Academic literature on the topic 'Quantum superalgebras'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum superalgebras.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum superalgebras"
RASMUSSEN, JØRGEN. "SCREENING CURRENT REPRESENTATION OF QUANTUM SUPERALGEBRAS." Modern Physics Letters A 13, no. 18 (June 14, 1998): 1485–93. http://dx.doi.org/10.1142/s021773239800156x.
Full textDU, JIE, and JINKUI WAN. "THE QUEER -SCHUR SUPERALGEBRA." Journal of the Australian Mathematical Society 105, no. 3 (February 2, 2018): 316–46. http://dx.doi.org/10.1017/s1446788717000337.
Full textDELIUS, GUSTAV W., MARK D. GOULD, JON R. LINKS, and YAO-ZHONG ZHANG. "ON TYPE I QUANTUM AFFINE SUPERALGEBRAS." International Journal of Modern Physics A 10, no. 23 (September 20, 1995): 3259–81. http://dx.doi.org/10.1142/s0217751x95001571.
Full textGOULD, MARK D., and YAO-ZHONG ZHANG. "R-MATRICES AND THE TENSOR PRODUCT GRAPH METHOD." International Journal of Modern Physics B 16, no. 14n15 (June 20, 2002): 2145–51. http://dx.doi.org/10.1142/s0217979202011901.
Full textITO, KATSUSHI. "QUANTUM HAMILTONIAN REDUCTION AND WB ALGEBRA." International Journal of Modern Physics A 07, no. 20 (August 10, 1992): 4885–98. http://dx.doi.org/10.1142/s0217751x92002210.
Full textBOROWIEC, A., J. LUKIERSKI, and V. N. TOLSTOY. "BASIC TWIST QUANTIZATION OF osp(1|2) AND κ-DEFORMATION OF D = 1 SUPERCONFORMAL MECHANICS." Modern Physics Letters A 18, no. 17 (June 7, 2003): 1157–69. http://dx.doi.org/10.1142/s021773230301096x.
Full textHEIDENREICH, WOLFGANG, and JERZY LUKIERSKI. "QUANTIZED SUPERTWISTORS, HIGHER SPIN SUPERALGEBRAS AND SUPERSINGLETONS." Modern Physics Letters A 05, no. 06 (March 10, 1990): 439–51. http://dx.doi.org/10.1142/s0217732390000512.
Full text耿, 亚娜. "Coordinate Superalgebras of Quantum Superalgebras Based on the RTT Relation." Pure Mathematics 10, no. 12 (2020): 1213–19. http://dx.doi.org/10.12677/pm.2020.1012144.
Full textZhang, Huafeng. "Representations of quantum affine superalgebras." Mathematische Zeitschrift 278, no. 3-4 (June 10, 2014): 663–703. http://dx.doi.org/10.1007/s00209-014-1330-6.
Full textKac, Victor, Shi-Shyr Roan, and Minoru Wakimoto. "Quantum Reduction for Affine Superalgebras." Communications in Mathematical Physics 241, no. 2-3 (September 12, 2003): 307–42. http://dx.doi.org/10.1007/s00220-003-0926-1.
Full textDissertations / Theses on the topic "Quantum superalgebras"
Blumen, Sacha Carl. "Quantum Superalgebras at Roots of Unity and Topological Invariants of Three-manifolds." University of Sydney. School of Mathematics and Statistics, 2005. http://hdl.handle.net/2123/715.
Full textGrant, Jonathan William. "Diagrammatics for representation categories of quantum Lie superalgebras from skew Howe duality and categorification via foams." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11618/.
Full textHa, Ngoc-Phu. "Théorie quantique des champs topologiques pour la superalgèbre de Lie sl(2/1)." Thesis, Lorient, 2018. http://www.theses.fr/2018LORIS505/document.
Full textThis text studies the quantum group Uξ sl(2|1) associated with the Lie superalgebra sl(2|1) and a category of finite dimensional representations. The aim is to construct the topological invariants of 3-manifolds using the notion of modified trace. We first prove that the category CH of the nilpotent weight modules over Uξ sl(2|1) is ribbon and that there exists a modified trace on its ideal of projective modules. Furthermore, CH possesses a relative G-premodular structure which is a sufficient condition to construct an invariant of 3-manifolds of Costantino-Geer-Patureau type. This invariant is the heart of a 1+1+1-TQFT (Topological Quantum Field Theory). Next Hennings proposed from a finite dimensional Hopf algebra, a construction of invariants which does not require to consider the category of its representations. We show that the unrolled H l l quantum group Uξ sl(2|1)/(e1 , f1 ) has a completion which is a topological ribbon Hopf algebra. We construct an invariant of 3-manifolds of Hennings type using this algebraic structure, a discrete Fourier transform, and the notion of G-integrals. The integral in a Hopf algebra is central in the construction of Hennings. The notion of modified trace in a category has recently been revealed to be a generalization of the integrals in a finite dimensional Hopf algebra. In a more general context of infinite dimensional Hopf algebras we prove the relation formulated between the modified trace and the G-integral
Pepiciello, Martina. "Supersymmetric quantum mechanics and applications." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18379/.
Full text(8766687), Luan Pereira Bezerra. "Quantum Toroidal Superalgebras." Thesis, 2020.
Find full textPereira, Bezerra Luan. "Quantum Toroidal Superalgebras." Thesis, 2020. http://hdl.handle.net/1805/22682.
Full textWe introduce the quantum toroidal superalgebra E(m|n) associated with the Lie superalgebra gl(m|n) and initiate its study. For each choice of parity "s" of gl(m|n), a corresponding quantum toroidal superalgebra E(s) is defined. To show that all such superalgebras are isomorphic, an action of the toroidal braid group is constructed. The superalgebra E(s) contains two distinguished subalgebras, both isomorphic to the quantum affine superalgebra Uq sl̂(m|n) with parity "s", called vertical and horizontal subalgebras. We show the existence of Miki automorphism of E(s), which exchanges the vertical and horizontal subalgebras. If m and n are different and "s" is standard, we give a construction of level 1 E(m|n)-modules through vertex operators. We also construct an evaluation map from E(m|n)(q1,q2,q3) to the quantum affine algebra Uq gl̂(m|n) at level c=q3^(m-n)/2.
Zaimi, Meri. "Algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Askey-Wilson, et autres centralisateurs de U_q(sl_2)." Thesis, 2020. http://hdl.handle.net/1866/24381.
Full textCe mémoire contient trois articles reliés par l'idée sous-jacente d'une généralisation de la dualité de Schur-Weyl. L'objectif principal est d'obtenir une description algébrique du centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles, lorsque q n'est pas une racine de l'unité. La relation entre une algèbre de Askey-Wilson étendue AW(3) et ce centralisateur est examinée à cet effet. Dans le premier article, les éléments du centralisateur de l'action de U_q(sl_2) dans son produit tensoriel triple sont définis à l'aide de la matrice R universelle de U_q(sl_2). Il est montré que ces éléments respectent les relations définissantes de AW(3). Dans le deuxième article, la matrice R universelle de la superalgèbre de Lie osp(1|2) est utilisée de manière similaire avec l'algèbre de Bannai-Ito BI(3). Dans ce cas, le formalisme de la matrice R permet de définir l'algèbre de Bannai-Ito de rang supérieur BI(n) comme le centralisateur de l'action de osp(1|2) dans son produit tensoriel n-fois. Le troisième article propose une conjecture qui établit un isomorphisme entre un quotient de AW(3) et le centralisateur de l'image de l'action diagonale de U_q(sl_2) dans le produit tensoriel de trois représentations irréductibles quelconques. La conjecture est prouvée pour plusieurs cas, et les algèbres de Temperley-Lieb, Birman-Murakami-Wenzl et Temperley-Lieb à une frontière sont retrouvées comme quotients de l'algèbre de Askey-Wilson.
This master thesis contains three articles related by the underlying idea of a generalization of the Schur-Weyl duality. The main objective is to obtain an algebraic description of the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of three irreducible representations, when q is not a root of unity. The connection between a centrally extended Askey-Wilson algebra AW(3) and this centralizer is examined for this purpose. In the first article, the elements of the centralizer of the action of U_q(sl_2) in its threefold tensor product are defined with the help of the universal R-matrix of U_q(sl_2). These elements are shown to satisfy the defining relations of AW(3). In the second article, the universal R-matrix of the Lie superalgebra osp(1|2) is used in a similar fashion with the Bannai-Ito algebra BI(3). In this case, the formalism of the R-matrix allows to define the higher rank Bannai-Ito algebra BI(n) as the centralizer of the action of osp(1|2) in its n-fold tensor product. The third article proposes a conjecture that establishes an isomorphism between a quotient of AW(3) and the centralizer of the image of the diagonal action of U_q(sl_2) in the tensor product of any three irreducible representations. The conjecture is proved for several cases, and the Temperley-Lieb, Birman-Murakami-Wenzl and one-boundary Temperley-Lieb algebras are recovered as quotients of the Askey-Wilson algebra.
Books on the topic "Quantum superalgebras"
Quantum stochastic calculus and representations of Lie superalgebras. Berlin: Springer, 1998.
Find full textEyre, Timothy M. W. Quantum Stochastic Calculus and Representations of Lie Superalgebras. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096850.
Full textXu, Xiaoping. Introduction to Vertex Operator Superalgebras and Their Modules. Dordrecht: Springer Netherlands, 1998.
Find full textS, Kleshchëv A., ed. Representations of shifted Yangians and finite W-algebras. Providence, R.I: American Mathematical Society, 2008.
Find full text1944-, Kulish P. P., Manojlovic Nenad 1962-, and Samtleben Henning, eds. Infinite dimensional algebras and quantum integrable systems. Basel: Birkhäuser Verlag, 2005.
Find full text1959-, Ariki Susumu, ed. Algebraic groups and quantum groups: International Conference on Representation Theory of Algebraic Groups and Quantum Groups, August 2-6, 2010, Nagoya University, Nagoya, Japan. Providence, R.I: American Mathematical Society, 2012.
Find full textMisra, Kailash C., Milen Yakimov, Pramod N. Achar, and Dijana Jakelic. Recent advances in representation theory, quantum groups, algebraic geometry, and related topics: AMS special sessions on geometric and algebraic aspects of representation theory and quantum groups, and noncommutative algebraic geometry, October 13-14, 2012, Tulane University, New Orleans, Louisiana. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textauthor, Winternitz Pavel, ed. Classification and identification of Lie algebras. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textLie algebras, lie superalgebras, vertex algebras, and related topics: Southeastern Lie Theory Workshop Series 2012-2014 : Categorification of Quantum Groups and Representation Theory, April 21-22, 2012, North Carolina State University : Lie Algebras, Vertex Algebras, Integrable Systems and Applications, December 16-18, 2012, College of Charleston : Noncommutative Algebraic Geometry and Representation Theory, May 10-12, 2013, Louisiana State Vniversity : Representation Theory of Lie Algebras and Lie Superalgebras, May 16-17, 2014, University of Georgia. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textNeher, Erhard. Geometric representation theory and extended affine Lie algebras. Providence, R.I: American Mathematical Society, 2011.
Find full textBook chapters on the topic "Quantum superalgebras"
Kulish, P. P. "Quantum Lie Superalgebras and Supergroups." In Research Reports in Physics, 14–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-84000-5_2.
Full textEyre, Timothy M. W. "Quantum stochastic calculus." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 7–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096852.
Full textEyre, Timothy M. W. "The Ito superalgebra." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 59–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096856.
Full textEyre, Timothy M. W. "Some results in Z2-graded quantum stochastic calculus." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 77–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096857.
Full textEyre, Timothy M. W. "Representations of lie superalgebras in Z2-graded quantum stochastic calculus." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096854.
Full textEyre, Timothy M. W. "Introduction." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096851.
Full textEyre, Timothy M. W. "Z2-graded structures." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 23–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096853.
Full textEyre, Timothy M. W. "The ungraded higher order Ito product formula." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 51–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096855.
Full textEyre, Timothy M. W. "Chaotic expansions." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 101–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096858.
Full textEyre, Timothy M. W. "Extensions." In Quantum Stochastic Calculus and Representations of Lie Superalgebras, 113–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0096859.
Full textConference papers on the topic "Quantum superalgebras"
Tolstoy, V. N. "Multiparameter Quantum Deformations of Jordanian Type for Lie Superalgebras." In Proceedings of the 23rd International Conference of Differential Geometric Methods in Theoretical Physics. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772527_0041.
Full textFerrara, Sergio. "Superspace Representations of SU(2,2/N) Superalgebras and Multiplet Shortening." In Quantum aspects of gauge theories, supersymmetry and unification. Trieste, Italy: Sissa Medialab, 2000. http://dx.doi.org/10.22323/1.004.0016.
Full textBURDíK, Č., and O. NAVRÁTIL. "THE Q–BOSON–FERMION REALIZATION OF THE QUANTUM SUPERALGEBRA UQ (GL(M/N))." In Proceedings of the Fifth International Workshop. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702562_0027.
Full textUvarov, D. V. "Quantum BRST Charge and OSp(1∣8) Superalgebra of Twistor-Like p-branes with Exotic Supersymmetry and Weyl Symmetry." In FUNDAMENTAL INTERACTIONS AND TWISTOR-LIKE METHODS: XIX Max Born Symposium. AIP, 2005. http://dx.doi.org/10.1063/1.1923336.
Full text