Academic literature on the topic 'Quasi-convex Functions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quasi-convex Functions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quasi-convex Functions"
Liu, Zheng. "ON INEQUALITIES RELATED TO SOME QUASI-CONVEX FUNCTIONS." Issues of Analysis 22, no. 2 (December 2015): 45–64. http://dx.doi.org/10.15393/j3.art.2015.2869.
Full textZhang, Kewei. "Quasi-convex functions on subspaces and boundaries of quasi-convex sets." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 134, no. 4 (August 2004): 783–99. http://dx.doi.org/10.1017/s0308210500003486.
Full textBeer, G., and R. Lucchetti. "Minima of quasi-convex functions." Optimization 20, no. 5 (January 1989): 581–96. http://dx.doi.org/10.1080/02331938908843480.
Full textUbhaya, Vasant A. "Uniform approximation by quasi-convex and convex functions." Journal of Approximation Theory 55, no. 3 (December 1988): 326–36. http://dx.doi.org/10.1016/0021-9045(88)90099-8.
Full textUbhaya, Vasant A. "Lp approximation by quasi-convex and convex functions." Journal of Mathematical Analysis and Applications 139, no. 2 (May 1989): 574–85. http://dx.doi.org/10.1016/0022-247x(89)90130-3.
Full textHazim, Revan I., and Saba N. Majeed. "Quasi Semi and Pseudo Semi (p,E)-Convexity in Non-Linear Optimization Programming." Ibn AL-Haitham Journal For Pure and Applied Sciences 36, no. 1 (January 20, 2023): 355–66. http://dx.doi.org/10.30526/36.1.2928.
Full textHinderer, A., and M. Stieglitz. "Minimization of quasi-convex symmetric and of discretely quasi-convex symmetric functions." Optimization 36, no. 4 (January 1996): 321–32. http://dx.doi.org/10.1080/02331939608844187.
Full textMeftah, B., and A. Souahi. "Cebyšev inequalities for co-ordinated \(QC\)-convex and \((s,QC)\)-convex." Engineering and Applied Science Letters 4, no. 1 (January 23, 2021): 14–20. http://dx.doi.org/10.30538/psrp-easl2021.0057.
Full textYouness, Ebrahim A. "Quasi and strictly quasiE-convex functions." Journal of Statistics and Management Systems 4, no. 2 (January 2001): 201–10. http://dx.doi.org/10.1080/09720510.2001.10701038.
Full textIvanenko, Y., M. Nedic, M. Gustafsson, B. L. G. Jonsson, A. Luger, and S. Nordebo. "Quasi-Herglotz functions and convex optimization." Royal Society Open Science 7, no. 1 (January 2020): 191541. http://dx.doi.org/10.1098/rsos.191541.
Full textDissertations / Theses on the topic "Quasi-convex Functions"
PERI, ILARIA. "Quasi-convex risk measures and acceptability indices. Theory and applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29745.
Full textTsai, Huang-Kai, and 蔡黃凱. "Some Inequalities of Hermite-Hadamerd’s type for quasi-convex functions." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/29705608354076104528.
Full text淡江大學
中等學校教師在職進修數學教學碩士學位班
100
The main purpose of this paper is to establish inequalities related to the right hand side of Hermite-Hadamard’s type for function whose derivatives in absolute value are quasi-convex .
Hsieh, Chin-Yu, and 謝瑾瑜. "Inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/97152986030613141889.
Full text淡江大學
中等學校教師在職進修數學教學碩士學位班
100
The main purpose of this paper is to establish some inequalities of Hermite-Hadamard type for functions whose derivatives in absolute values are quasi-convex , and some error estimates for the generalized midpoint formula . The obtained results can be used to give estimates for the approximation error of the integral by the use of the midpoint formula .
Books on the topic "Quasi-convex Functions"
Komlósi, S. Second order conditions of generalized convexity and local optimality in nonlinear programming: The quasi-Hessian approach. Pécs [Hungary]: Janus Pannonius Tudományegyetem, 1985.
Find full textBook chapters on the topic "Quasi-convex Functions"
Kythe, Prem K. "Quasi-Convex Functions." In Elements of Concave Analysis and Applications, 179–96. Boca Raton, Florida : CRC Press, [2018]: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315202259-7.
Full textNoor, Khalida Inayat. "On Alpha-Quasi-Convex Functions Defined by Convolution with Incomplete Beta Functions." In Analytic and Geometric Inequalities and Applications, 265–76. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4577-0_16.
Full textOettli, W. "Decomposition Schemes for Finding Saddle Points of Quasi-Convex-Concave Functions." In Quantitative Methoden in den Wirtschaftswissenschaften, 31–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74306-1_3.
Full textDecock, Jérémie, and Olivier Teytaud. "Linear Convergence of Evolution Strategies with Derandomized Sampling Beyond Quasi-Convex Functions." In Lecture Notes in Computer Science, 53–64. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11683-9_5.
Full textVivas-Cortez, Miguel, Seth Kermausuor, and Juan E. Nápoles Valdés. "Hermite–Hadamard Type Inequalities for Coordinated Quasi-Convex Functions via Generalized Fractional Integrals." In Forum for Interdisciplinary Mathematics, 275–96. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0668-8_16.
Full textYamada, Isao, Masahiro Yukawa, and Masao Yamagishi. "Minimizing the Moreau Envelope of Nonsmooth Convex Functions over the Fixed Point Set of Certain Quasi-Nonexpansive Mappings." In Springer Optimization and Its Applications, 345–90. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9569-8_17.
Full textRömisch, Werner. "ANOVA Decomposition of Convex Piecewise Linear Functions." In Monte Carlo and Quasi-Monte Carlo Methods 2012, 581–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41095-6_30.
Full text"4.2. Multifunctions and Constraint Sets Defined by Quasi- convex Polynomial Functions." In Parametric Integer Optimization, 46–61. De Gruyter, 1988. http://dx.doi.org/10.1515/9783112472668-008.
Full text"Establishment of Real LMIs for the Quasi-Convex Problem of Optimization of the Weighting Functions." In Loop-shaping Robust Control, 251–53. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118575246.app2.
Full text"Quasi-convex Function." In Encyclopedia of Operations Research and Management Science, 1227–28. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_200674.
Full textConference papers on the topic "Quasi-convex Functions"
Yıldız, Çetin, and Mustafa Gürbüz. "Integral inequalities for quasi-convex functions and applications." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981685.
Full textSet, Erhan, and Necla Korkut. "On new fractional integral inequalities for quasi-convex functions." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981700.
Full textÖzdemir, M. Emin, Çetin Yıldız, Ahmet Ocak Akdemir, and Erhan Set. "New inequalities of Hadamard type for quasi-convex functions." In FIRST INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS: ICAAM 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4747649.
Full textYıldız, Çetin, and M. Emin Özdemir. "New generalized inequalities of Hermite-Hadamard type for quasi-convex functions." In INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4945879.
Full textSet, Erhan, Abdurrahman Gözpınar, and Filiz Demirci. "Hermite-Hadamard type inequalities for quasi-convex functions via new fractional conformable integrals." In 1ST INTERNATIONAL CONFERENCE ON MATHEMATICAL AND RELATED SCIENCES (ICMRS 2018). Author(s), 2018. http://dx.doi.org/10.1063/1.5047875.
Full textSet, Erhan, Nazlı Uygun, and Muharrem Tomar. "New inequalities of Hermite-Hadamard type for generalized quasi-convex functions with applications." In INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4945865.
Full textSet, Erhan, M. Emin Özdemir, and Nazlı Uygun. "On new Simpson type inequalities for quasi-convex functions via Riemann-Liouville integrals." In INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4945894.
Full textGoh, Jiun Shyan, and Aini Janteng. "Estimate on the second Hankel determinant for a subclass of quasi-convex functions." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823944.
Full textSet, Erhan, M. Emin Özdemir, and E. Aykan Alan. "On new fractional Hermite-Hadamard type inequalities for n-time differentiable quasi-convex functions and P–functions." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981679.
Full textSet, Erhan, Barış Çelik, and Ahmet Ocak Akdemir. "Some new Hermite-Hadamard type inequalities for quasi-convex functions via fractional integral operator." In II. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4981669.
Full text