Dissertations / Theses on the topic 'Quantum quench, out of equilibrium physics'

To see the other types of publications on this topic, follow the link: Quantum quench, out of equilibrium physics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Quantum quench, out of equilibrium physics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Menegoz, Giuseppe. "Prethermalization after a sudden quench in a weakly interacting Bose system." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3872.

Full text
Abstract:
We calculate the dynamics of local and non-local correlation functions of one and threedimensional weakly interacting Bose gas after an interaction quench. Within the Bogoliubov approximation we discuss the resulting quasi-steady prethermal state and relaxation to it. We discuss the deacay rates of Bogoliubov quasi-particles characterizing the expected departure from the prethermal state towards a fully thermalized one. We conclude that prethermalization in this situation manifest as a crossover.
APA, Harvard, Vancouver, ISO, and other styles
2

Wolswijk, Louise. "Equilibrium and out-of-equilibrium physics of Bose gases at finite temperature." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/347823.

Full text
Abstract:
The physics of ultracold quantum gases has been the subject of a long-lasting and intense research activity, which started almost a century ago with purely theoretical studies and had a fluorishing experimental development after the implementation of laser and evaporative cooling techniques that led to the first realization of a Bose Einstein condensate (BEC) over 25 years ago. In recent years, a great interest in ultracold atoms has developed for their use as platforms for quantum technologies, given the high degree of control and tunability offered by ultracold atom systems. These features make ultracold atoms an ideal test bench for simulating and studying experimentally, in a controlled environment, physical phenomena analogous to those occurring in other, more complicated, or even inaccessible systems, which is the idea at the heart of quantum simulation. In the rapidly developing field of quantum technologies, it is highly important to acquire an in-depth understanding of the state of the quantum many-body system that is used, and of the processes needed to reach the desired state. The preparation of the system in a given target state often involves the crossing of second order phase transitions, bringing the system strongly out-of-equilibrium. A better understanding of the out-of-equilibrium processes occurring in the vicinity of the transition, and of the relaxation dynamics towards the final equilibrium condition, is crucial in order to produce well-controlled quantum states in an efficient way. In this thesis I present the results of the research activity that I performed during my PhD at the BEC1 laboratory of the BEC center, working on ultracold gases of 23Na atoms in an elongated harmonic trap. This work had two main goals: the accurate determination of the equilibrium properties of a Bose gas at finite temperature, by the measurement of its equation of state, and the investigation of the out-of-equilibrium dynamics occurring when a Bose Einstein condensate is prepared by cooling a thermal cloud at a finite rate across the BEC phase transition.To study the equilibrium physics of a trapped atomic cloud, it is crucial to be able to observe its density distribution in situ. This requires a high optical resolution to accurately obtain the density profile of the atomic distribution, from which thermodynamic quantities can then be extracted. In particular, in a partially condensed atomic cloud at finite temperature, it is challenging to resolve well also the boundaries of the BEC, where the condensate fraction rapidly drops in a narrow spatial region. This required an upgrade of the experimental apparatus in order to obtain a high enough resolution. I designed, tested and implemented in the experimental setup new imaging systems for all main directions of view. Particular attention was paid for the vertical imaging system, which was designed to image the condensates in trap with a resolution below 2 μm, with about a factor 4 improvement compared to the previous setup. The implementation of the new imaging systems involved a partial rebuilding of the experimental apparatus used for cooling the atoms. This created the occasion for an optimization of the whole system to obtain more stable working conditions. Concurrently I also realized and included in the experiment an optical setup for the use of a Digital Micromirror Device (DMD) to project time-dependent arbitrary light patterns on the atoms, creating optical potentials that can be controlled at will. The use of this device opens up exciting future scenarios where it will be possible to locally modify the trapping potential and to create well-controlled barriers moving through the atomic cloud. Another challenge in imaging the density distribution in situ is determined by the fact that the maximum optical density (OD) of the BEC, in the trap center, exceeds the low OD of the thermal tails by several orders of magnitude. In order to obtain an accurate image of the whole density profile, we developed a minimally destructive, multi-shot imaging technique, based on the partial transfer of a fraction of atoms to an auxiliary state, which is then probed. Taking multiple images at different extraction fractions, we are able to reconstruct the whole density profile of the atomic cloud avoiding saturation and maintaining a good signal to noise ratio. This technique, together with the improvements in the imaging resolution, has allowed us to accurately obtain the optical density profile of the Bose gas in trap, from which the 3D density profile was then calculated applying an inverse Abel transform, taking advantage of the symmetry of the trap. From images of the same cloud after a time-of-flight expansion, we measured the temperature of the gas. From these quantities we could find the pressure as a function of the density and temperature, determining the canonical equation of state of the weakly interacting Bose gas in equilibrium at finite temperature. These measurements also allowed us to clearly observe the non-monotonic temperature behavior of the chemical potential near the critical point for the phase transition, a feature that characterizes also other superfluid systems, but that had never been observed before in weakly interacting Bose gases. The second part of this thesis work is devoted to the study of the dynamical processes that occur during the formation of the BEC order parameter within a thermal cloud. The cooling at finite rate across the Bose-Einstein condensation transition brings the system in a strongly out-of-equilibrium state, which is worth investigating, together with the subsequent relaxation towards an equilibrium state. This is of interest also in view of achieving a better understanding of second order phase transitions in general, since such phenomena are ubiquitous in nature and relevant also in other platforms for quantum technologies. A milestone result in the study of second order phase transitions is given by the Kibble-Zurek mechanism, which provides a simple model capturing important aspects of the evolution of a system that crosses a second-order phase transition at finite rate. It is based on the principle that in an extended system the symmetry breaking associated with a continuous phase transition can take place only locally. This causes the formation of causally disconnected domains of the order parameter, at the boundaries of which topological defects can form, whose number and size scale with the rate at which the transition is crossed, following a universal power law. It was originally developed in the context of cosmology, but was later successfully tested in a variety of systems, including superfluid helium, superconductors, trapped ions and ultracold atoms. The BEC phase transition represents in this context a paradigmatic test-bench, given the high degree of control at which this second-order phase transition can be crossed by means of cooling ramps at different rates. Already early experiments investigated the formation of the BEC order parameter within a thermal cloud, after quasi-instantaneous temperature quenches or very slow evaporative cooling. In the framework of directly testing the Kibble-Zurek mechanism, further experiments were performed, both in 2D and 3D systems, focusing on the emergence of coherence and on the statistics of the spontaneously generated topological defects as a function of the cooling rate. The Kibble-Zurek mechanism, however, does not fully describe the out-of-equilibrium dynamics of the system at the transition, nor the post-quench interaction mechanisms between domains that lead to coarse-graining. Most theoretical models are based on a direct linear variation of a single control parameter, e.g. the temperature, across the transition. In real experiments, the cooling process is controlled by the tuning of other experimental parameters and a global temperature might not even be well defined, in a thermodynamic sense, during the whole process. Moreover, the temperature variation is usually accompanied by the variation of other quantities, such as the number of atoms and the collisional rate, making it difficult to accurately describe the system and predict the post-quench properties. Recent works included effects going beyond the Kibble-Zurek mechanism, such as the inhomogeneity introduced by the trapping potential, the role of atom number losses, and the saturation of the number of defects for high cooling rates. These works motivate further studies, in particular of the dynamics taking place at early times, close to the crossing of the critical point. The aim of the work presented in this thesis is to further investigate the timescales associated to the formation and evolution of the BEC order parameter and its spatial fluctuations, as a function of the rate at which the transition point is crossed. We performed experiments producing BECs by means of cooling protocols that are commonly used in cold-atom laboratories, involving evaporative cooling in a magnetic trap. We explored a wide range of cooling rates across the transition and found a universal scaling for the growth of the BEC order parameter with the cooling rate and a finite delay in its formation. The latter was already observed in earlier works, but for a much more limited range of cooling rates. The evolution of the fluctuations of the order parameter was also investigated, with an analysis of the timescale of their decay during the relaxation of the system, from an initial strongly out-of-equilibrium condition to a final equilibrium state. This thesis is structured as follows: The first chapter presents the theoretical background, starting with a brief introduction to the concept of Bose Einstein condensation and a presentation of different models describing the thermodynamics of an equilibrium Bose gas. The second part of this chapter then deals with the out-of-equilibrium dynamics that is inevitably involved in the crossing of a second-order phase transition such as the one for Bose-Einstein condensation. The Kibble-Zurek mechanism is briefly reviewed and beyond KZ effects are pointed out, motivating a more detailed investigation of the timescales involved in the BEC formation. In the second chapter, I describe the experimental apparatus that we use to cool and confine the atoms. Particular detail is dedicated to the parts that have been upgraded during my PhD, such as the imaging system. In the third chapter I show our experimental results on the measurement of the equation of state of the weakly interacting uniform Bose gas at finite temperature. In the fourth chapter I present our results on the out-of-equilibrium dynamics in the formation of the condensate order parameter and its spatial fluctuations, as a function of different cooling rates.
APA, Harvard, Vancouver, ISO, and other styles
3

