To see the other types of publications on this topic, follow the link: Quantum wells.

Journal articles on the topic 'Quantum wells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum wells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Krause, Jeffrey L., David H. Reitze, Gary D. Sanders, Alex V. Kuznetsov, and Christopher J. Stanton. "Quantum control in quantum wells." Physical Review B 57, no. 15 (April 15, 1998): 9024–34. http://dx.doi.org/10.1103/physrevb.57.9024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Narimanov, E. E., and A. Douglas Stone. "Quantum chaos in quantum wells." Physica D: Nonlinear Phenomena 131, no. 1-4 (July 1999): 221–46. http://dx.doi.org/10.1016/s0167-2789(98)00229-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, R. M., M. Kitamura, and Z. M. Fang. "Surface quantum wells." Applied Physics Letters 50, no. 23 (June 8, 1987): 1675–77. http://dx.doi.org/10.1063/1.97764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Himpsel, F. J. "Magnetic quantum wells." Journal of Physics: Condensed Matter 11, no. 48 (November 17, 1999): 9483–94. http://dx.doi.org/10.1088/0953-8984/11/48/309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tralle, Igor, and Klaudiusz Majchrowski. "“Smart Design” of Quantum Wells and Double-Quantum Wells Structures." World Journal of Condensed Matter Physics 04, no. 01 (2014): 24–32. http://dx.doi.org/10.4236/wjcmp.2014.41004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stemmer, Susanne, and Andrew J. Millis. "Quantum confinement in oxide quantum wells." MRS Bulletin 38, no. 12 (December 2013): 1032–39. http://dx.doi.org/10.1557/mrs.2013.265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koch, M., R. Hellmann, S. T. Cundiff, J. Feldmann, E. O. Göbel, D. R. Yakovlev, A. Waag, and G. Landwehr. "Excitonic quantum beats in Quantum wells." Solid State Communications 88, no. 7 (November 1993): 515–19. http://dx.doi.org/10.1016/0038-1098(93)90040-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wenqin, Cheng, Huang Yi, Zhou Junming, Feng Wei, Wang Hezhou, She Weilong, Huang Xuguang, Lin Weizhu, Yu Zhenxin, and Xu Geng. "Transient photoluminescence spectra of GaAs/AlGaAs quantum wells, quantum well wires, and quantum well boxes." Chinese Physics Letters 7, no. 6 (June 1990): 284–87. http://dx.doi.org/10.1088/0256-307x/7/6/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Katayama, Shin-ichi, and Takuma Tsuchiya. "Light emission of quantum-well-exciton polaritons in single quantum wells." Physica B: Condensed Matter 227, no. 1-4 (September 1996): 393–96. http://dx.doi.org/10.1016/0921-4526(96)00451-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, H., J. Shah, T. C. Damen, L. N. Pfeiffer, and J. E. Cunningham. "Femtosecond dynamics of excitons in quantum wells and quantum well microcavities." physica status solidi (b) 188, no. 1 (March 1, 1995): 381–86. http://dx.doi.org/10.1002/pssb.2221880135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vainberg, V. V. "Electron mobility in the GaAs/InGaAs/GaAs quantum wells." Semiconductor Physics Quantum Electronics and Optoelectronics 16, no. 2 (June 25, 2013): 152–61. http://dx.doi.org/10.15407/spqeo16.02.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bhattacharya, P., R. Burnham, D. Chemla, G. Dohler, H. M. Gibbs, A. Majerfeld, P. W. Smith, G. Stillman, H. Temkin, and R. L. Gunshor. "III Multiple-quantum wells." Applied Optics 26, no. 2 (January 15, 1987): 216. http://dx.doi.org/10.1364/ao.26.000216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tsu, Raphael. "Silicon-based quantum wells." Nature 364, no. 6432 (July 1993): 19. http://dx.doi.org/10.1038/364019a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Peeters, F. M., C. Riva, and K. Varga. "Trions in quantum wells." Physica B: Condensed Matter 300, no. 1-4 (July 2001): 139–55. http://dx.doi.org/10.1016/s0921-4526(01)00577-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Chinyama, K. "Ultrathin CdSe quantum wells." Journal of Crystal Growth 184-185, no. 1-2 (February 1998): 298–301. http://dx.doi.org/10.1016/s0022-0248(97)00674-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chinyama, K. G., I. V. Bradley, K. P. O'Donnell, P. I. Kuznetsov, A. P. Chernushich, and V. Luzanov. "Ultrathin CdSe quantum wells." Journal of Crystal Growth 184-185 (February 1998): 298–301. http://dx.doi.org/10.1016/s0022-0248(98)80063-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gevaux, David. "Quantum wells meet nanowires." Nature Photonics 2, no. 10 (October 2008): 594. http://dx.doi.org/10.1038/nphoton.2008.190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Peeters, F. M., C. Riva, and K. Varga. "Trions in Quantum Wells." Few-Body Systems 31, no. 2-4 (May 1, 2002): 97–100. http://dx.doi.org/10.1007/s006010200005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chemla, Daniel S. "Quantum Wells for Photonics." Physics Today 38, no. 5 (May 1985): 56–64. http://dx.doi.org/10.1063/1.880974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ivanov, A. L., and H. Haug. "Bipolariton in quantum wells." Il Nuovo Cimento D 17, no. 11-12 (November 1995): 1255–64. http://dx.doi.org/10.1007/bf02457197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hirose, M., and S. Miyazaki. "Quantum wells and superlattices." Journal of Non-Crystalline Solids 97-98 (December 1987): 23–30. http://dx.doi.org/10.1016/0022-3093(87)90009-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Oliver, R. A., M. J. Kappers, and C. J. Humphreys. "Gross well-width fluctuations in InGaN quantum wells." physica status solidi (c) 5, no. 6 (May 2008): 1475–81. http://dx.doi.org/10.1002/pssc.200778557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Holthaus, Martin. "Strongly Driven Semiconductor Quantum Wells." Progress of Theoretical Physics Supplement 116 (February 1, 1994): 417–23. http://dx.doi.org/10.1143/ptps.116.417.

Full text
Abstract:
The influence of resonances in a classical Hamiltonian system on its quantum mechanical counterpart is particularly transparent in periodically driven systems with one degree of freedom. Wide semiconductor quantum wells, subjected to strong far-infrared laser radiation, may be suitable objects to study the classical-quantum correspondence experimentally.
APA, Harvard, Vancouver, ISO, and other styles
24

Kornyshov G.O, Gordeev N.Yu., Shernyakov Yu.M., Beckman A.A., Payusov A.S., Mintairov S.A., Kalyuzhnyy N.A., and Maximov M.V. "Relationship between wavelength and gain in lasers based on quantum wells, dots, and well-dots." Semiconductors 56, no. 12 (2022): 915. http://dx.doi.org/10.21883/sc.2022.12.55151.4408.

Full text
Abstract:
A systematic study of a series of InGaAs/GaAs lasers in the 1-1.3 μm optical range based on quantum wells (2D), quantum dots (0D), and quantum well-dots of transitional (0D/2D) dimensionality is presented. In a wide range of pump currents, the dependences of the lasing wavelength on the layer gain constant, a parameter which allows comparing lasers with different types of active region and various waveguide designs, are measured and analyzed. It is shown that the maximum optical gain of the quantum well-dots is significantly higher, and the range of lasing rawavelengths achievable in edge-emitting lasers without external resonators is wider than in lasers based on quantum wells and quantum dots. Keywords: semiconductor laser, quantum well, quantum dots, quantum well-dots, optical gain.
APA, Harvard, Vancouver, ISO, and other styles
25

LEO, KARL, JAGDEEP SHAH, ERNST O. GÖBEL, THEODORE C. DAMEN, STEFAN SCHMITT-RINK, WILFRIED SCHÄFER, JOACHIM F. MÜLLER, and KLAUS KÖHLER. "QUANTUM BEATS OF EXCITONS IN QUANTUM WELLS." Modern Physics Letters B 05, no. 02 (January 20, 1991): 87–93. http://dx.doi.org/10.1142/s0217984991000113.

Full text
Abstract:
We briefly review our recent observations of quantum beats of excitons in quantum wells. The quantum beats are observed as an oscillatory structure in the polarization decay of energetically closely spaced excitons which are coherently excited by ultrashort laser pulses.
APA, Harvard, Vancouver, ISO, and other styles
26

Göbel, E. O., K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, and K. Köhler. "Quantum beats of excitons in quantum wells." Physical Review Letters 64, no. 15 (April 9, 1990): 1801–4. http://dx.doi.org/10.1103/physrevlett.64.1801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rogacheva, E. I., T. V. Tavrina, O. N. Nashchekina, S. N. Grigorov, K. A. Nasedkin, M. S. Dresselhaus, and S. B. Cronin. "Quantum size effects in PbSe quantum wells." Applied Physics Letters 80, no. 15 (April 15, 2002): 2690–92. http://dx.doi.org/10.1063/1.1469677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Fonoberov, V. A., E. P. Pokatilov, V. M. Fomin, and J. T. Devreese. "Photoluminescence of tetrahedral quantum-dot quantum wells." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (February 2005): 63–66. http://dx.doi.org/10.1016/j.physe.2004.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sherwin, Mark S., Keith Craig, Bryan Galdrikian, James Heyman, Andrea Markelz, Ken Campman, Simon Fafard, Pete F. Hopkins, and Art Gossard. "Nonlinear quantum dynamics in semiconductor quantum wells." Physica D: Nonlinear Phenomena 83, no. 1-3 (May 1995): 229–42. http://dx.doi.org/10.1016/0167-2789(94)00266-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shah, J., K. Leo, E. Göbel, S. Schmitt-Rink, T. Damen, W. Schäfer, and K. Köhler. "Quantum beats of excitons in quantum wells." Surface Science 267, no. 1-3 (January 1992): 304–9. http://dx.doi.org/10.1016/0039-6028(92)91143-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hai, Guo-Qiang, and Nelson Studart. "Quantum transport in δ-doped quantum wells." Physical Review B 55, no. 11 (March 15, 1997): 6708–11. http://dx.doi.org/10.1103/physrevb.55.6708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Xinghua, Qi Yu, Reino Laiho, Chengfang Li, Jian Liu, Xiaoping Yang, and Houzhi Zheng. "Quantum interference effect in double quantum wells." Materials Science and Engineering: B 35, no. 1-3 (December 1995): 372–75. http://dx.doi.org/10.1016/0921-5107(95)01359-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vladimirova, M., D. Scalbert, and M. Nawrocki. "Exciton quantum beats in CdMnTe quantum wells." physica status solidi (c) 2, no. 2 (February 2005): 910–13. http://dx.doi.org/10.1002/pssc.200460336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, T., D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai. "Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells." Applied Physics Letters 73, no. 24 (December 14, 1998): 3571–73. http://dx.doi.org/10.1063/1.122810.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kohl, M., D. Heitmann, P. Grambow, and K. Ploog. "Luminescence of quantum-well exciton polaritons from microstructuredAlxGa1−xAs−GaAsmultiple quantum wells." Physical Review B 37, no. 18 (June 15, 1988): 10927–30. http://dx.doi.org/10.1103/physrevb.37.10927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Banyai, L., I. Galbraith, and H. Haug. "Biexcitonic nonlinearity in GaAs/GaxAl1−xAs quantum wells and quantum-well wires." Physical Review B 38, no. 6 (August 15, 1988): 3931–36. http://dx.doi.org/10.1103/physrevb.38.3931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pérez-Merchancano, S. T., M. de Dios-Leyva, and L. E. Oliveira. "Photoluminescence under quasistationary excitation conditions in quantum wells and quantum-well wires." Journal of Luminescence 72-74 (June 1997): 389–90. http://dx.doi.org/10.1016/s0022-2313(96)00354-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Christian, George, Menno Kappers, Fabien Massabuau, Colin Humphreys, Rachel Oliver, and Philip Dawson. "Effects of a Si-doped InGaN Underlayer on the Optical Properties of InGaN/GaN Quantum Well Structures with Different Numbers of Quantum Wells." Materials 11, no. 9 (September 15, 2018): 1736. http://dx.doi.org/10.3390/ma11091736.

Full text
Abstract:
In this paper we report on the optical properties of a series of InGaN polar quantum well structures where the number of wells was 1, 3, 5, 7, 10 and 15 and which were grown with the inclusion of an InGaN Si-doped underlayer. When the number of quantum wells is low then the room temperature internal quantum efficiency can be dominated by thermionic emission from the wells. This can occur because the radiative recombination rate in InGaN polar quantum wells can be low due to the built-in electric field across the quantum well which allows the thermionic emission process to compete effectively at room temperature limiting the internal quantum efficiency. In the structures that we discuss here, the radiative recombination rate is increased due to the effects of the Si-doped underlayer which reduces the electric field across the quantum wells. This results in the effect of thermionic emission being largely eliminated to such an extent that the internal quantum efficiency at room temperature is independent of the number of quantum wells.
APA, Harvard, Vancouver, ISO, and other styles
39

Kvon, Ze Don. "Semiconductor Quantum Wells and Nanostructures." Nanomaterials 13, no. 13 (June 24, 2023): 1924. http://dx.doi.org/10.3390/nano13131924.

Full text
Abstract:
Semiconductor quantum wells and nanostructures have been the main quantum and classical physical objects in condensed matter physics for over half a century, since the discovery of the two-dimensional electron gas in silicon MOSFETs and size quantization in thin bismuth films [...]
APA, Harvard, Vancouver, ISO, and other styles
40

EI Ghazi, Haddou. "Nanomaterials-Based Multiple Quantum Wells for High Photovoltaic Conversion Solar Cells." Nanomedicine & Nanotechnology Open Access 9, no. 1 (2024): 1–5. http://dx.doi.org/10.23880/nnoa-16000288.

Full text
Abstract:
Using metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) and pulse Laser deposition (PLD) techniques on GaN, Silicon, Silicon Carbide and sapphire substrates, high efficiency InGaN/GaN solar cells are reported with a particular emphasis on the work and achievements made with multi-junction tandem and Nanomaterials (Quantum well (QW), Multiple Quantum Wells (MQW), and Quantum Dots (QD)). An effective method for increasing photon absorption in ultrathin cells made for the best possible photovoltaic response is the InGaN/GaN QW system. To maximize light absorption, the quantum well and barrier thicknesses and number of wells in the MQW active region must be adjusted.
APA, Harvard, Vancouver, ISO, and other styles
41

Wasiak, Michał. "Quantum-enhanced uniformity of carrier injection into successive quantum wells of multi-quantum-well structures." Physica E: Low-dimensional Systems and Nanostructures 41, no. 7 (June 2009): 1253–57. http://dx.doi.org/10.1016/j.physe.2009.02.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Huant, Serge, Ariane Mandray, Jing Zhu, Steven G. Louie, Tao Pang, and Bernard Etienne. "Well-width dependence ofD−cyclotron resonance in quantum wells." Physical Review B 48, no. 4 (July 15, 1993): 2370–75. http://dx.doi.org/10.1103/physrevb.48.2370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Huang, X. R., D. R. Harken, A. N. Cartwright, Arthur L. Smirl, J. L. Sánchez‐Rojas, A. Sacedón, E. Calleja, and E. Muñoz. "In‐well screening nonlinearities in piezoelectric multiple quantum wells." Applied Physics Letters 67, no. 7 (August 14, 1995): 950–52. http://dx.doi.org/10.1063/1.114705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Barsan, Victor. "Square wells, quantum wells and ultra-thin metallic films." Philosophical Magazine 94, no. 2 (October 7, 2013): 190–207. http://dx.doi.org/10.1080/14786435.2013.845313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Andrearczyk, T., J. Jaroszyński, J. Wróbel, G. Karczewski, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, D. Popović, and T. Dietl. "Quantum Hall Ferromagnet in Magnetically-Doped Quantum Wells." Acta Physica Polonica A 104, no. 2 (August 2003): 93–102. http://dx.doi.org/10.12693/aphyspola.104.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Choi, Miri, Chungwei Lin, Matthew Butcher, Cesar Rodriguez, Qian He, Agham B. Posadas, Albina Y. Borisevich, Stefan Zollner, and Alexander A. Demkov. "Quantum confinement in transition metal oxide quantum wells." Applied Physics Letters 106, no. 19 (May 11, 2015): 192902. http://dx.doi.org/10.1063/1.4921013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Huang, Danhong, and Yang Zhao. "Interband quantum coherence in intersubband coupled quantum wells." Physical Review A 51, no. 2 (February 1, 1995): 1617–21. http://dx.doi.org/10.1103/physreva.51.1617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Marquezini, M. V., M. J. S. P. Brasil, M. A. Cotta, J. A. Brum, and A. A. Bernussi. "Magnetoexciton anisotropy in quantum wells versus quantum wires." Physical Review B 53, no. 24 (June 15, 1996): R16156—R16159. http://dx.doi.org/10.1103/physrevb.53.r16156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hopkins, P. F., A. J. Rimberg, R. M. Westervelt, G. Tuttle, and H. Kroemer. "Quantum Hall effect in InAs/AlSb quantum wells." Applied Physics Letters 58, no. 13 (April 1991): 1428–30. http://dx.doi.org/10.1063/1.105188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jaroszyński, J., T. Andrearczyk, J. Wróbel, G. Karczewski, T. Wojtowicz, E. Papis, E. Kamińska, A. Piotrowska, Dragana Popović, and T. Dietl. "Quantum Hall ferromagnet in magnetically-doped quantum wells." Physica E: Low-dimensional Systems and Nanostructures 22, no. 1-3 (April 2004): 76–81. http://dx.doi.org/10.1016/j.physe.2003.11.220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography