Journal articles on the topic 'Quantum stark effect'

To see the other types of publications on this topic, follow the link: Quantum stark effect.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum stark effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Marie, X., J. Barrau, B. Brousseau, Th Amand, M. Brousseau, N. Lauret, C. Starck, and A. Peralès. "Stark effect in quantum-wells." Superlattices and Microstructures 10, no. 1 (January 1991): 95–98. http://dx.doi.org/10.1016/0749-6036(91)90155-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Y., H. S. Djie, and B. S. Ooi. "Quantum-confined Stark effect in interdiffused quantum dots." Applied Physics Letters 89, no. 15 (October 9, 2006): 151104. http://dx.doi.org/10.1063/1.2358296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bonilla, L. L., V. A. Kochelap, and C. A. Velasco. "Patterns under quantum confined Stark effect." Journal of Physics: Condensed Matter 10, no. 31 (August 10, 1998): L539—L546. http://dx.doi.org/10.1088/0953-8984/10/31/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

JAZIRI, S., G. BASTARD, and R. BENNACEUR. "Stark effect in parabolic quantum dot." Le Journal de Physique IV 03, no. C5 (October 1993): 367–72. http://dx.doi.org/10.1051/jp4:1993577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pokutnyi, S. I., L. Jacak, J. Misiewicz, W. Salejda, and G. G. Zegrya. "Stark effect in semiconductor quantum dots." Journal of Applied Physics 96, no. 2 (July 15, 2004): 1115–19. http://dx.doi.org/10.1063/1.1759791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior, and B. C. Cavenett. "quantum confined Stark effect waveguide modulator." Journal of Crystal Growth 159, no. 1-4 (February 1996): 902–5. http://dx.doi.org/10.1016/0022-0248(95)00796-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio, and V. R. Velasco. "Stark effect in diffused quantum wells." Superlattices and Microstructures 26, no. 5 (November 1999): 325–32. http://dx.doi.org/10.1006/spmi.1999.0786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gibb, K., C. Lacelle, Q. Sun, E. Fortin, and A. P. Roth. "The quantum-confined Stark effect in shallow quantum wells." Canadian Journal of Physics 69, no. 3-4 (March 1, 1991): 447–50. http://dx.doi.org/10.1139/p91-073.

Full text
Abstract:
We have investigated the quantum-confined Stark effect for a series of four InGaAs–GaAs single quantum wells using photocurrent spectroscopy. All four samples reveal quadratic Stark shifts for the lowest electron-to-heavy-hole transition at weak electric fields. The field dependence becomes subquadratic at large applied fields. The field dependent reduction of the exciton binding energy is measured and is on the order of a millielectron volt for applied electric fields approaching 80 kV cm−1.
APA, Harvard, Vancouver, ISO, and other styles
9

Qiu, Ying Ning, Wei Sheng Lu, and Stephane Calvez. "Quantum Confinement Stark Effect of Different Gainnas Quantum Well Structures." Advanced Materials Research 773 (September 2013): 622–27. http://dx.doi.org/10.4028/www.scientific.net/amr.773.622.

Full text
Abstract:
The quantum confinement Stark effect of three types of GaInNAs quantum wells, namely single square quantum well, stepped quantum wells and coupled quantum wells, is investigated using the band anti-crossing model. The comparison between experimental observation and modeling result validate the modeling process. The effects of the external electric field and localized N states on the quantized energy shifts of these three structures are compared and analyzed. The external electric field applied to the QW not only changes the potential profile but also modulates the localized N states, which causes band gap energy shifts and increase of electron effective mass.
APA, Harvard, Vancouver, ISO, and other styles
10

Morita, Masahiko, Katsuyuki Goto, and Takeo Suzuki. "Quantum-Confined Stark Effect in Stepped-Potential Quantum Wells." Japanese Journal of Applied Physics 29, Part 2, No. 9 (September 20, 1990): L1663—L1665. http://dx.doi.org/10.1143/jjap.29.l1663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hiroshima, Tohya, and Kenichi Nishi. "Quantum‐confined Stark effect in graded‐gap quantum wells." Journal of Applied Physics 62, no. 8 (October 15, 1987): 3360–65. http://dx.doi.org/10.1063/1.339298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fröhlich, D., R. Wille, W. Schlapp, and G. Weimann. "Optical quantum-confined Stark effect in GaAs quantum wells." Physical Review Letters 59, no. 15 (October 12, 1987): 1748–51. http://dx.doi.org/10.1103/physrevlett.59.1748.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pokutnyi, Sergey I. "Size Quantization Stark Effect in Quantum Dots." Optics 3, no. 6 (2014): 57. http://dx.doi.org/10.11648/j.optics.s.2014030601.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Jana, Raj K., and Debdeep Jena. "Stark-effect scattering in rough quantum wells." Applied Physics Letters 99, no. 1 (July 4, 2011): 012104. http://dx.doi.org/10.1063/1.3607485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, S. Y., Y. Kawakami, J. Simpson, H. Stewart, K. A. Prior, and B. C. Cavenett. "ZnSe‐ZnCdSe quantum confined Stark effect modulators." Applied Physics Letters 62, no. 15 (April 12, 1993): 1715–17. http://dx.doi.org/10.1063/1.109583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Andrews, S. R., C. M. Murray, R. A. Davies, and T. M. Kerr. "Stark effect in strongly coupled quantum wells." Physical Review B 37, no. 14 (May 15, 1988): 8198–204. http://dx.doi.org/10.1103/physrevb.37.8198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MYSYROWICZ, A., and D. HULIN. "OPTICAL STARK EFFECT IN GaAs QUANTUM WELLS." Le Journal de Physique Colloques 49, no. C2 (June 1988): C2–175—C2–177. http://dx.doi.org/10.1051/jphyscol:1988241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ekinov, A. I., Al L. Efros, T. V. Shubina, and A. P. Skvortsov. "Quantum-size stark effect in semiconductor microcrystals." Journal of Luminescence 46, no. 2 (March 1990): 97–100. http://dx.doi.org/10.1016/0022-2313(90)90011-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kawakami, Y., S. Y. Wang, J. Simpson, I. Hauksson, S. J. A. Adams, H. Stewart, B. C. Cavenett, and K. A. Prior. "II–VI quantum-confined Stark effect modulators." Physica B: Condensed Matter 185, no. 1-4 (April 1993): 496–99. http://dx.doi.org/10.1016/0921-4526(93)90285-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rinaldi, Ross, Milena DeGiorgi, Massimo DeVittorio, Angelo Melcarne, Paolo Visconti, Roberto Cingolani, Harri Lipsanen, Markku Sopanen, T. Drufva, and Jukka Tulkki. "Longitudinal Stark Effect in Parabolic Quantum Dots." Japanese Journal of Applied Physics 40, Part 1, No. 3B (March 30, 2001): 2002–5. http://dx.doi.org/10.1143/jjap.40.2002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Rossmann, H., A. Schülzgen, F. Henneberger, and M. Müller. "Quantum Confined DC Stark Effect in Microcrystallites." physica status solidi (b) 159, no. 1 (May 1, 1990): 287–90. http://dx.doi.org/10.1002/pssb.2221590133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kim, S. J., Y. T. Oh, S. K. Kim, T. W. Kang, and T. W. Kim. "Stark effect and Stark‐ladder effect in Al0.4Ga0.6As/GaAs asymmetric coupled multiple quantum wells." Journal of Applied Physics 77, no. 6 (March 15, 1995): 2486–94. http://dx.doi.org/10.1063/1.358777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Short, S. W., S. H. Xin, A. Yin, H. Luo, M. Dobrowolska, and J. K. Furdyna. "Quantum‐confined Stark effect in ZnSe/Zn1−xCdxSe quantum wells." Applied Physics Letters 67, no. 4 (July 24, 1995): 503–5. http://dx.doi.org/10.1063/1.114550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ishikawa, Takuya, Shinji Nishimura, and Kunio Tada. "Quantum-Confined Stark Effect in a Parabolic-Potential Quantum Well." Japanese Journal of Applied Physics 29, Part 1, No. 8 (August 20, 1990): 1466–73. http://dx.doi.org/10.1143/jjap.29.1466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Li, E. Herbert, K. S. Chan, Bernard L. Weiss, and Joseph Micallef. "Quantum‐confined Stark effect in interdiffused AlGaAs/GaAs quantum well." Applied Physics Letters 63, no. 4 (July 26, 1993): 533–35. http://dx.doi.org/10.1063/1.109996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Héroux, J. B., X. Yang, and W. I. Wang. "Quantum confined Stark effect in GaInNAs∕GaAs multiple quantum wells." IEE Proceedings - Optoelectronics 150, no. 1 (2003): 92. http://dx.doi.org/10.1049/ip-opt:20030042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Empedocles, S. A. "Quantum-Confined Stark Effect in Single CdSe Nanocrystallite Quantum Dots." Science 278, no. 5346 (December 19, 1997): 2114–17. http://dx.doi.org/10.1126/science.278.5346.2114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wakita, Koichi, Isamu Kotaka, Masashi Nakao, and Hiromitsu Asai. "Large Quantum-Confined Stark-Effect in Quaternary InGaAlAs Quantum Wells." Japanese Journal of Applied Physics 28, Part 1, No. 9 (September 20, 1989): 1732–33. http://dx.doi.org/10.1143/jjap.28.1732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chen, W. Q., S. M. Wang, T. G. Andersson, and J. Thordson. "Inverse parabolic quantum well and its quantum‐confined Stark effect." Journal of Applied Physics 74, no. 10 (November 15, 1993): 6247–50. http://dx.doi.org/10.1063/1.355167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hallford, Randal, and Preet Sharma. "Non-Hermitian Hamiltonian Treatment of Stark Effect in Quantum Mechanics." Emerging Science Journal 4, no. 6 (December 1, 2020): 427–35. http://dx.doi.org/10.28991/esj-2020-01242.

Full text
Abstract:
The Non-Hermitian aspect of Quantum Mechanics has been of great interest recently. There have been numerous studies on non-Hermitian Hamiltonians written for natural processes. Some studies have even expressed the hydrogen atom in a non-Hermitian basis. In this paper the principles of non-Hermitian quantum mechanics is applied to both the time independent perturbation theory and to the time dependant theory to calculate the Stark effect. The principles of spherical harmonics has also been used to describe the development in the non-Hermitian case. Finally, the non-Hermitian aspect has been introduced to the well known Stark effect in quantum mechanics to find a condition in which the Stark effect will still be true even if a non-Hermitian Hamiltonian is used. This study completes the understanding at a fundamental level to understand the well known Stark effect. Doi: 10.28991/esj-2020-01242 Full Text: PDF
APA, Harvard, Vancouver, ISO, and other styles
31

Anwar, S. Jamal, M. Ramzan, M. Usman, and M. Khalid Khan. "Entanglement Dynamics of Three and Four Level Atomic System under Stark Effect and Kerr-Like Medium." Quantum Reports 1, no. 1 (May 28, 2019): 23–36. http://dx.doi.org/10.3390/quantum1010004.

Full text
Abstract:
We investigated numerically the dynamics of quantum Fisher information (QFI) and entanglement for three- and four-level atomic systems interacting with a coherent field under the effect of Stark shift and Kerr medium. It was observed that the Stark shift and Kerr-like medium play a prominent role during the time evolution of the quantum systems. The non-linear Kerr medium has a stronger effect on the dynamics of QFI as compared to the quantum entanglement (QE). QFI is heavily suppressed by increasing the value of Kerr parameter. This behavior was found comparable in the cases of three- and four-level atomic systems coupled with a non-linear Kerr medium. However, QFI and quantum entanglement (QE) maintain their periodic nature under atomic motion. On the other hand, the local maximum value of QFI and von Neumann entropy (VNE) decrease gradually under the Stark effect. Moreover, no prominent difference in the behavior of QFI and QE was observed for three- and four-level atoms while increasing the value of Stark parameter. However, three- and four-level atomic systems were found equally prone to the non-linear Kerr medium and Stark effect. Furthermore, three- and four-level atomic systems were found fully prone to the Kerr-like medium and Stark effect.
APA, Harvard, Vancouver, ISO, and other styles
32

Sakimoto, K. "Multichannel quantum-defect theory of the Stark effect." Journal of Physics B: Atomic and Molecular Physics 19, no. 19 (October 14, 1986): 3011–25. http://dx.doi.org/10.1088/0022-3700/19/19/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kulakci, Mustafa, Ugur Serincan, Rasit Turan, and Terje G. Finstad. "The quantum confined Stark effect in silicon nanocrystals." Nanotechnology 19, no. 45 (October 8, 2008): 455403. http://dx.doi.org/10.1088/0957-4484/19/45/455403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Thompson, P. J., S. Y. Wang, G. Horsburgh, T. A. Steele, K. A. Prior, and B. C. Cavenett. "II–VI quantum confined Stark effect waveguide modulators." Applied Physics Letters 68, no. 7 (February 12, 1996): 946–48. http://dx.doi.org/10.1063/1.116107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Díaz-Fernández, A., and F. Domínguez-Adame. "Quantum-confined Stark effect in band-inverted junctions." Physica E: Low-dimensional Systems and Nanostructures 93 (September 2017): 230–33. http://dx.doi.org/10.1016/j.physe.2017.06.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jianping, Peng, W. S. LI, Gu Shiwei, and Y. Y. YEUNG. "Stark Effect of Polarons in Parabolic Quantum Wells." Communications in Theoretical Physics 29, no. 3 (April 30, 1998): 329–36. http://dx.doi.org/10.1088/0253-6102/29/3/329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hildebrandt, J. "High-frequency Stark effect and two-quantum transitions." Journal of Physics B: Atomic, Molecular and Optical Physics 40, no. 11 (May 24, 2007): 2121–33. http://dx.doi.org/10.1088/0953-4075/40/11/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Reyes-Esqueda, Jorge-Alejandro, Carlos I. Mendoza, Marcelo del Castillo-Mussot, and Gerardo J. Vázquez. "Stark effect in a wedge-shaped quantum box." Physica E: Low-dimensional Systems and Nanostructures 28, no. 4 (September 2005): 365–73. http://dx.doi.org/10.1016/j.physe.2005.04.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Qu, Fanyao, and P. C. Morais. "The optical Stark effect in semiconductor quantum wires." Physics Letters A 310, no. 5-6 (April 2003): 460–64. http://dx.doi.org/10.1016/s0375-9601(03)00381-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Rolnik, S., and J. Adamowski. "Stark Effect for Donors in Double Quantum Wells." Acta Physica Polonica A 88, no. 5 (November 1995): 893–96. http://dx.doi.org/10.12693/aphyspola.88.893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Robinson, Paul, and Hans Maassen. "Quantum stochastic calculus and the dynamical stark effect." Reports on Mathematical Physics 30, no. 2 (October 1991): 185–203. http://dx.doi.org/10.1016/0034-4877(91)90024-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jae-Hyun Ryou, P. D. Yoder, Jianping Liu, Z. Lochner, Hyunsoo Kim, Suk Choi, Hee Jin Kim, and R. D. Dupuis. "Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells." IEEE Journal of Selected Topics in Quantum Electronics 15, no. 4 (July 2009): 1080–91. http://dx.doi.org/10.1109/jstqe.2009.2014170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Rong, Yiwen, Yangsi Ge, Yijie Huo, Marco Fiorentino, Michael R. T. Tan, Theodore I. Kamins, Tomasz J. Ochalski, Guillaume Huyet, and James S. Harris Jr. "Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 1 (January 2010): 85–92. http://dx.doi.org/10.1109/jstqe.2009.2031502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Arakawa, T., Y. Kato, F. Sogawa, and Y. Arakawa. "Photoluminescence studies of GaAs quantum wires with quantum confined Stark effect." Applied Physics Letters 70, no. 5 (February 3, 1997): 646–48. http://dx.doi.org/10.1063/1.118295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Chaisakul, Papichaya, Delphine Marris-Morini, Giovanni Isella, Daniel Chrastina, Xavier Le Roux, Eleonora Gatti, Samson Edmond, Johann Osmond, Eric Cassan, and Laurent Vivien. "Quantum-confined Stark effect measurements in Ge/SiGe quantum-well structures." Optics Letters 35, no. 17 (August 24, 2010): 2913. http://dx.doi.org/10.1364/ol.35.002913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Drabinska, A., K. Pakula, J. M. Baranowski, and A. Wysmolek. "Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells." Journal of Physics: Conference Series 253 (November 1, 2010): 012009. http://dx.doi.org/10.1088/1742-6596/253/1/012009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Zhi-Bing, Hui-Chao Zhang, and Jia-Yu Zhang. "Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots." Chinese Physics Letters 27, no. 12 (December 2010): 127803. http://dx.doi.org/10.1088/0256-307x/27/12/127803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gurioli, M., S. Sanguinetti, and M. Henini. "Dynamic quantum-confined stark effect in self-assembled InAs quantum dots." Applied Physics Letters 78, no. 7 (February 12, 2001): 931–33. http://dx.doi.org/10.1063/1.1348305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tobin, Mary S., and John D. Bruno. "Quantum-confined Stark effect modulator based on multiple triple-quantum wells." Journal of Applied Physics 89, no. 3 (2001): 1885. http://dx.doi.org/10.1063/1.1338517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Jin-Long, Liu, Li Shu-Shen, Niu Zhi-Chuan, Yang Fu-Hua, and Feng Song-Lin. "Quantum-Confined Stark Effect of Vertically Stacked Self-Assembled Quantum Discs." Chinese Physics Letters 20, no. 8 (July 30, 2003): 1336–39. http://dx.doi.org/10.1088/0256-307x/20/8/345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography