Academic literature on the topic 'Quantum theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum theory"

1

Lee, Hyun Seok. "Cultural Studies and Quantum Mechanics." Criticism and Theory Society of Korea 28, no. 2 (June 30, 2023): 253–95. http://dx.doi.org/10.19116/theory.2023.28.2.253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YF, Chang. "Restructure of Quantum Mechanics by Duality, the Extensive Quantum Theory and Applications." Physical Science & Biophysics Journal 8, no. 1 (February 2, 2024): 1–9. http://dx.doi.org/10.23880/psbj-16000265.

Full text
Abstract:
Reconstructing quantum mechanics has been an exploratory direction for physicists. Based on logical structure and basic principles of quantum mechanics, we propose a new method on reconstruction quantum mechanics completely by the waveparticle duality. This is divided into two steps: First, from wave form and duality we obtain the extensive quantum theory, which has the same quantum formulations only with different quantum constants H; then microscopic phenomena determine H=h. Further, we derive the corresponding commutation relation, the uncertainty principle and Heisenberg equation, etc. Then we research potential and interactions in special relativity and general relativity. Finally, various applications and developments, and some basic questions are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Bethe, Hans A. "Quantum theory." Reviews of Modern Physics 71, no. 2 (March 1, 1999): S1—S5. http://dx.doi.org/10.1103/revmodphys.71.s1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, Robin. "Quantum theory." Mathematical Intelligencer 41, no. 4 (July 15, 2019): 76. http://dx.doi.org/10.1007/s00283-019-09916-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yukalov, V. I., and D. Sornette. "Quantum decision theory as quantum theory of measurement." Physics Letters A 372, no. 46 (November 2008): 6867–71. http://dx.doi.org/10.1016/j.physleta.2008.09.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yukalov, V. I., and D. Sornette. "Quantum theory of measurements as quantum decision theory." Journal of Physics: Conference Series 594 (March 18, 2015): 012048. http://dx.doi.org/10.1088/1742-6596/594/1/012048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lan, B. L., and S.-N. Liang. "Is Bohm's quantum theory equivalent to standard quantum theory?" Journal of Physics: Conference Series 128 (August 1, 2008): 012017. http://dx.doi.org/10.1088/1742-6596/128/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hofmann, Ralf. "Quantum Field Theory." Universe 10, no. 1 (December 28, 2023): 14. http://dx.doi.org/10.3390/universe10010014.

Full text
Abstract:
This Special Issue on quantum field theory presents work covering a wide and topical range of subjects mainly within the area of interacting 4D quantum field theories subject to certain backgrounds [...]
APA, Harvard, Vancouver, ISO, and other styles
9

Green, H. S. "Quantum Theory of Gravitation." Australian Journal of Physics 51, no. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Full text
Abstract:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
APA, Harvard, Vancouver, ISO, and other styles
10

Hudson, R. L., and L. S. Brown. "Quantum Field Theory." Mathematical Gazette 79, no. 484 (March 1995): 249. http://dx.doi.org/10.2307/3620134.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum theory"

1

Oeckl, Robert. "Quantum geometry and Quantum Field Theory." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Midgley, Stuart. "Quantum waveguide theory." University of Western Australia. School of Physics, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0036.

Full text
Abstract:
The study of nano-electronic devices is fundamental to the advancement of the semiconductor industry. As electronic devices become increasingly smaller, they will eventually move into a regime where the classical nature of the electrons no longer applies. As the quantum nature of the electrons becomes increasingly important, classical or semiclassical theories and methods will no longer serve their purpose. For example, the simplest non-classical effect that will occur is the tunnelling of electrons through the potential barriers that form wires and transistors. This results in an increase in noise and a reduction in the device?s ability to function correctly. Other quantum effects include coulomb blockade, resonant tunnelling, interference and diffraction, coulomb drag, resonant blockade and the list goes on. This thesis develops both a theoretical model and computational method to allow nanoelectronic devices to be studied in detail. Through the use of computer code and an appropriate model description, potential problems and new novel devices may be identified and studied. The model is as accurate to the physical realisation of the devices as possible to allow direct comparison with experimental outcomes. Using simple geometric shapes of varying potential heights, simple devices are readily accessible: quantum wires; quantum transistors; resonant cavities; and coupled quantum wires. Such devices will form the building blocks of future complex devices and thus need to be fully understood. Results obtained studying the connection of a quantum wire with its surroundings demonstrate non-intuitive behaviour and the importance of device geometry to electrical characteristics. The application of magnetic fields to various nano-devices produced a range of interesting phenomenon with promising novel applications. The magnetic field can be used to alter the phase of the electron, modifying the interaction between the electronic potential and the transport electrons. This thesis studies in detail the Aharonov-Bohm oscillation and impurity characterisation in quantum wires. By studying various devices considerable information can be added to the knowledge base of nano-electronic devices and provide a basis to further research. The computational algorithms developed in this thesis are highly accurate, numerically efficient and unconditionally stable, which can also be used to study many other physical phenomena in the quantum world. As an example, the computational algorithms were applied to positron-hydrogen scattering with the results indicating positronium formation.
APA, Harvard, Vancouver, ISO, and other styles
3

Schumann, Robert Helmut. "Quantum information theory." Thesis, Stellenbosch : Stellenbosch University, 2000. http://hdl.handle.net/10019.1/51892.

Full text
Abstract:
Thesis (MSc)--Stellenbosch University, 2000
ENGLISH ABSTRACT: What are the information processing capabilities of physical systems? As recently as the first half of the 20th century this question did not even have a definite meaning. What is information, and how would one process it? It took the development of theories of computing (in the 1930s) and information (late in the 1940s) for us to formulate mathematically what it means to compute or communicate. Yet these theories were abstract, based on axiomatic mathematics: what did physical systems have to do with these axioms? Rolf Landauer had the essential insight - "Information is physical" - that information is always encoded in the state of a physical system, whose dynamics on a microscopic level are well-described by quantum physics. This means that we cannot discuss information without discussing how it is represented, and how nature dictates it should behave. Wigner considered the situation from another perspective when he wrote about "the unreasonable effectiveness of mathematics in the natural sciences". Why are the computational techniques of mathematics so astonishingly useful in describing the physical world [1]? One might begin to suspect foul play in the universe's operating principles. Interesting insights into the physics of information accumulated through the 1970s and 1980s - most sensationally in the proposal for a "quantum computer". If we were to mark a particular year in which an explosion of interest took place in information physics, that year would have to be 1994, when Shor showed that a problem of practical interest (factorisation of integers) could be solved easily on a quantum computer. But the applications of information in physics - and vice versa - have been far more widespread than this popular discovery. These applications range from improved experimental technology, more sophisticated measurement techniques, methods for characterising the quantum/classical boundary, tools for quantum chaos, and deeper insight into quantum theory and nature. In this thesis I present a short review of ideas in quantum information theory. The first chapter contains introductory material, sketching the central ideas of probability and information theory. Quantum mechanics is presented at the level of advanced undergraduate knowledge, together with some useful tools for quantum mechanics of open systems. In the second chapter I outline how classical information is represented in quantum systems and what this means for agents trying to extract information from these systems. The final chapter presents a new resource: quantum information. This resource has some bewildering applications which have been discovered in the last ten years, and continually presents us with unexpected insights into quantum theory and the universe.
AFRIKAANSE OPSOMMING: Tot watter mate kan fisiese sisteme informasie verwerk? So onlangs soos die begin van die 20ste eeu was dié vraag nog betekenisloos. Wat is informasie, en wat bedoel ons as ons dit wil verwerk? Dit was eers met die ontwikkeling van die teorieë van berekening (in die 1930's) en informasie (in die laat 1940's) dat die tegnologie beskikbaar geword het wat ons toelaat om wiskundig te formuleer wat dit beteken om te bereken of te kommunikeer. Hierdie teorieë was egter abstrak en op aksiomatiese wiskunde gegrond - mens sou wel kon wonder wat fisiese sisteme met hierdie aksiomas te make het. Dit was Rolf Landauer wat uiteindelik die nodige insig verskaf het - "Informasie is fisies" - informasie word juis altyd in 'n fisiese toestand gekodeer, en so 'n fisiese toestand word op die mikroskopiese vlak akkuraat deur kwantumfisika beskryf. Dit beteken dat ons nie informasie kan bespreek sonder om ook na die fisiese voorstelling te verwys nie, of sonder om in ag te neem nie dat die natuur die gedrag van informasie voorskryf. Hierdie situasie is vanaf 'n ander perspektief ook deur Wigner beskou toe hy geskryf het oor "die onredelike doeltreffendheid van wiskunde in die natuurwetenskappe". Waarom slaag wiskundige strukture en tegnieke van wiskunde so uitstekend daarin om die fisiese wêreld te beskryf [1]? Dit laat 'n mens wonder of die beginsels waarvolgens die heelal inmekaar steek spesiaal so saamgeflans is om ons 'n rat voor die oë te draai. Die fisika van informasie het in die 1970's en 1980's heelwat interessante insigte opgelewer, waarvan die mees opspraakwekkende sekerlik die gedagte van 'n kwantumrekenaar is. As ons één jaar wil uitsonder as die begin van informasiefisika, is dit die jaar 1994 toe Shor ontdek het dat 'n belangrike probleem van algemene belang (die faktorisering van groot heelgetalle) moontlik gemaak word deur 'n kwantumrekenaar. Die toepassings van informasie in fisika, en andersom, strek egter veel wyer as hierdie sleutel toepassing. Ander toepassings strek van verbeterde eksperimentele metodes, deur gesofistikeerde meetmetodes, metodes vir die ondersoek en beskrywing van kwantumchaos tot by dieper insig in die samehang van kwantumteorie en die natuur. In hierdie tesis bied ek 'n kort oorsig oor die belangrikste idees van kwantuminformasie teorie. Die eerste hoofstuk bestaan uit inleidende materiaal oor die belangrikste idees van waarskynlikheidsteorie en klassieke informasie teorie. Kwantummeganika word op 'n gevorderde voorgraadse vlak ingevoer, saam met die nodige gereedskap van kwantummeganika vir oop stelsels. In die tweede hoofstuk spreek ek die voorstelling van klassieke informasie en kwantumstelsels aan, en die gepaardgaande moontlikhede vir 'n agent wat informasie uit sulke stelsels wil kry. Die laaste hoofstuk ontgin 'n nuwe hulpbron: kwantuminformasie. Gedurende die afgelope tien jaar het hierdie nuwe hulpbron tot verbysterende nuwe toepassings gelei en ons keer op keer tot onverwagte nuwe insigte oor kwantumteorie en die heelal gelei.
APA, Harvard, Vancouver, ISO, and other styles
4

Shin, Ghi Ryang. "Quantum transport theory." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186508.

Full text
Abstract:
Within the framework of the quantum transport theory based on the Wigner transform of the density matrix I study first in non-relativistic and subsequently in relativistic formulation a number of applications. I also develop further the recently proposed relativistic theory: the classical limit is carefully derived and the integral equations of the relativistic Wigner function derived explicitly. I show how it is possible to obtain the Schwinger like particle production rate from relativistic quantum transport equations. Noteworthy numerical results address the shape of the relativistic Wigner function of a given quantum state. Other numerical studies are primarily oriented towards the time evolution of the Wigner function--I can presently solve only the nonrelativistic case in which there is no mixing between particle production and flow phenomena: I consider numerically the fate of the muon after muon catalyzed fusion.
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Neha. "Homotopy quantum field theory and quantum groups." Thesis, University of Warwick, 2011. http://wrap.warwick.ac.uk/38110/.

Full text
Abstract:
The thesis is divided into two parts one for dimension 2 and the other for dimension 3. Part one (Chapter 3) of the thesis generalises the definition of an n-dimensional HQFT in terms of a monoidal functor from a rigid symmetric monoidal category X-Cobn to any monoidal category A. In particular, 2-dimensional HQFTs with target K(G,1) taking values in A are generated from any Turaev G-crossed system in A and vice versa. This is the generalisation of the theory given by Turaev into a purely categorical set-up. Part two (Chapter 4) of the thesis generalises the concept of a group-coalgebra, Hopf group-coalgebra, crossed Hopf group-coalgebra and quasitriangular Hopf group-coalgebra in the case of a group scheme. Quantum double of a crossed Hopf group-scheme coalgebra is constructed in the affine case and conjectured for the more general non-affine case. We can construct 3-dimensional HQFTs from modular crossed G-categories. The category of representations of a quantum double of a crossed Hopf group-coalgebra is a ribbon (quasitriangular) crossed group-category, and hence can generate 3-dimensional HQFTs under certain conditions if the category becomes modular. However, the problem of systematic finding of modular crossed G-categories is largely open.
APA, Harvard, Vancouver, ISO, and other styles
6

Poletti, Stephen John. "Geometry, quantum field theory and quantum cosmology." Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kerr, Steven. "Topological quantum field theory and quantum gravity." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.

Full text
Abstract:
This thesis is broadly split into two parts. In the first part, simple state sum models for minimally coupled fermion and scalar fields are constructed on a 1-manifold. The models are independent of the triangulation and give the same result as the continuum partition functions evaluated using zeta-function regularisation. Some implications for more physical models are discussed. In the second part, the gauge gravity action is written using a particularly simple matrix technique. The coupling to scalar, fermion and Yang-Mills fields is reviewed, with some small additions. A sum over histories quantisation of the gauge gravity theory in 2+1 dimensions is then carried out for a particular class of triangulations of the three-sphere. The preliminary stage of the Hamiltonian analysis for the (3+1)-dimensional gauge gravity theory is undertaken.
APA, Harvard, Vancouver, ISO, and other styles
8

Whitt, Brian. "Gravity : a quantum theory?" Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hamilton, Craig S. "Measurements in quantum theory." Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=11885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hele, Timothy John Harvey. "Quantum transition-state theory." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708197.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum theory"

1

Bongaarts, Peter. Quantum Theory. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-09561-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manning, Phillip. Quantum theory. New York: Chelsea House, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anastasovski, P. K. Quantum mass theory compatible with quantum field theory. Commack, N.Y: Nova Science Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rammer, Jørgen. Quantum transport theory. Reading, Mass: Perseus Books, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Friederich, Simon. Interpreting Quantum Theory. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137447159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mandl, F. Quantum field theory. 2nd ed. Hoboken, N.J: Wiley, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ryder, Lewis H. Quantum field theory. Cambridge [Cambridgeshire]: Cambridge University Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Itzykson, Claude. Quantum field theory. Maidenhead: McGraw-Hill, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scadron, Michael D. Advanced Quantum Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-61252-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum theory"

1

Gracia-Bondía, José M., Joseph C. Várilly, and Héctor Figueroa. "Quantum Theory." In Elements of Noncommutative Geometry, 557–96. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cropper, William H. "Quantum Theory." In Mathermatica® Computer Programs for Physical Chemistry, 69–90. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2204-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Streltsov, Alexander. "Quantum Theory." In SpringerBriefs in Physics, 5–10. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09656-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Glimm, James, and Arthur Jaffe. "Quantum Theory." In Quantum Physics, 3–27. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4728-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

von Weizsäcker, Carl Friedrich. "Quantum Theory." In SpringerBriefs on Pioneers in Science and Practice, 74–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03668-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Silverman, M. P., and R. L. Mallett. "Quantum Theory." In AIP Physics Desk Reference, 693–724. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-1-4757-3805-6_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Onishi, Taku. "Quantum Theory." In Quantum Computational Chemistry, 3–11. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weik, Martin H. "quantum theory." In Computer Science and Communications Dictionary, 1388. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_15243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Russell, Travis B. "Quantum Theory." In Mathematics in Cyber Research, 421–52. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429354649-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gan, Woon Siong. "Quantum Theory." In Quantum Acoustical Imaging, 1–8. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0983-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum theory"

1

Mardari, Ghenadie N., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Understanding Quanta Beyond Quantum Mechanics." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grib, A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Quantum Logic and Macroscopic Quantum Games." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jaeger, Gregg, Kevin Ann, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Decoherence, Disentanglement and Foundations of Quantum Mechanics." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Prequantum Classical Statistical Field Theory—PCSFT." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khrennikov, Andrei, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Bell's Inequality: Nonlocalty, “Death of Reality”, or Incompatibility of Random Variables?" In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Man'ko, Margarita A., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Tomographic Entropy and New Entropic Uncertainty Relations." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Man'ko, Vladimir I., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Probability Instead of Wave Function and Bell Inequalities as Entanglement Criterion." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "The Pullback Mechanism in Stochastic Electrodynamics." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nieuwenhuizen, Th M., Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "The Relativistic Theory of Gravitation and its Application to Cosmology and Macroscopic Quantum Black Holes." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Accardi, Luigi, Satoshi Uchiyama, Guillaume Adenier, Andrei Yu Khrennikov, Pekka Lahti, Vladimir I. Man'ko, and Theo M. Nieuwenhuizen. "Universality of the EPR-chameleon model." In Quantum Theory. AIP, 2007. http://dx.doi.org/10.1063/1.2827299.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum theory"

1

Jafferis, Daniel. Topics in string theory, quantum field theory and quantum gravity. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1846570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Adami, Christoph. Relativistic Quantum Information Theory. Fort Belvoir, VA: Defense Technical Information Center, November 2007. http://dx.doi.org/10.21236/ada490967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jaffe, Arthur M. "Quantum Field Theory and QCD". Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/891184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Caldi, D. G. Studies in quantum field theory. Office of Scientific and Technical Information (OSTI), March 1993. http://dx.doi.org/10.2172/10165764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chudnovsky, Eugene M. Quantum Theory of Molecular Nanomagnets. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada387444.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hirshfeld, Allen. Deformation Quantization in Quantum Mechanics and Quantum Field Theory. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-11-41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lawrence, Albion, Matthew Headrick, Howard Schnitzer, Bogdan Stoica, Djordje Radicevic, Harsha Hampapura, Andrew Rolph, Jonathan Harper, and Cesar Agon. Research in Quantum Field Theory, Cosmology, and String Theory. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1837060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zurek, Wojciech H. Quantum Theory of the Classical: Einselection, Envariance, and Quantum Darwinism. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1073733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Light, John C. Quantum Theory of Fast Chemical Reactions. Office of Scientific and Technical Information (OSTI), July 2007. http://dx.doi.org/10.2172/910303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Heifets, Samuel A. Quantum Theory of Optical Stochastic Cooling. Office of Scientific and Technical Information (OSTI), December 2000. http://dx.doi.org/10.2172/784782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography