced Computer Science, NASA Ames Research Center, 1992.
Find full textBook chapters on the topic "Quasi-Kernel"
Freund, Roland W. "Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations." In Numerical Methods in Approximation Theory, Vol. 9, 77–95. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-8619-2_5.
Full textCharikar, Moses, Michael Kapralov, and Erik Waingarten. "A Quasi-Monte Carlo Data Structure for Smooth Kernel Evaluations." In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 5118–44. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2024. http://dx.doi.org/10.1137/1.9781611977912.184.
Full textBreger, Anna, Martin Ehler, and Manuel Gräf. "Quasi Monte Carlo Integration and Kernel-Based Function Approximation on Grassmannians." In Frames and Other Bases in Abstract and Function Spaces, 333–53. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55550-8_14.
Full textLeobacher, Gunther, and Friedrich Pillichshammer. "QMC Integration in Reproducing Kernel Hilbert Spaces." In Introduction to Quasi-Monte Carlo Integration and Applications, 55–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03425-6_3.
Full textFasshauer, Gregory E., and Qi Ye. "A Kernel-Based Collocation Method for Elliptic Partial Differential Equations With Random Coefficients." In Monte Carlo and Quasi-Monte Carlo Methods 2012, 331–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41095-6_14.
Full textAlzghool, Raed. "ARCH and GARCH Models: Quasi-Likelihood and Asymptotic Quasi-Likelihood Approaches." In Linear and Non-Linear Financial Econometrics -Theory and Practice [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93726.
Full textMarius, Arghirescu. "A Preonic Model of Quarks and Particles, Based on a Cold Genesis Theory." In Redefining Standard Model Particle Physics [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109123.
Full textHe, Sailing, Staffan Strom, and Vaughan H. Weston. "Wave-Splittings Combined With Optimization Techniques." In Time Domain Wave-Splittings and Inverse Problems, 185–228. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198565499.003.0005.
Full textConference papers on the topic "Quasi-Kernel"
Laird, Brent, and Trac Tran. "Quasi-norm Kernel-based Emitter Localization." In 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723416.
Full textZhu, Huilin, and Jinglu Hu. "Air Quality Forecasting Using SVR with Quasi-Linear Kernel." In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). IEEE, 2019. http://dx.doi.org/10.1109/cits.2019.8862114.
Full textCheng, Yu, and Jinglu Hu. "Nonlinear system identification based on SVR with quasi-linear kernel." In 2012 International Joint Conference on Neural Networks (IJCNN 2012 - Brisbane). IEEE, 2012. http://dx.doi.org/10.1109/ijcnn.2012.6252694.
Full textLi, Weite, and Jinglu Hu. "Geometric approach of quasi-linear kernel composition for support vector machine." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280384.
Full textLi, Weite, Jinglu Hu, and Benhui Chen. "A deep quasi-linear kernel composition method for support vector machines." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727394.
Full textZhang, Wenpu, Yingying Guo, Jin Zhou, Hui Jiang, and Rongrong Wang. "A novel Kernel Clustering with Quasi-Monte Carlo Random Feature Map." In 2020 7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). IEEE, 2020. http://dx.doi.org/10.1109/iccss52145.2020.9336844.
Full textLiang, Peifeng, Weite Li, Donghang Liu, and Jinglu Hu. "Large-scale image classification using fast SVM with deep quasi-linear kernel." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965970.
Full textLin, Yuling, Yong Fu, and Jinglu Hu. "Support vector machine with SOM-based quasi-linear kernel for nonlinear classification." In 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, 2014. http://dx.doi.org/10.1109/ijcnn.2014.6889654.
Full textZhang, Wenpu, Yingying Guo, Rongrong Wang, Jin Zhou, Hui Jiang, Shiyuan Han, Lin Wang, Tao Du, and Ke Ji. "Kernel Fuzzy Clustering based on Quasi-Monte Carlo Feature Map with Neighbor Affinity Constraint." In 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2022. http://dx.doi.org/10.1109/fuzz-ieee55066.2022.9882644.
Full textZhou, Bo, Di Fu, Chao Dong, and Jinglu Hu. "A Transductive SVM with quasi-linear kernel based on cluster assumption for semi-supervised classification." In 2015 International Joint Conference on Neural Networks (IJCNN). IEEE, 2015. http://dx.doi.org/10.1109/ijcnn.2015.7280485.
Full textReports on the topic "Quasi-Kernel"
Smith, Richard J., and Paulo Parente. Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models. The IFS, October 2019. http://dx.doi.org/10.1920/wp.cem.2019.6019.
Full text