Academic literature on the topic 'Quantum thermal field theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum thermal field theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum thermal field theory"
Bros, Jacques. "Thermal Aspects in Quantum Field Theory." Annales Henri Poincaré 4, S2 (December 2003): 863–80. http://dx.doi.org/10.1007/s00023-003-0967-1.
Full textRahaman, Mahfuzur, Trambak Bhattacharyya, and Jan-e. Alam. "Phenomenological Tsallis distribution from thermal field theory." International Journal of Modern Physics A 36, no. 20 (July 14, 2021): 2150154. http://dx.doi.org/10.1142/s0217751x21501542.
Full textHENNING, P. A., K. NAKAMURA, and Y. YAMANAKA. "THERMAL FIELD THEORY IN NON-EQUILIBRIUM STATES." International Journal of Modern Physics B 10, no. 13n14 (June 30, 1996): 1599–614. http://dx.doi.org/10.1142/s0217979296000696.
Full textLiao, Sen-Ben, Janos Polonyi, and Dapeng Xu. "Quantum and thermal fluctuations in field theory." Physical Review D 51, no. 2 (January 15, 1995): 748–64. http://dx.doi.org/10.1103/physrevd.51.748.
Full textBraga de Góes Vasconcellos, João, Nicolò Drago, and Nicola Pinamonti. "Equilibrium States in Thermal Field Theory and in Algebraic Quantum Field Theory." Annales Henri Poincaré 21, no. 1 (October 28, 2019): 1–43. http://dx.doi.org/10.1007/s00023-019-00859-3.
Full textCHU, H., and H. UMEZAWA. "A UNIFIED FORMALISM OF THERMAL QUANTUM FIELD THEORY." International Journal of Modern Physics A 09, no. 14 (June 10, 1994): 2363–409. http://dx.doi.org/10.1142/s0217751x94000960.
Full textKovalchuk, E., and R. Kobes. "Bose-Einstein condensates and thermal field theory." Canadian Journal of Physics 85, no. 6 (June 1, 2007): 647–52. http://dx.doi.org/10.1139/p07-058.
Full textMirón Granese, Nahuel, Alejandra Kandus, and Esteban Calzetta. "Field Theory Approaches to Relativistic Hydrodynamics." Entropy 24, no. 12 (December 7, 2022): 1790. http://dx.doi.org/10.3390/e24121790.
Full textFulling, S. A., A. G. S. Landulfo, and G. E. A. Matsas. "The relation between quantum and classical field theory with a classical source." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2243 (November 2020): 20200656. http://dx.doi.org/10.1098/rspa.2020.0656.
Full textCHU, H., and H. UMEZAWA. "STABLE QUASIPARTICLE PICTURE IN THERMAL QUANTUM FIELD PHYSICS." International Journal of Modern Physics A 09, no. 10 (April 20, 1994): 1703–29. http://dx.doi.org/10.1142/s0217751x9400073x.
Full textDissertations / Theses on the topic "Quantum thermal field theory"
BRAGA, DE GOES E. VASCONCELLOS JOAO. "Thermal equilibrium states in perturbative Algebraic Quantum Field Theory in relation to Thermal Field Theory." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/979745.
Full textAnglin, J. R. (James Robert). "Influence functionals and thermal effects in quantum field theory." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41522.
Full textMillington, Peter William. "Thermal quantum field theory and perturbative non-equilibrium dynamics." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/thermal-quantum-field-theory-and-perturbative-nonequilibrium-dynamics(9e2e162f-124c-4f97-9c01-9f585d7aedb4).html.
Full textMetikas, Georgios. "Aspects of thermal field theory with applications to superconductivity." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312156.
Full textEltzner, Benjamin. "Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-117472.
Full textIn dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft
Ferreira, Renan Buosi. "Teorias de calibre à temperatura finita e a equação de Boltzmann." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-10112015-091130/.
Full textThe equivalence between the formalism of Boltzmann transport equation and the high temperature limit of thermal field theory is investigated in the context of gauge theories. This connection is made through a direct comparison between the thermal amplitudes obtained via the collisionless transport equation with those resulting from the HTL limit of one loop thermal Greens function. For the quantum formalism we start with an ensemble in equilibrium, whose thermal effects are described by the imaginary time formalism. This allows one to write the thermal Green functions as a statistical average of forward scattering amplitudes (after analytic continuation). For the classical formalism, we combine Wongs equations with the time derivative of the particle distribution function in phase space. The resulting equation can be solved in an iterative fashion, yielding the perturbative results for the current and the respective thermal amplitudes. Finally, comparing the amplitudes obtained from the two formalisms, we were able to verify their equivalence. Moreover, we present explicit calculations for a non-Abelian theory up to the second order approximation, and in the case of an abelian theory we proceed up to fourth order, when the charge distribution is not neutral.
Gonzalez, Yuber Ferney Perez. "Leptogênese e mecanismo de See-Saw de tipo I na teoria quântica de campos fora do equilíbrio térmico." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24092014-151403/.
Full textOne of the most important problems that is needed to solve by the Elementary Particle Physics as well as by the Cosmology is the existence of baryonic asymmetry. Among the most attractive scenarios of dynamic generation of baryonic asymmetry (Baryogenesis) is the so-called Leptogenesis. In that scenario, a leptonic asymmetry is treated in such a way that it will be converted in baryonic asymmetry by non-perturbative processes mediated by sphalerons. In the simplest realization of Leptogenesis, that will be studied in this disertation, heavy right-handed neutrinos, produzed thermally, decay violating CP generating a leptonic asymmetry in these decays. The principal attractive of this scenario is that it connects two apparently different scales, the scale of leptonic asymmetry generation and the scale of masses and oscillations of the active neutrinos through the See-Saw mechanism. The usual study of the leptogenesis uses Boltzmann equations in order to determine the temporal evolution of the asymmetry. However, the Boltzmann equation is a semiclassical equations, since, on one side, it is formulated for a classical function in phases space, the distribution function, but, on the other hand, the collision term involves quantities obtained in the Quantum Field Theory at zero temperature. In particular, Boltzmann formulation does not allow to describe quantum phenomena such coherent oscillations and effects of decoherence and interference. Indeed, a proper quantum description of the evolution of the leptonic asymmetry must be obtained in the context of the Non-Equilibrium Quantum Field Theory. The Schwinger-Keldysh formalism allows to perform this. In this dissertation, leptogenesis is described using the Schwinger-Keldysh formalism for the case in which there are three right-handed neutrinos without a definite mass hierarchy.
Salehi, Kasmaei Babak. "NONEQUILIBRIUM PROBES OF THE QUARK-GLUON PLASMA." Kent State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=kent1627035862984205.
Full textOeckl, Robert. "Quantum geometry and Quantum Field Theory." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621912.
Full textGupta, Neha. "Homotopy quantum field theory and quantum groups." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/38110/.
Full textBooks on the topic "Quantum thermal field theory"
Bellac, Michel Le. Thermal field theory. Cambridge: Cambridge University Press, 1996.
Find full textAdvanced field theory: Micro, macro, and thermal physics. New York: American Institute of Physics, 1993.
Find full textUmezawa, Hiroomi. Advanced field theory: Micro, macro,and thermal physics. New York: American Institute of Physics, 1993.
Find full textUmezawa, H. Advanced field theory: Micro, macro, and thermal physics. New York: American Institute of Physics, 1995.
Find full textC, Khanna F., ed. Thermal quantum field theory: Algebraic aspects and applications. Hackensack, NJ: World Scientific, 2009.
Find full textMillington, Peter. Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01186-8.
Full textHsing-yüan, Kuei, Khanna F. C, Su Zhao-bin 1937-, and Workshop on Thermal Field Theories and Their Applications (4th : 1995 : Dalian, China), eds. Thermal field theories and their applications. Singapore: World Scientific, 1996.
Find full textTsukuba), Workshop on Thermal Field Theories and Their Applications (2nd 1990 University of. Thermal field theories: Proceedings of the 2nd Workshop on Thermal Field Theories and Their Applications, Tsukuba, Japan, July 23-27, 1990. Amsterdam: North-Holland, 1991.
Find full textC, Khanna F., ed. Banff/CAP Workshop on Thermal Field Theory: Proceedings of the 3rd Workshop on Thermal Field Theories and Their Applications. Singapore: World Scientific, 1994.
Find full text1994, Altherr Tanguy d., Aurenche P, Veneziano G, and Sorba P, eds. From thermal field theory to neural networks: A day to remember Tanguy Altherr, Cern, 4 November 1994. Singapore: World Scientific, 1996.
Find full textBook chapters on the topic "Quantum thermal field theory"
Laine, Mikko, and Aleksi Vuorinen. "Quantum Mechanics." In Basics of Thermal Field Theory, 1–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31933-9_1.
Full textKotecha, Isha. "Thermal Group Field Theory." In On Generalised Statistical Equilibrium and Discrete Quantum Gravity, 95–166. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90969-7_5.
Full textBros, Jacques. "Thermal Aspects in Quantum Field Theory." In International Conference on Theoretical Physics, 863–80. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7907-1_67.
Full textMillington, Peter. "Scalar Field Theory." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 81–91. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_7.
Full textVerch, Rainer. "Local Covariance, Renormalization Ambiguity, and Local Thermal Equilibrium in Cosmology." In Quantum Field Theory and Gravity, 229–56. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0043-3_12.
Full textGransee, Michael. "Local Thermal Equilibrium States in Relativistic Quantum Field Theory." In Quantum Mathematical Physics, 101–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26902-3_6.
Full textMillington, Peter. "Quantum Statistical Mechanics." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 41–61. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_4.
Full textMillington, Peter. "Introduction." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 1–9. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_1.
Full textMillington, Peter. "Non-Homogeneous Backgrounds." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 111–27. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_10.
Full textMillington, Peter. "The Thermodynamic Equilibrium Limit." In Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics, 129–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01186-8_11.
Full textConference papers on the topic "Quantum thermal field theory"
Braaten, Eric. "Renormalization group approach to thermal quantum field theory." In Computational quantum physics. AIP, 1992. http://dx.doi.org/10.1063/1.42603.
Full textPowers, Connor, Zohreh Davoudi, and Niklas Mueller. "Toward Exploring Phase Diagrams of Gauge Theories on Quantum Computers with Thermal Pure Quantum States." In The 39th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.430.0029.
Full textMusho, T. D., S. M. Claiborne, and D. G. Walker. "NEGF Quantum Simulation of Field Emission Devices." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44504.
Full textDrummond, P. D., and S. J. Carter. "Quantum and thermal noise of solitons in optical fibers." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.tuv10.
Full textNarayanaswamy, Arvind, and Yi Zheng. "Demystifying Lifshitz’ Theory of van der Waals Adhesion." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38353.
Full textHess, Harald F. "Near-field optical characterization of quantum wells and nanostructures." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qwa2.
Full textMeystre, Pierre, E. Schumacher, S. Stenholm, and E. M. Wright. "Atomic beam deflection in a quantum field." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.thbb6.
Full textNarayanaswamy, Arvind. "Near-Field Radiative Transfer, Dispersion Forces, and Dyadic Green’s Functions." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18136.
Full textMoss, D. J., and T. Ido. "Calculation of photogenerated carrier escape rates from single GaAs / AlxGa1-xAs quantum wells." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.md.21.
Full textLiu, Yumin, and Zhongyuan Yu. "Numerical Analysis the Strain Distribution of GaN/AlN Self-Organized Pyramid Quantum Dot." In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21370.
Full textReports on the topic "Quantum thermal field theory"
Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1846570.
Full textJaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/891184.
Full textCaldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10165764.
Full textHirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.
Full textCarena, Marcella, and et al. QIS for Applied Quantum Field Theory. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1606412.
Full textBern, Z. Continuum regularization of quantum field theory. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/7104107.
Full textLawrence, Albion, Matthew Headrick, Howard Schnitzer, Bogdan Stoica, Djordje Radicevic, Harsha Hampapura, Andrew Rolph, Jonathan Harper, and Cesar Agon. Research in Quantum Field Theory, Cosmology, and String Theory. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1837060.
Full textRammsdonk, Mark van. Quantum Hall Physics Equals Noncommutive Field Theory. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/787180.
Full textAlford, Mark G., Carl M. Bender, Claude W. Bernard, James H. Buckley, Francesc Ferrer, Henric S. Krawczynski, and Michael C. Ogilvie. Studies in Quantum Field Theory and Astroparticle Physics. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1135921.
Full textGoldin, Gerald A., and David H. Sharp. Diffeomorphism Group Representations in Relativistic Quantum Field Theory. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1415360.
Full text