Halimeh, Jad Camille [Verfasser], and Ulrich [Akademischer Betreuer] Schollwöck. "Frustrated magnetism, quench dynamics, and out-of-equilibrium criticality in quantum many-body lattices / Jad Camille Halimeh ; Betreuer: Ulrich Schollwöck." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1124779930/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Halimeh, Jad C. [Verfasser], and Ulrich [Akademischer Betreuer] Schollwöck. "Frustrated magnetism, quench dynamics, and out-of-equilibrium criticality in quantum many-body lattices / Jad Camille Halimeh ; Betreuer: Ulrich Schollwöck." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1124779930/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Robinson, Neil Joe. "Pairing, paramagnetism and prethermalization in strongly correlated low-dimensional quantum systems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:167d164c-e318-49b3-83ea-69b54ec531e0.

Full text
Abstract:
Quasi-one-dimensional quantum models are ideal for theoretically exploring the physical phenomena associated with strong correlations. In this thesis we study three examples where strong correlations play an important role in the static or dynamic properties of the system. Firstly, we examine the behaviour of a doped fermionic two-leg ladder in which umklapp interactions are present. Such interactions arise at special band fillings and can be induced by the formation of charge density wave order in an array of two-leg ladders with long-range (three-dimensional) interactions. For the umklapp which arises from the half-filling of one of the bands, we show that the low-energy theory has a number of phases, including a strong coupling regime in which the dominant fluctuations are superconducting in nature. These superconducting fluctuations carry a finite wave vector – they are the one-dimensional analogue of Fulde-Ferrell-Larkin-Ovchinnikov superconductivity. In a second example, we consider a quantum spin model which captures the essential one-dimensional physics of CoNb2O6, a quasi-one-dimensional Ising ferromagnet. Motivated by high-resolution inelastic neutron scattering experiments, we calculate the dynamical structure in the paramagnetic phase and show that a small misalignment of the transverse field can lead to quasi-particle breakdown – a surprising broadening in the single particle mode observed in experiment. Finally, we study the out-of-equilibrium dynamics of a model with tuneable integrability breaking. When integrability is broken by the presence of weak interactions, we show that the system relaxes to a non-thermal state on intermediate time scales, the so-called “prethermalization plateau”. We describe the approximately stationary behaviour in this regime by constructing a generalised Gibbs ensemble with charges deformed to leading order in perturbation theory. Expectation values of these charges are time-independent, but interestingly the charges do not commute with the Hamiltonian to leading order in perturbation theory. Increasing the strength of the integrability breaking interactions leads to behaviour compatible with thermalisation. In each case we use a combination of perturbative analytical calculations and non-perturbative numerical computations to study the problem at hand.
APA, Harvard, Vancouver, ISO, and other styles
6

Bidzhiev, Kemal. "Out-of-equilibrium dynamics in a quantum impurity model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.

Full text
Abstract:
Le domaine des problèmes quantiques à N-corps à l'équilibre et hors d'équilibre sont des sujets majeurs de la Physique et de la Physique de la matière condensée en particulier. Les propriétés d'équilibre de nombreux systèmes unidimensionnels en interaction sont bien comprises d'un point de vue théorique, des chaînes de spins aux théories quantiques des champs dans le continue. Ces progrès ont été rendus possibles par le développement de nombreuses techniques puissantes, comme, par exemple, l'ansatz de Bethe, le groupe de renormalisation, la bosonisation, les états produits de matrices ou la théorie des champs invariante conforme. Même si les propriétés à l'équilibre de nombreux modèles soient connues, ceci n'est en général pas suffisant pour décrire leurs comportements hors d'équilibre, et ces derniers restent moins explorés et beaucoup moins bien compris. Les modèles d'impuretés quantiques représentent certains des modèles à N-corps les plus simples. Mais malgré leur apparente simplicité ils peuvent capturer plusieurs phénomènes expérimentaux importants, de l'effet Kondo dans les métaux aux propriétés de transports dans les nanostructures, comme les points quantiques. Dans ce travail nous considérons un modèle d'impureté appelé "modèle de niveau résonnant en interaction" (IRLM). Ce modèle décrit des fermions sans spin se propageant dans deux fils semi-infinis qui sont couplés à un niveau résonant -- appelé point ou impureté quantique -- via un terme de saut et une répulsion Coulombienne. Nous nous intéressons aux situations hors d'équilibre où un courant de particules s'écoule à travers le point quantique, et étudions les propriétés de transport telles que le courant stationnaire (en fonction du voltage), la conductance différentielle, le courant réfléchi, le bruit du courant ou encore l'entropie d'intrication. Nous réalisons des simulations numériques de la dynamique du modèle avec la méthode du groupe de renormalisation de la matrice densité dépendent du temps (tDMRG), qui est basée sur une description des fonctions d'onde en terme d'états produits de matrices. Nous obtenons des résultats de grande précision concernant les courbes courant-voltage ou bruit-voltage de l'IRLM, dans un grand domaine de paramètres du modèle (voltage, force de l'interaction, amplitude de saut vers le dot, etc.). Ces résultats numériques sont analysés à la lumière de résultats exacts de théorie des champs hors d'équilibre qui ont été obtenus pour un modèle similaire à l'IRLM, le modèle de Sine-Gordon avec bord (BSG). Cette analyse est en particulier basée sur l'identification d'une échelle d'énergie Kondo et d'exposants décrivant les régimes de petit et grand voltage. Aux deux points particuliers où les modèles sont connus comme étant équivalents, nos résultats sont en accord parfait avec la solution exacte. En dehors de ces deux points particuliers nous trouvons que les courbes de transport de l'IRLM et du modèle BSG demeurent très proches, ce qui était inattendu et qui reste dans une certaine mesure inexpliqué
The fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
APA, Harvard, Vancouver, ISO, and other styles
7

Pomponio, Octavio. "Quantum quenches in Zn symmetric spin chains: an iTEBD study." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15866/.

Full text
Abstract:
Lo studio della dinamica dei sistemi quantistici fuori dall’equilibrio ha introdotto delle problematiche ancora irrisolte in fisica. Negli ultimi anni si è assistito a un enorme progesso teorico in questo campo, mosso da incredibili progressi tecnologici sia nell’ambito di gas atomici e molecolari a basse temperature, che hanno reso possibile la manipolazione di sistemi quantistici con molti gradi di libertà, che in quello di algoritmi in grado di simulare l’evoluzione temporale. In questa lavoro rivolgiamo la nostra attenzione su di un semplice paradigma: lo studio della dinamica fuori dall’equilibrio di sistemi quantistici isolati unidimensionali a seguito della variazione di uno o più parametri del sistema (quench quantistico). In particolare viene studiata la dinamica di catene di spin con simmetria Zn e come questa venga modificata dalla rottura esplicita di tale simmetria. La parte originale del lavoro è nello studio della propagazione dell’entanglement nel modello di Potts con campo longitudinale nella sua fase paramagnetica, dove si è osservato, come recentemente nel modello di Ising con campo longitudinale, un repentino aumento nel tasso di produzione di entanglement. Questo si associa alla comparsa di una nuova particella nello spettro dell’Hamiltoniana dopo il quench. Il fenomeno viene spiegato come la versione fuori dall’equilibrio del noto paradosso di Gibbs. Tutti i risultati numerici della tesi sono stati ottenuti con l’algoritmo iTEBD sviluppato dall’autore.
APA, Harvard, Vancouver, ISO, and other styles
8

Hai, Ngo-Thanh [Verfasser], and Johanna [Akademischer Betreuer] Erdmenger. "Gauge/gravity duality : From quantum phase transitions towards out-of-equilibrium physics / Hai Ngo Thanh. Betreuer: Johanna Erdmenger." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/1015170188/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cavina, Vasco. "Thermodynamics of open quantum systems: from a critical study to the optimization of non-equilibrium heat engines." Doctoral thesis, Scuola Normale Superiore, 2019. http://hdl.handle.net/11384/85921.

Full text
Abstract:
One of the most relevant aspects of thermodynamics is its universality. Its prescriptions are ubiquitous in the characterizaton of the energy transfer between systems at equilibrium, even at the nanoscale, where quantum effects start to become important. In these models the energy balance is completely described in terms of universal quantities, like the Helmoltz free energy and the Boltzmann entropy, while the probabilistic fluctations of work, heat end particle number are tipically negligible making equilibirum thermodynamics essentially a deterministic theory. There are, however, plenty of fields in which the equilibrium approach is too limiting, for instance when dealing with steady state and driven heat engines, researching efficient quantum probes in metrology and even studying decoherence phenomena in quantum computation. In the non equilibrium scenario many specific details, usually negligible in the standard approach, become relevant and a more accurate knowledge of the dynamics is necessary to improve the capacity of controlling, measuring and manipulating energy, whose puctuations also become larger and larger making the theory intrinsecally stochastic. The characterization of out of equilibrium quantum system is the principal aim of this manuscript, which encompasses several aspects of the field. A perturbative expansion for slowly driven master equations is derived, reproducing the quasi static equilibrium trajectory for infinitely slow modulations and providing a compact formula for calculating the deviations on such a behavior. The expansion turns also to be succesful for the description of low dissipation heat engines, providing interesting connections between some celebrated efficiencies at maximum power (like the Schmiedl Seifert and Curzon Ahlborn ones [34, 37]) and the spectral density of the baths inducing thermalization.
APA, Harvard, Vancouver, ISO, and other styles
10

Minganti, Fabrizio. "Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC004/document.

Full text
Abstract:
Dans cette thèse nous étudions théoriquement de systèmes dissipatifs pompés,décrits par une équation maîtresse de Lindblad. En particulier, nous adressons les problématiques liés à l’émergence de phénomènes critiques. Nous présentons une théorie générale reliant les transitions de phase du premier et deuxième ordres aux propriétés spectrales du superopérateur liouvillien. Dans la région critique, nous déterminons la forme générale de l’état stationnaire et de la matrice propre du liouvillien associée à son gap spectral. Nous discutons aussi l’utilisation de trajectoires quantiques individuelles afin de révéler l’apparition des transitions de phase. En ayant dérivé une théorie générale, nous étudions le modèle de Kerr en présence de pompage à un photon (cohérent) et à deux photons (paramétrique) ainsi que de dissipation. Nous explorons les propriétés dynamiques d’une transition de phase du premier ordre dans un modèle de Bose-Hubbard dissipatif et d’une de second ordre dans un modèle XYZ dissipatif d’Heisenberg. Enfin, nous avons considéré la physique des cavités soumises à de la dissipation à un et deux photons ainsi qu’un pompage à deux photons, obtenu par ingénierie de réservoirs. Nous avons démontré que l’état stationnaire unique est un mélange statistique de deux états chats de Schrödinger, malgré de fortes pertes à un photon.Nous proposons et étudions un protocole de rétroaction pour la génération d’états chat purs
In this thesis we theoretically study driven-dissipative nonlinear systems, whosedynamics is capture by a Lindblad master equation. In particular, we investigate theemergence of criticality in out-of-equilibrium dissipative systems. We present a generaland model-independent spectral theory relating first- and second-order dissipative phasetransitions to the spectral properties of the Liouvillian superoperator. In the critical region,we determine the general form of the steady-state density matrix and of the Liouvillianeigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevanceof individual quantum trajectories to unveil phase transitions. After these general results,we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in thepresence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of thedissipative XYZ Heisenberg model presenting a first-order and a second-order dissipativephase transition, respectively. Finally, we investigate the physics of photonic Schrödingercat states in driven-dissipative resonators subject to engineered two-photon processes andone-photon losses. We propose and study a feedback protocol to generate a pure cat-likesteady state
APA, Harvard, Vancouver, ISO, and other styles
11

Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.

Full text
Abstract:
Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne s’imposait pas dans le cas de systèmes ouverts, ce qui produisait une surprenante "densité d’états négative", avec des conséquences physiques directes. Nous étudions ensuite la transition de phase entre une phase normale et une phase superfluide dans un système prototype de bosons dissipatifs forcés sur un réseau. Cette transition est caractérisée par une criticité à fréquence finie correspondant à la rupture spontanée de l'invariance par translation dans le temps, qui n’a pas d’analogue dans des systèmes à l’équilibre. Nous discutons le diagramme de phase en champ moyen d'une phase isolante de Mott stabilisée par dissipation, potentiellement pertinente pour des expériences en cours. Nos résultats suggèrent qu'il existe un compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse d'une telle phase à taux de saut fini. Enfin, nous présentons des développements concernant la théorie du champ moyen dynamique (DMFT) pour l’étude des systèmes à plusieurs corps dissipatifs et forcés. Nous introduisons DMFT dans le contexte des modèles dissipatifs et forcés et nous développons une méthode pour résoudre le problème auxiliaire d'une impureté couplée simultanément à un environnement markovien et à un environnement non-markovien. À titre de test, nous appliquons cette nouvelle méthode à un modèle simple d’impureté fermionique
My PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
APA, Harvard, Vancouver, ISO, and other styles
12

Wald, Sascha Sebastian. "Thermalisation and Relaxation of Quantum Systems." Thesis, Université de Lorraine, 2017. http://www.theses.fr/2017LORR0129/document.

Full text
Abstract:
Cette thèse traite la dynamique hors équilibre des systèmes quantiques ouverts couplés à un réservoir externe. Un modèle spécifique exactement soluble, le modèle sphérique, sert comme exemple paradigmatique. Ce modèle se résout exactement en toute dimension spatiale et pour des interactions très générales. Malgré sa simplicité technique, ce modèle est intéressant car ni son comportement critique d’équilibre ni celui hors équilibre est du genre champ moyen. La présentation débute avec une revue sur la mécanique statistique des transitions de phases classique et quantique, et sur les propriétés du modèle sphérique. Sa dynamique quantique ne se décrit point à l’aide d’une équation de Langevin phénoménologique. Une description plus complète à l’aide de la théorie de l’équation de Lindblad est nécessaire. Les équations de Lindblad décrivent la relaxation d’un système quantique vers son état d’équilibre. En tant que premier exemple, le diagramme de phases dynamique d’un seul spin sphérique quantique est étudié. Réinterprétant cette solution en tant qu’une approximation champ moyen d’un problème de N corps, le diagramme de phases quantique est établi et un effet « congeler en réchauffant » quantique est démontré. Ensuite, le formalisme de Lindblad est généralisé au modèle sphérique quantique de N particules: primo, la forme précise de l’équation de Lindblad est obtenue des conditions que (i) l’état quantique d’équilibre exacte est une solution stationnaire de l’équation de Lindblad et (ii) dans le limite classique, l’équation Langevin de mouvement est retrouvée. Secundo, le modèle sphérique permet la réduction exacte du problème de N particules à une seule équation intégro-différentielle pour le paramètre sphérique. Tertio, en résolvant pour le comportement asymptotique des temps longs de cette équation, nous démontrons que dans la limite semi-classique, la dynamique quantique effective redevient équivalente à une dynamique classique, à une renormalisation quantique de la température T près. Quarto, pour une trempe quantique profonde dans la phase ordonnée, nous démontrons que la dynamique quantique dépend d’une manière non triviale de la dimension spatiale. L’émergence du comportement d’échelle dynamique et des corrections logarithmiques est discutée en détail. Les outils mathématiques de cette analyse sont des nouveaux résultats sur le comportement asymptotique de certaines fonctions hypergéométriques confluentes en deux variables
This study deals with the dynamic properties of open quantum systems far from equilibrium in d dimensions. The focus is on a special, exactly solvable model, the spherical model (SM), which is technically simple. The analysis is of interest, since the critical behaviour in and far from equilibrium not of mean-field type. We begin with a résumé of the statistical mechanics of phase transitions and treat especially the quantum version of the SM. The quantum dynamics (QD) of the model cannot be described by phenomenological Langevin equation and must be formulated with Lindblad equations.First we examine the dynamic phase diagram of a single spherical quantum spin and interpret the solution as a mean-field approximation of the N-body problem. Hereby, we find a quantum mechanical ‘freezing by heating’ effect. After that, we extend the formalism to the N-body problem, determining first the form of the Lindblad equation from consistency conditions. The SM then allows the reduction to a single integro-differential equation whose asymptotic solution shows, that the effective QD in the semi-classical limit is fully classical. For a deep quench in the ordered phase, we show that the QD strongly and non-trivially depends on d and derive the dynamic scaling behaviour and its corrections. The mathematical tools for this analysis are new results on the asymptotic behaviour of certain confluent hypergeometric functions in two variables
APA, Harvard, Vancouver, ISO, and other styles
13

Rojan, Katharina. "Light-matter interactions : artificial and solid-state crystals embedded in an optical cavity." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY039/document.

Full text
Abstract:
Ce manuscrit est consacré à la caractérisation de structures cristallines pour des applications de technologie quantique. Il est composé de deux parties.Dans un premier projet, nous étudions la transition d'une particule d'un état étendu à un état localisé dans un cristal artificiel quasipériodique, dont le potentiel dépend de la position de la particule. Nous considérons un atome ultrafroid, confiné par un réseau optique et incorporé dans une cavité optique. Le dipôle atomique est en interaction forte avec le champ électrique dans la cavité, ce qui mène à un deuxième potentiel optique pour l'atome. La position de l'atome dans la cavité influence notamment le champ intracavité~: le mouvement de l'atome a donc un effet rétroactif sur le potentiel dans lequel il est confiné. Pour des longueurs d'onde incommensurables, nous montrons que la compétition entre les deux réseaux optiques donne lieu à un potentiel quasipériodique pour l'atome. Nous déterminons les paramètres pour lesquels nous reproduisons le modèle Aubry-André et nous discutons les effets de la rétroaction de la cavité sur la transition de localisation.Le deuxième projet est une proposition pour générer une radiation THz, en utilisant le couplage entre excitons et phonons dans un cristal semi-conducteur. Nous proposons un schéma de conversion de fréquence, basé sur une chaîne d'interactions naturellement présentes dans une cavité semi-conductrice pompée. La partie cruciale du schéma de conversion de fréquence est l'interaction faible entre des excitons et des phonons transverses optiques. Nous la dérivons en commençant avec l'interaction électron-phonon via le potentiel de déformation et en prenant en compte les propriétés de symétrie du cristal. Nous identifions les conditions nécessaires pour générer une radiation THz, nous estimons la puissance de l'émission et nous montrons que l'interaction entre excitons et phonons transverses optiques fournit une susceptibilité non linéaire d'ordre deux
This thesis is devoted to the characterization of crystalline structures for quantum technological applications. It is composed of two parts.In a first project we study the localization transition of one particle in an one-dimensional artificial quasiperiodic crystal, whose potential depends on the particle position. We consider an ultracold atom in an optical lattice, embedded in an optical cavity. The atom strongly couples to the cavity, leading to a second optical potential. The position of the atom within the cavity affects the cavity field, thus the atomic motion backacts on the potential it is subjected to. For incommensurate wavelengths, we show that the competition between the two potentials yields a quasiperiodic potential. We determine the parameters for which we reproduce the Aubry-Andr'e model and discuss the effects of the backaction on the localization transition.In the second project we propose a frequency down-conversion scheme to generate THz radiation using the exciton-phonon coupling in a semiconductor crystal. Our idea is based on a chain of interactions that are naturally present in a pumped semiconductor microcavity. We derive the crucial exciton-phonon coupling, starting from the electron-phonon interaction via the deformation potential and taking into account the crystal symmetry properties. We identify conditions necessary for THz emission, estimate the emission power and show that the exciton-phonon interaction provides a second-order susceptibility
APA, Harvard, Vancouver, ISO, and other styles
14

Jussiau, Etienne. "Dynamique des systèmes quantiques ouverts : un niveau quantique discret fortement couplé à un continuum avec une structure de bandes." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY032.

Full text
Abstract:
Suivant les progrès technologiques de la révolution industrielle, la thermodynamique classique a été développée au XIXème siècle dans le but de comprendre la conversion de la chaleur en travail intervenant dans les machines thermiques nouvellement élaborées. Les travaux de Boltzmann apportèrent une autre révolution conceptuelle avec la physique statistique. Il démontra l’origine microscopique des lois de la thermodynamique, celles-ci ne décrivant en fait que le comportement macroscopique de systèmes pour lesquels la thermalisation locale est plus rapide que toutes les autres échelles de temps. Cependant, conséquemment à l’intérêt grandissant pour les nanotechnologies, il est aujourd’hui possible de manipuler des systèmes microscopiques pour lesquels la thermalisation est plus lente que les échelles de temps associés aux flux d’électrons. Une avancée technologique majeure dans ce domaine provient de l’utilisation de boîtes quantiques, des dispositifs nanométriques permettant de confiner les électrons sur des distances si petites qu’ils se répartissent sur des niveaux d’énergie discrets. Il est alors évidemment indispensable de prendre en compte les effets quantiques pour l’étude de ce type de systèmes, c’est-à-dire de concevoir des outils théoriques alliant thermodynamique et mécanique quantique.Les problèmes de thermodynamique quantique sont souvent abordés dans le cadre de la théorie des systèmes quantiques ouverts. L’idée générale de ce formalisme est d’étudier la dynamique d’un « petit » système quantique lorsqu’il est couplé à un autre système supposé bien plus « gros » et représentant l’environnement. On démontre alors que l’évolution temporelle du petit système peut être décrite par une équation maîtresse dans la limite où il est faiblement couplé à l’environnement. Cependant, il semble intuitivement qu’une machine pourra délivrer une puissance plus importante dans un contexte de fort couplage-Pour les problèmes de transport électronique, le formalisme de Landauer-Büttiker permet de décrire le régime de fort couplage. Dans ce cadre, les électrons sont supposés ne subir que des processus de diffusion élastique dans le système central. Toutes les propriétés thermoélectriques de la machine peuvent alors être caractérisées grâce aux propriétés de transmission du diffuseur. Cependant, ce formalisme souffre aussi d’une importante limitation, la structure de bandes des réservoirs étant ignorée.Ici nous avons choisi d’adopter un point de vue différent pour aborder le régime de fort couplage en étudiant un modèle exactement résoluble. Nous analysons donc le modèle de Fano-Anderson décrivant un niveau discret couplé à un continuum. Nous nous intéressons particulièrement à l’influence de la densité d’états des réservoirs. On démontre en effet que, sous certaines conditions, des états liés discrets apparaissent dans les bandes interdites des réservoirs. Ces états jouent un rôle prépondérant sur la dynamique du niveau discret à temps longs : leur contribution dépend de la préparation initiale du système et peut donner lieu à des oscillations permanentes de l’occupation du niveau discret.Nous commençons par expliciter la solution exacte du modèle en nous concentrant particulièrement son comportement à temps longs. Nous analysons ensuite deux cas particuliers. En premier lieu, nous nous intéressons aux propriétés de transport d’une boîte quantique à un niveau couplée à un semi-conducteur présentant une unique bande interdite. Un état lié apparaît dans cette bande lorsque le couplage au réservoir dépasse une valeur critique ce qui affecte fortement les propriétés de transport du système. Nous étudions ensuite le cas de réservoirs décrit par un modèle de liaisons fortes dont la densité d’états ne comporte qu’une bande finie d’énergie. Nous montrons qu’un niveau discret couplé à un tel réservoir se comporte comme un système à plusieurs niveaux, sa densité d’états locale et sa transmission présentant de multiples résonances
Following the technological advances of the Industrial Revolution, classical thermodynamics was developed in the 19th century in order to understand the conversion of heat into work in newly designed machines. The works of Boltzmann brought another conceptual revolution with statistical mechanics. He demonstrated the microscopical origin of the laws of thermodynamics which actually only describe the macroscopic behaviour of systems in which local thermalization is faster than all other timescales. However, following the growing interest for nanotechnologies, it is now possible to manipulate microscopic systems in which thermalization is slower than the timescales for electron flow. A major technological advance in this field stems from the use of quantum dots, nanoscale devices which confine electrons on such small scales that they spread on discrete energy levels. It is then essential to take into account quantum effects for the study of this type of systems, that is to say to design theoretical tools combining thermodynamics and quantum mechanics.Problems of quantum thermodynamics are often tackled in the framework of the theory of open quantum systems. The general idea of this formalism is to study the dynamics of a “small” quantum system when it is coupled to another much bigger representing the environment. One can then show that the time evolution of the small system can be described by a master equation in the limit where it is weakly coupled to the environment. However, it intuitively seems that the power output of machine would be higher in the context of strong coupling.For problems of electronic transport, the Landauer-Büttiker formalism allows to describe the strong-coupling regime. In this framework, electrons are assumed to solely undergo elastic scattering processes in the central system. All the thermoelectric properties of the machine can then be characterized thanks to the transmission properties of the scatterer. However, this formalism has an important limitation; it ignores the band structure of the reservoirs.Here we have chosen to adopt a different viewpoint to tackle the strong-coupling regime by studying an exactly soluble model. We therefore analyze the Fano-Anderson model describing a discrete level coupled to a continuum. We are particularly interested by the influence of the reservoirs’ band structure. One can indeed show that, under certain conditions, discrete bound states appear in the band gaps of the reservoirs. This state play an important rôle on the dynamics of the discrete at long times: their contribution depends on the initial preparation of the system and gives rise to persistent oscillations of the occupation of the discrete level.We start by deriving the exact solution of the model especially focusing on its long-time behaviour. We then analyze two special cases. First, we study the transport properties of a single-level quantum dot coupled to a semiconductor with single a band gap. A bound state appears in this gap when the coupling to the reservoir exceeds a critical value. We show that this greatly affects the transport properties of the device. We then study the case of reservoirs described by a tight-binding model which density of states consists of a single finite-range energy band. We show that a discrete level coupled to such reservoir behaves like a many-level system as its local density of states and transmission function exhibits multiple resonances
APA, Harvard, Vancouver, ISO, and other styles
15

Molineri, Anaïs. "Un nouveau dispositif pour étudier la relaxation d'un système quantique à N corps." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO013/document.

Full text
Abstract:
Les travaux présentés dans ce manuscrit de thèse portent sur la construction d'une nouvelle expérience d'atomes froids de strontium 84, depuis ses balbutiements jusqu'à l'obtention des pièges magnéto-optiques sur la raie large à 461 nm, puis sur la raie étroite à 689 nm.Les études menées avec cette expérience porteront sur la dynamique de relaxation de gaz quantiques placés initialement en situation hors-équilibre. Pour réaliser de telles expériences, un microscope à atomes sera mis en place prochainement et permettra de mesurer des fonctions de corrélations spatiales à partir de la répartition des atomes dans le piège optique bidimensionnel. C'est pourquoi, en parallèle du montage, des travaux ont été réalisés pour mettre au point un algorithme de reconstruction, indispensable au traitement des futures images obtenues par ce microscope. Ce manuscrit de thèse a pour objectif de détailler et justifier aussi précisément que possible les choix expérimentaux qui ont été effectués et de présenter le stade actuel d'avancement de l'algorithme de reconstruction d'images. Il reste encore quelques étapes de construction avant que le dispositif expérimental soit achevé: ajouter une chambre dans laquelle les mesures auront lieu, mettre en place le système d'imagerie et monter le système optique qui permettra de transporter les atomes entre les chambres à vide, les confiner dans un plan, d'effectuer la transition vers un condensat de Bose-Einstein et enfin les soumettre à un réseau optique bidimensionnel
This manuscript presents the first steps of a new ultracold atoms experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. This experiment will include a quantum gas microscope, allowing us to measure spatial correlation functions in two-dimensionnal systems. The current state of the construction allows us to generate both magneto-optical trap of strontium: along its wide transition at 461 nm and its narrow transition at 689 nm. Concurrently with the experimental setup, we carried out works on a reconstruction algorithm required for the future data processing of the microscope images. This manuscript details experimental aspects, justifying their choices, and presents the current state of work on the reconstruction algorithm. There are still steps to complete the experimental setup: add a chamber where we will make the measurements to the vaccuum system, set up the quantum gaz microscope and all the required optics to transport the atomic clouds between two vaccuum chambers, to reach Bose-Einstein condensation and to confine the atoms in two-dimensionnal optical traps
APA, Harvard, Vancouver, ISO, and other styles
16

Larré, Pierre-Élie. "Fluctuations quantiques et effets non-linéaires dans les condensats de Bose-Einstein : des ondes de choc dispersives au rayonnement de Hawking acoustique." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00875349.

Full text
Abstract:
Cette thèse est dédiée à l'étude de l'analogue du rayonnement de Hawking dans les condensats de Bose-Einstein. Le premier chapitre présente de nouvelles configurations d'intérêt expérimental permettant de réaliser l'équivalent acoustique d'un trou noir gravitationnel dans l'écoulement d'un condensat atomique unidimensionnel. Nous donnons dans chaque cas une description analytique du profil de l'écoulement, des fluctuations quantiques associées et du spectre du rayonnement de Hawking. L'analyse des corrélations à deux corps de la densité dans l'espace des positions et des impulsions met en évidence l'émergence de signaux révélant l'effet Hawking dans nos systèmes. En démontrant une règle de somme vérifiée par la matrice densité à deux corps connexe, on montre que les corrélations à longue portée de la densité doivent être associées aux modifications diagonales de la matrice densité à deux corps lorsque l'écoulement du condensat présente un horizon acoustique. Motivés par des études expérimentales récentes de profils d'onde générés dans des condensats de polaritons en microcavité semi-conductrice, nous analysons dans un second chapitre les caractéristiques superfluides et dissipatives de l'écoulement autour d'un obstacle localisé d'un condensat de polaritons unidimensionnel obtenu par pompage incohérent. Nous examinons la réponse du condensat dans la limite des faibles perturbations et au moyen de la théorie de Whitham dans le régime non-linéaire. On identifie un régime dépendant du temps séparant deux types d'écoulement stationnaire et dissipatif : un principalement visqueux à faible vitesse et un autre caractérisé par un rayonnement de Cherenkov d'ondes de densité à grande vitesse. Nous présentons enfin des effets de polarisation obtenus en incluant le spin des polaritons dans la description du condensat et montrons dans le troisième chapitre que des effets similaires en présence d'un horizon acoustique pourraient être utilisés pour démontrer expérimentalement le rayonnement de Hawking dans les condensats de polaritons.
APA, Harvard, Vancouver, ISO, and other styles
17

Schmitt, Markus. "Dynamics of isolated quantum many-body systems far from equilibrium." Doctoral thesis, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E32A-F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Iadecola, Thomas. "Designing topological quantum matter in and out of equilibrium." Thesis, 2017. https://hdl.handle.net/2144/27071.

Full text
Abstract:
Recent advances in experimental condensed matter physics suggest a powerful new paradigm for the realization of exotic phases of quantum matter in the laboratory. Rather than conducting an exhaustive search for materials that realize these phases at low temperatures, it may be possible to design quantum systems that exhibit the desired properties. With the numerous advances made recently in the fields of cold atomic gases, superconducting qubits, trapped ions, and nitrogen-vacancy centers in diamond, it appears that we will soon have a host of platforms that can be used to put exotic theoretical predictions to the test. In this dissertation, I will highlight two ways in which theorists can interact productively with this fast-emerging field. First, there is a growing interest in driving quantum systems out of equilibrium in order to induce novel topological phases where they would otherwise never appear. In particular, systems driven by time-periodic perturbations—known as “Floquet systems”—offer fertile ground for theoretical investigation. This approach to designer quantum matter brings its own unique set of challenges. In particular, Floquet systems explicitly violate conservation of energy, providing no notion of a ground state. In the first part of my dissertation, I will present research that addresses this problem in two ways. First, I will present studies of open Floquet systems, where coupling to an external reservoir drives the system into a steady state at long times. Second, I will discuss examples of isolated quantum systems that exhibit signatures of topological properties in their finite-time dynamics. The second part of this dissertation presents another way in which theorists can benefit from the designer approach to quantum matter; in particular, one can design analytically tractable theories of exotic phases. I will present an exemplar of this philosophy in the form of coupled-wire constructions. In this approach, one builds a topological state of matter from the ground up by coupling together an array of one-dimensional quantum wires with local interactions. I will demonstrate the power of this technique by showing how to build both Abelian and non-Abelian topological phases in three dimensions by coupling together an array of quantum wires.
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Cheng-Wei. "Computational studies of thermal and quantum phase transitions approached through non-equilibrium quenching." Thesis, 2015. https://hdl.handle.net/2144/15436.

Full text
Abstract:
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
APA, Harvard, Vancouver, ISO, and other styles
20

Dirks, Andreas. "Imaginary-Time Approach to the Kondo Effect out of Equilibrium." Doctoral thesis, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F087-E.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography