To see the other types of publications on this topic, follow the link: Quantum point contacts.

Journal articles on the topic 'Quantum point contacts'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum point contacts.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

van Houten, Henk, and Carlo Beenakker. "Quantum Point Contacts." Physics Today 49, no. 7 (July 1996): 22–27. http://dx.doi.org/10.1063/1.881503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bretheau, L., Ç. Girit, L. Tosi, M. Goffman, P. Joyez, H. Pothier, D. Esteve, and C. Urbina. "Superconducting quantum point contacts." Comptes Rendus Physique 13, no. 1 (January 2012): 89–100. http://dx.doi.org/10.1016/j.crhy.2011.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grambow, P., J. Nieder, D. Heitmann, K. von Klitzing, and K. Ploog. "Quantum point contacts prepared by optical contact lithography." Semiconductor Science and Technology 6, no. 12 (December 1, 1991): 1178–80. http://dx.doi.org/10.1088/0268-1242/6/12/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rössler, C., M. Herz, M. Bichler, and S. Ludwig. "Freely suspended quantum point contacts." Solid State Communications 150, no. 17-18 (May 2010): 861–64. http://dx.doi.org/10.1016/j.ssc.2010.02.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hu, Qing. "Photon‐assisted quantum transport in quantum point contacts." Applied Physics Letters 62, no. 8 (February 22, 1993): 837–39. http://dx.doi.org/10.1063/1.108567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Katsumoto, Shingo. "New Tricks in Quantum Point Contacts." JPSJ News and Comments 2 (January 14, 2005): 06. http://dx.doi.org/10.7566/jpsjnc.2.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ando, T. "Quantum point contacts in magnetic fields." Physical Review B 44, no. 15 (October 15, 1991): 8017–27. http://dx.doi.org/10.1103/physrevb.44.8017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Takagaki, Y., and D. K. Ferry. "Tunneling spectroscopy of quantum point contacts." Physical Review B 45, no. 20 (May 15, 1992): 12152–55. http://dx.doi.org/10.1103/physrevb.45.12152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takagaki, Y., and D. K. Ferry. "Double quantum point contacts in series." Physical Review B 45, no. 23 (June 15, 1992): 13494–98. http://dx.doi.org/10.1103/physrevb.45.13494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kouwenhoven, L. P., B. J. van Wees, C. J. P. M. Harmans, J. G. Williamson, H. van Houten, C. W. J. Beenakker, C. T. Foxon, and J. J. Harris. "Nonlinear conductance of quantum point contacts." Physical Review B 39, no. 11 (April 15, 1989): 8040–43. http://dx.doi.org/10.1103/physrevb.39.8040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Thywissen, J. H., R. M. Westervelt, and M. Prentiss. "Quantum Point Contacts for Neutral Atoms." Physical Review Letters 83, no. 19 (November 8, 1999): 3762–65. http://dx.doi.org/10.1103/physrevlett.83.3762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Averin, D., and H. T. Imam. "Supercurrent Noise in Quantum Point Contacts." Physical Review Letters 76, no. 20 (May 13, 1996): 3814–17. http://dx.doi.org/10.1103/physrevlett.76.3814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Averin, D. V., A. Bardas, and H. T. Imam. "Resistively shunted superconducting quantum point contacts." Physical Review B 58, no. 17 (November 1, 1998): 11165–68. http://dx.doi.org/10.1103/physrevb.58.11165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Song, J. W., N. A. Kabir, Y. Kawano, K. Ishibashi, G. R. Aizin, L. Mourokh, J. L. Reno, A. G. Markelz, and J. P. Bird. "Terahertz response of quantum point contacts." Applied Physics Letters 92, no. 22 (June 2, 2008): 223115. http://dx.doi.org/10.1063/1.2938416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pilgram, Sebastian, David Sánchez, and Rosa López. "Quantum point contacts as heat engines." Physica E: Low-dimensional Systems and Nanostructures 74 (November 2015): 447–50. http://dx.doi.org/10.1016/j.physe.2015.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Taylor, R. P., A. S. Sachrajda, J. A. Adams, P. Zawadzki, P. T. Coleridge, and P. Marshall. "Collimation effects in quantum point contacts." Physica B: Condensed Matter 175, no. 1-3 (December 1991): 243–46. http://dx.doi.org/10.1016/0921-4526(91)90721-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Taylor, R. P., A. S. Sachrajda, J. A. Adams, P. Zawadzki, P. T. Coleridge, and P. Marshall. "Collimation effects in quantum point contacts." Physica B: Condensed Matter 176, no. 4 (April 1992): 334. http://dx.doi.org/10.1016/0921-4526(92)90240-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Katsumoto, Shingo, Naokatsu Sano, and Shun-ichi Kobayashi. "Interference through Parallel Quantum Point Contacts." Journal of the Physical Society of Japan 61, no. 4 (April 15, 1992): 1153–56. http://dx.doi.org/10.1143/jpsj.61.1153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Okada, M., M. Saito, M. Takatsu, P. E. Schmidt, K. Kosemura, and N. Yokoyama. "Electron waves through quantum point contacts." Semiconductor Science and Technology 7, no. 3B (March 1, 1992): B223—B227. http://dx.doi.org/10.1088/0268-1242/7/3b/053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Moghaddam, A. G., and M. Zareyan. "Graphene-based superconducting quantum point contacts." Applied Physics A 89, no. 3 (July 17, 2007): 579–85. http://dx.doi.org/10.1007/s00339-007-4187-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cresti, Alessandro. "Current imaging in quantum point contacts." physica status solidi (a) 203, no. 6 (May 2006): 1172–77. http://dx.doi.org/10.1002/pssa.200566123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Smith, J. C., C. Berven, M. N. Wybourne, and S. M. Goodnick. "Conductance instabilities in quantum point contacts." Surface Science 361-362 (July 1996): 656–59. http://dx.doi.org/10.1016/0039-6028(96)00493-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Savytskyi, Andriy, Alexander Pospelov, Anna Herus, Volodymyr Vakula, Nataliya Kalashnyk, Eric Faulques, and Gennadii Kamarchuk. "Portable Device for Multipurpose Research on Dendritic Yanson Point Contacts and Quantum Sensing." Nanomaterials 13, no. 6 (March 9, 2023): 996. http://dx.doi.org/10.3390/nano13060996.

Full text
Abstract:
Quantum structures are ideal objects by which to discover and study new sensor mechanisms and implement advanced approaches in sensor analysis to develop innovative sensor devices. Among them, one of the most interesting representatives is the Yanson point contact. It allows the implementation of a simple technological chain to activate the quantum mechanisms of selective detection in gaseous and liquid media. In this work, a portable device for multipurpose research on dendritic Yanson point contacts and quantum sensing was developed and manufactured. The device allows one to create dendritic Yanson point contacts and study their quantum properties, which are clearly manifested in the process of the electrochemical cyclic switchover effect. The device tests demonstrated that it was possible to gather data on the compositions and characteristics of the synthesized substances, and on the electrochemical processes that influence the production of dendritic Yanson point contacts, as well as on the electrophysical processes that provide information on the quantum nature of the electrical conductance of dendritic Yanson point contacts. The small size of the device makes it simple to integrate into a micro-Raman spectrometer setup. The developed device may be used as a prototype for designing a quantum sensor that will serve as the foundation for cutting-edge sensor technologies, as well as be applied to research into atomic-scale junctions, single-atom transistors, and any relative subjects.
APA, Harvard, Vancouver, ISO, and other styles
24

Rössler, C., S. Baer, E. de Wiljes, P.-L. Ardelt, T. Ihn, K. Ensslin, C. Reichl, and W. Wegscheider. "Transport properties of clean quantum point contacts." New Journal of Physics 13, no. 11 (November 3, 2011): 113006. http://dx.doi.org/10.1088/1367-2630/13/11/113006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pietsch, T., S. Egle, C. Espy, F. Strigl, and E. Scheer. "Electron Transport in Magnetic Quantum Point Contacts." Acta Physica Polonica A 121, no. 2 (February 2012): 401–9. http://dx.doi.org/10.12693/aphyspola.121.401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

BRATAAS, A., and K. A. CHAO. "NON-ADIABATIC TRANSPORT IN QUANTUM POINT CONTACTS." Modern Physics Letters B 07, no. 15 (June 30, 1993): 1021–27. http://dx.doi.org/10.1142/s0217984993001016.

Full text
Abstract:
We have performed an exact numerical calculation on the conductance of a narrow constriction in a two-dimensional electron gas and discovered a novel sum rule that the conductance is invariant with respect to the channel mixing. This feature explains why the adiabatic approximation results fit the experimental data quantitatively. A similar sum rule has been found for the excess noise. These important conclusions remain to be derived analytically.
APA, Harvard, Vancouver, ISO, and other styles
27

Karafyllidis, Ioannis G. "Current Switching in Graphene Quantum Point Contacts." IEEE Transactions on Nanotechnology 13, no. 4 (July 2014): 820–24. http://dx.doi.org/10.1109/tnano.2014.2322888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Main, P. C., P. H. Beton, B. R. Snell, A. J. M. Neves, J. R. Owers-Bradley, L. Eaves, S. P. Beaumont, and C. D. W. Wilkinson. "Ballistic transmission in perpendicular quantum point contacts." Physical Review B 40, no. 14 (November 15, 1989): 10033–35. http://dx.doi.org/10.1103/physrevb.40.10033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rejec, Tomaž, and Yigal Meir. "Magnetic impurity formation in quantum point contacts." Nature 442, no. 7105 (August 2006): 900–903. http://dx.doi.org/10.1038/nature05054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shchelkachev, N. M. "Critical current in superconducting quantum point contacts." Journal of Experimental and Theoretical Physics Letters 71, no. 12 (June 2000): 504–7. http://dx.doi.org/10.1134/1.1307476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ALY, ARAFA H., and JAMILA DOUARI. "SUPERCONDUCTING QUANTUM POINT CONTACTS AND MAXWELL POTENTIAL." Modern Physics Letters B 21, no. 12 (May 20, 2007): 703–15. http://dx.doi.org/10.1142/s021798490701316x.

Full text
Abstract:
The quantization of the current in a superconducting quantum point contact is reviewed and the critical current is discussed at different temperatures depending on the carrier concentration as well by suggesting a constant potential in the semiconductor and then a Maxwell potential. When the Fermi wavelength is comparable with the constriction width we showed that the critical current has a step-like variation as a function of the constriction width and the carrier concentration.
APA, Harvard, Vancouver, ISO, and other styles
32

Untiedt, C., G. Rubio Bollinger, S. Vieira, and N. Agraït. "Quantum interference in atomic-sized point contacts." Physical Review B 62, no. 15 (October 15, 2000): 9962–65. http://dx.doi.org/10.1103/physrevb.62.9962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Averin, D. V. "Coulomb Blockade in Superconducting Quantum Point Contacts." Physical Review Letters 82, no. 18 (May 3, 1999): 3685–88. http://dx.doi.org/10.1103/physrevlett.82.3685.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kozub, V. I., and A. M. Rudin. "Phonon-drag thermopower of quantum point contacts." Physical Review B 50, no. 4 (July 15, 1994): 2681–84. http://dx.doi.org/10.1103/physrevb.50.2681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Averin, D., and A. Bardas. "Adiabatic dynamics of superconducting quantum point contacts." Physical Review B 53, no. 4 (January 15, 1996): R1705—R1708. http://dx.doi.org/10.1103/physrevb.53.r1705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Martín-Rodero, A., A. Levy Yeyati, and F. J. García-Vidal. "Thermal noise in superconducting quantum point contacts." Physical Review B 53, no. 14 (April 1, 1996): R8891—R8894. http://dx.doi.org/10.1103/physrevb.53.r8891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bogachek, E. N., I. O. Kulik, and R. I. Shekhter. "Quantum oscillations of magnetoresistance in point contacts." Solid State Communications 56, no. 11 (December 1985): 999–1000. http://dx.doi.org/10.1016/s0038-1098(85)80043-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Averin, D. V. "Coulomb blockade in superconducting quantum point contacts." Microelectronic Engineering 47, no. 1-4 (June 1999): 385–87. http://dx.doi.org/10.1016/s0167-9317(99)00240-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bogachek, E. N., A. G. Scherbakov, and Uzi Landman. "Nonlinear peltier effect in quantum point contacts." Solid State Communications 108, no. 11 (November 1998): 851–55. http://dx.doi.org/10.1016/s0038-1098(99)80000-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Scheer, E., J. C. Cuevas, A. Levy Yeyati, A. Martı́n-Rodero, P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina. "Conduction channels of superconducting quantum point contacts." Physica B: Condensed Matter 280, no. 1-4 (May 2000): 425–31. http://dx.doi.org/10.1016/s0921-4526(99)01812-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Martini, Ingo, Dominik Eisert, Martin Kamp, Lukas Worschech, Alfred Forchel, and Johannes Koeth. "Quantum point contacts fabricated by nanoimprint lithography." Applied Physics Letters 77, no. 14 (October 2, 2000): 2237–39. http://dx.doi.org/10.1063/1.1315343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Eiles, T. M., J. A. Simmons, M. E. Sherwin, and J. F. Klem. "Magnetic focusing in parallel quantum point contacts." Physical Review B 52, no. 15 (October 15, 1995): 10756–59. http://dx.doi.org/10.1103/physrevb.52.10756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Williamson, J. G., H. van Houten, C. W. J. Beenakker, M. E. I. Broekaart, L. I. A. Spendeler, B. J. van Wees, and C. T. Foxon. "Hot-electron spectrometry with quantum point contacts." Physical Review B 41, no. 2 (January 15, 1990): 1207–10. http://dx.doi.org/10.1103/physrevb.41.1207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Houten, H. van, L. W. Molenkamp, C. W. J. Beenakker, and C. T. Foxon. "Thermo-electric properties of quantum point contacts." Semiconductor Science and Technology 7, no. 3B (March 1, 1992): B215—B221. http://dx.doi.org/10.1088/0268-1242/7/3b/052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liefrink, F., J. I. Dijkhuis, and H. van Houten. "Low-frequency noise in quantum point contacts." Semiconductor Science and Technology 9, no. 12 (December 1, 1994): 2178–89. http://dx.doi.org/10.1088/0268-1242/9/12/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Michielsen, K., and H. De Raedt. "Electron focusing by multiple-quantum-point contacts." Journal of Physics: Condensed Matter 4, no. 34 (August 24, 1992): 7121–26. http://dx.doi.org/10.1088/0953-8984/4/34/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Engels, G., M. Tietze, J. Appenzeller, M. Hollfelder, Th Schäpers, and H. Lüth. "Quantum point contacts on InGaAs/InP heterostructures." Superlattices and Microstructures 23, no. 6 (June 1998): 1249–53. http://dx.doi.org/10.1006/spmi.1996.0588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Diago-Cisneros, Leo, and Francisco Mireles. "Quantum-ring spin interference device tuned by quantum point contacts." Journal of Applied Physics 114, no. 19 (November 21, 2013): 193706. http://dx.doi.org/10.1063/1.4830017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Simmons, J. A., S. W. Hwang, D. C. Tsui, and M. Shayegan. "Quantum interference in two independently tunable parallel quantum point contacts." Superlattices and Microstructures 11, no. 2 (January 1992): 223–27. http://dx.doi.org/10.1016/0749-6036(92)90257-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

RENARD, V. T., T. OTA, N. KUMADA, and H. HIRAYAMA. "POSITIVE MAGNETO-RESISTANCE IN A POINT CONTACT: POSSIBLE MANIFESTATION OF INTERACTIONS." International Journal of High Speed Electronics and Systems 17, no. 03 (September 2007): 495–99. http://dx.doi.org/10.1142/s0129156407004680.

Full text
Abstract:
We report a non-monotonic and strongly temperature dependent magneto-resistance observed in clean quantum point contacts. At the same time the conductance of the point contact varies linearly with temperature. This unexpected behavior may be related to electron-electron interactions.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography