Journal articles on the topic 'Quantum paraelectrics'

To see the other types of publications on this topic, follow the link: Quantum paraelectrics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Quantum paraelectrics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

WANG, C. L., and M. L. ZHAO. "BURNS TEMPERATURE AND QUANTUM TEMPERATURE SCALE." Journal of Advanced Dielectrics 01, no. 02 (April 2011): 163–67. http://dx.doi.org/10.1142/s2010135x1100029x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this article, two concepts of temperature, i.e., Burns temperature for relaxor ferroelectrics and quantum temperature scale for quantum paraelectrics, are reviewed briefly. Since both temperatures describe the deviation of the dielectric constant from Curie–Weiss law, their relationship is discussed. Finally the concept of quantum temperature scale is extended to demonstrate the evolution process of quantum paraelectric behavior to relaxor ferroelectric behavior.
2

Courtens, E., B. Hehlen, G. Coddens, and B. Hennion. "New excitations in quantum paraelectrics." Physica B: Condensed Matter 219-220 (April 1996): 577–80. http://dx.doi.org/10.1016/0921-4526(95)00817-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coak, Matthew J., Charles R. S. Haines, Cheng Liu, Stephen E. Rowley, Gilbert G. Lonzarich, and Siddharth S. Saxena. "Quantum critical phenomena in a compressible displacive ferroelectric." Proceedings of the National Academy of Sciences 117, no. 23 (May 26, 2020): 12707–12. http://dx.doi.org/10.1073/pnas.1922151117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The dielectric and magnetic polarizations of quantum paraelectrics and paramagnetic materials have in many cases been found to initially increase with increasing thermal disorder and hence, exhibit peaks as a function of temperature. A quantitative description of these examples of “order-by-disorder” phenomena has remained elusive in nearly ferromagnetic metals and in dielectrics on the border of displacive ferroelectric transitions. Here, we present an experimental study of the evolution of the dielectric susceptibility peak as a function of pressure in the nearly ferroelectric material, strontium titanate, which reveals that the peak position collapses toward absolute zero as the ferroelectric quantum critical point is approached. We show that this behavior can be described in detail without the use of adjustable parameters in terms of the Larkin–Khmelnitskii–Shneerson–Rechester (LKSR) theory, first introduced nearly 50 y ago, of the hybridization of polar and acoustic modes in quantum paraelectrics, in contrast to alternative models that have been proposed. Our study allows us to construct a detailed temperature–pressure phase diagram of a material on the border of a ferroelectric quantum critical point comprising ferroelectric, quantum critical paraelectric, and hybridized polar-acoustic regimes. Furthermore, at the lowest temperatures, below the susceptibility maximum, we observe a regime characterized by a linear temperature dependence of the inverse susceptibility that differs sharply from the quartic temperature dependence predicted by the LKSR theory. We find that this non-LKSR low-temperature regime cannot be accounted for in terms of any detailed model reported in the literature, and its interpretation poses an empirical and conceptual challenge.
4

Das, Nabyendu, and Suresh G. Mishra. "Fluctuations and criticality in quantum paraelectrics." Journal of Physics: Condensed Matter 21, no. 9 (February 4, 2009): 095901. http://dx.doi.org/10.1088/0953-8984/21/9/095901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tosatti, E., and R. Martoňák. "Rotational melting in displacive quantum paraelectrics." Solid State Communications 92, no. 1-2 (October 1994): 167–80. http://dx.doi.org/10.1016/0038-1098(94)90870-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kleemann, W., Y. G. Wang, P. Lehnen, and J. Dec. "Phase transitions in doped quantum paraelectrics." Ferroelectrics 229, no. 1 (May 1999): 39–44. http://dx.doi.org/10.1080/00150199908224315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Y. G., W. Kleemann, J. Dec, and W. L. Zhong. "Dielectric properties of doped quantum paraelectrics." Europhysics Letters (EPL) 42, no. 2 (April 15, 1998): 173–78. http://dx.doi.org/10.1209/epl/i1998-00225-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Y. G., W. Kleemann, W. L. Zhong, and L. Zhang. "Impurity-induced phase transition in quantum paraelectrics." Physical Review B 57, no. 21 (June 1, 1998): 13343–46. http://dx.doi.org/10.1103/physrevb.57.13343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Totsuji, Chieko, and Takeo Matsubara. "Stress Induced Ferroelectric Phase Transitionin Quantum-Paraelectrics." Journal of the Physical Society of Japan 60, no. 10 (October 15, 1991): 3549–56. http://dx.doi.org/10.1143/jpsj.60.3549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Courtens, Eric. "Is there an unusual condensation in quantum paraelectrics?" Ferroelectrics 183, no. 1 (July 1996): 25–38. http://dx.doi.org/10.1080/00150199608224089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Das, Nabyendu. "On the possibility of mixed phases in disordered quantum paraelectrics." Modern Physics Letters B 28, no. 21 (August 20, 2014): 1450167. http://dx.doi.org/10.1142/s021798491450167x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this paper, we present a theory of phase transition in quantum critical paraelectrics in presence of quenched random-Tc disorder using replica trick. The effects of disorder induced locally ordered regions and their slow dynamics are included by breaking the replica symmetry at vector level. The occurrence of a mixed phase at any finite value of disorder strength is argued. A broad power law distribution of quantum critical points and and its finite temperature consequences are predicted. Results are interesting in the context of a certain class of disordered materials near quantum phase transition.
12

Okamoto, Hiroshi. "Probing Charge-Lattice-Coupled Fluctuations in Organic Quantum Paraelectrics." JPSJ News and Comments 7 (January 12, 2010): 06. http://dx.doi.org/10.7566/jpsjnc.7.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Prosandeev, S. A., and V. A. Trepakov. "The dielectric response of quantum paraelectrics containing dipole impurities." Journal of Experimental and Theoretical Physics 94, no. 2 (February 2002): 419–30. http://dx.doi.org/10.1134/1.1458493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kleemann, W., J. Dec, Y. G. Wang, P. Lehnen, and S. A. Prosandeev. "Phase transitions and relaxor properties of doped quantum paraelectrics." Journal of Physics and Chemistry of Solids 61, no. 2 (February 2000): 167–76. http://dx.doi.org/10.1016/s0022-3697(99)00278-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bussmann-Holder, A., H. Büttner, and A. R. Bishop. "Stabilization of ferroelectricity in quantum paraelectrics by isotopic substitution." Journal of Physics: Condensed Matter 12, no. 6 (January 26, 2000): L115—L120. http://dx.doi.org/10.1088/0953-8984/12/6/108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Kleemann, W., J. Dec, D. Kahabka, P. Lehnen, and Y. G. Wang. "Phase transitions and precursor phenomena in doped quantum paraelectrics." Ferroelectrics 235, no. 1 (December 1999): 33–46. http://dx.doi.org/10.1080/00150199908214865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yokota, Hiroko, and Yoshiaki Uesu. "Current Researches of Relaxors -Steps from Quantum Paraelectrics to Relaxors-." hamon 19, no. 2 (2009): 95–100. http://dx.doi.org/10.5611/hamon.19.2_95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Huber, W. H., L. M. Hernandez, and A. M. Goldman. "Electric field dependence of the thermal conductivity of quantum paraelectrics." Physical Review B 62, no. 13 (October 1, 2000): 8588–91. http://dx.doi.org/10.1103/physrevb.62.8588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nakano, T., N. Ushio, S. Yamamoto, Y. Sakai, and K. Abe. "Light Scattering by Microscopic Granular Ferroelectric Regions in SrTi18O3and Quantum Paraelectrics." Ferroelectrics 441, no. 1 (January 2012): 67–74. http://dx.doi.org/10.1080/00150193.2012.744259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Takesada, Masaki, Hiroshi Nihonmatsu, Toshirou Yagi, Akira Onodera, and Yukikuni Akishige. "Ultraviolet Photoexcited Soft Mode Dynamics in Quantum Paraelectrics KTaO3Doped with Nickel." Japanese Journal of Applied Physics 48, no. 9 (September 24, 2009): 09KF08. http://dx.doi.org/10.1143/jjap.48.09kf08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Smolyaninov, I. M. "The long-time correlations induced by defects in the quantum paraelectrics and." Journal of Physics: Condensed Matter 10, no. 45 (November 16, 1998): 10333–46. http://dx.doi.org/10.1088/0953-8984/10/45/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

DAS, NABYENDU. "EFFECTS OF STRAIN COUPLING AND MARGINAL DIMENSIONALITY IN THE NATURE OF PHASE TRANSITION IN QUANTUM PARAELECTRICS." International Journal of Modern Physics B 27, no. 08 (March 15, 2013): 1350028. http://dx.doi.org/10.1142/s0217979213500288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Here a recently observed weak first order transition in doped SrTiO 3 [Taniguchi, Itoh and Yagi, Phys. Rev. Lett.99, 017602 (2007)] is argued to be a consequence of the coupling between strain and order parameter fluctuations. Starting with a semi-microscopic action, and using renormalization group equations for vertices, we write the free energy of such a system. This fluctuation renormalized free energy is then used to discuss the possibility of first order transition at zero temperature as well as at finite temperature. An asymptotic analysis predicts small but a finite discontinuity in the order parameter near a mean field quantum critical point at zero temperature. In case of finite temperature transition, near quantum critical point such a possibility is found to be extremely weak. Results are in accord with some experimental findings on quantum paraelectrics such as SrTiO 3 and KTaO 3.
23

Ranjan, Rajeev, Anupriya Agrawal, Anatoliy Senyshyn, and Hans Boysen. "Crystal structures of high temperature quantum paraelectrics Na1/2Nd1/2TiO3and Na1/2Pr1/2TiO3." Journal of Physics: Condensed Matter 18, no. 41 (September 29, 2006): L515—L522. http://dx.doi.org/10.1088/0953-8984/18/41/l02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Prosandeev, S. A. "Nonlinear dielectric susceptibility of dipole impurities dissolved in the lattice of quantum paraelectrics." Physics of the Solid State 43, no. 10 (October 2001): 1948–51. http://dx.doi.org/10.1134/1.1410636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Geyer, Richard G., Bill Riddle, Jerzy Krupka, and Lynn A. Boatner. "Microwave dielectric properties of single-crystal quantum paraelectrics KTaO3 and SrTiO3 at cryogenic temperatures." Journal of Applied Physics 97, no. 10 (May 15, 2005): 104111. http://dx.doi.org/10.1063/1.1905789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Trepakov, V. A., S. A. Prosandeev, M. E. Savinov, P. Galinetto, G. Samoggia, S. E. Kapphan, L. Jastrabik, and L. A. Boatner. "Low-temperature phase transformations in weakly doped quantum paraelectrics: novel features and quantum reentrant dipolar glass state in KTa0.982Nb0.018O3." Journal of Physics and Chemistry of Solids 65, no. 7 (July 2004): 1317–27. http://dx.doi.org/10.1016/j.jpcs.2004.02.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Konsin, P., and B. Sorkin. "Semi-microscopic Vibronic Theory of the Properties of Quantum Paraelectrics and Ferroelectrics of SrTiO3 Type." Ferroelectrics 483, no. 1 (July 14, 2015): 20–25. http://dx.doi.org/10.1080/00150193.2015.1058667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nakamura, Tetsuro, Yue Jin Shan, Pai-Hsuan Sun, Yoshiyuki Inaguma, and Mitsuru Itoh. "Discrimination of ferroelectrics from quantum paraelectrics among perovskite titanatesATiO3AND (A′1/2A′′1/2) TiO3." Ferroelectrics 219, no. 1 (November 1998): 71–81. http://dx.doi.org/10.1080/00150199808213500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sakai, Hideaki, Koji Ikeura, Mohammad Saeed Bahramy, Naoki Ogawa, Daisuke Hashizume, Jun Fujioka, Yoshinori Tokura, and Shintaro Ishiwata. "Critical enhancement of thermopower in a chemically tuned polar semimetal MoTe2." Science Advances 2, no. 11 (November 2016): e1601378. http://dx.doi.org/10.1126/sciadv.1601378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ferroelectrics with spontaneous electric polarization play an essential role in today’s device engineering, such as capacitors and memories. Their physical properties are further enriched by suppressing the long-range polar order, as exemplified by quantum paraelectrics with giant piezoelectric and dielectric responses at low temperatures. Likewise in metals, a polar lattice distortion has been theoretically predicted to give rise to various unusual physical properties. However, to date, a “ferroelectric”-like transition in metals has seldom been controlled, and hence, its possible impacts on transport phenomena remain unexplored. We report the discovery of anomalous enhancement of thermopower near the critical region between the polar and nonpolar metallic phases in 1T′-Mo1−xNbxTe2with a chemically tunable polar transition. It is unveiled from the first-principles calculations and magnetotransport measurements that charge transport with a strongly energy-dependent scattering rate critically evolves toward the boundary to the nonpolar phase, resulting in large cryogenic thermopower. Such a significant influence of the structural instability on transport phenomena might arise from the fluctuating or heterogeneous polar metallic states, which would pave a novel route to improving thermoelectric efficiency.
30

Braeter, H., and W. Windsch. "On the influence of a static electric field on the lattice dynamics of ferroelectrics and quantum paraelectrics of displacive type." Ferroelectrics 100, no. 1 (December 1989): 241–54. http://dx.doi.org/10.1080/00150198908007919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Grabecki, G., J. Wróbel, P. Zagrajek, K. Fronc, M. Aleszkiewicz, T. Dietl, E. Papis, et al. "Quantum nanostructures of paraelectric PbTe." Physica E: Low-dimensional Systems and Nanostructures 35, no. 2 (December 2006): 332–37. http://dx.doi.org/10.1016/j.physe.2006.08.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Yidi. "Emergent phenomena in quantum phase transition." Theoretical and Natural Science 19, no. 1 (December 8, 2023): 126–37. http://dx.doi.org/10.54254/2753-8818/19/20230517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Emergent phenomena near the quantum critical point at sufficiently low temperature attracts accumulating attentions with respect to both theories and applications. On the contrary to materials with itinerant electrons, ferroelectric materials are relatively less studied but promising in studying novel quantum orders. In this report, we focus on one clean model system, strontium titanite oxide, to explore the quantum criticality. The stabilization of a quantum paraelectric phase has been verified by the previous experimental observation of the dielectric permittivity saturating at a rather high value to the order of 104 under 4 Kelvin. To understand the underlying mechanism, we apply the quantum generalization of Ginzburg-Landau theory as well as lattice dynamics, i.e., the stiffness of soft phonon mode to rationalize the deviation from the classical paraelectric to ferroelectric phase transitions. Besides, under the effective upper critical dimension, a logarithmic correction of the relationship between relative permittivity and temperature could explain the upturn found in diagram.
33

Das, Nabyendu. "Quantum critical behavior of a magnetic quantum paraelectric." Physics Letters A 376, no. 40-41 (August 2012): 2683–87. http://dx.doi.org/10.1016/j.physleta.2012.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yin, L. H., L. Hu, J. Yang, P. Teng, W. H. Song, J. M. Dai, X. B. Zhu, and Y. P. Sun. "Negative and positive photodielectric effects in quantum paraelectric BaFe12O19 single crystals." Journal of Materials Chemistry C 6, no. 46 (2018): 12707–13. http://dx.doi.org/10.1039/c8tc04812f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ishikawa, T., M. Itoh, M. Kurita, H. Shimoda, M. Takesada, T. Yagi, and S. Koshihara. "Giant Photoconductivity in Quantum Paraelectric Oxides." Ferroelectrics 298, no. 1 (January 2004): 141–43. http://dx.doi.org/10.1080/00150190490423390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bussmann-Holder, A., A. R. Bishop, and A. Simon. "SrTiO3: From Quantum Paraelectric to Superconducting." Ferroelectrics 400, no. 1 (September 21, 2010): 19–26. http://dx.doi.org/10.1080/00150193.2010.505528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kumar, Jitender, Ram Janay Choudhary, and A. M. Awasthi. "Quantum paraelectric glass state in SrCu3Ti4O12." Applied Physics Letters 104, no. 26 (June 30, 2014): 262905. http://dx.doi.org/10.1063/1.4885643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ktitorov, S. A., and L. Jastrabik. "Quantum paraelectric state in virtual ferroelectrics." Ferroelectrics 153, no. 1 (March 1, 1994): 137–42. http://dx.doi.org/10.1080/00150199408016556.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shenoy, S. R., V. Subrahmanyam, and A. R. Bishop. "Quantum Paraelectric Model for Layered Superconductors." Physical Review Letters 79, no. 23 (December 8, 1997): 4657–60. http://dx.doi.org/10.1103/physrevlett.79.4657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gentile, Francesco Silvio, Rosita Diana, Barbara Panunzi, Ugo Caruso, Alexander Platonenko, Fabien Pascale, and Roberto Dovesi. "Vibrational Analysis of Paraelectric–Ferroelectric Transition of LiNbO3: An Ab-Initio Quantum Mechanical Treatment." Symmetry 13, no. 9 (September 7, 2021): 1650. http://dx.doi.org/10.3390/sym13091650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The phase transitions between paraelectric (PE) and ferroelectric (FE) isomorph phases of LiNbO3 have been investigated quantum mechanically by using a Gaussian-type basis set, the B3LYP hybrid functional and the CRYSTAL17 code. The structural, electronic and vibrational properties of the two phases are analyzed. The vibrational frequencies evaluated at the Γ point indicate that the paraelectric phase is unstable, with a complex saddle point with four negative eigenvalues. The energy scan of the A2u mode at −215 cm−1 (i215) shows a dumbbell potential with two symmetric minima. The isotopic substitution, performed on the Li and Nb atoms, allows interpretation of the nontrivial mechanism of the phase transition. The ferroelectric phase is more stable than the paraelectric one by 0.32 eV.
41

Matsushita, Eiko, and Satoshi Segawa. "A Model of Quantum Paraelectric-Ferroelectric Transition." Ferroelectrics 347, no. 1 (March 20, 2007): 1–6. http://dx.doi.org/10.1080/00150190601186866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hemberger, J., M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl, and R. Böhmer. "Quantum paraelectric and induced ferroelectric states in." Journal of Physics: Condensed Matter 8, no. 25 (June 17, 1996): 4673–90. http://dx.doi.org/10.1088/0953-8984/8/25/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Wu, H., and W. Z. Shen. "Magnetoelectric effect in perovskite quantum paraelectric EuTiO3." Solid State Communications 133, no. 8 (February 2005): 487–91. http://dx.doi.org/10.1016/j.ssc.2004.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yurtseven, H., and F. Oğuz. "Critical behavior of the spontaneous polarization and the dielectric susceptibility close to the cubic-tetragonal transition in BaTiO3." Journal of Advanced Dielectrics 05, no. 03 (September 2015): 1550024. http://dx.doi.org/10.1142/s2010135x15500241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Using Landau mean field model, the spontaneous polarization and the dielectric susceptibility are analyzed as functions of temperature and pressure close to the cubic–tetragonal (ferroelectric–paraelectric) transition in [Formula: see text]. From the analysis of the dielectric susceptibility and the spontaneous polarization, the critical exponents are deduced in the classical and quantum limits for [Formula: see text]. From the critical behavior of the dielectric susceptibility, the spontaneous polarization can be described for the ferroelectric–paraelectric (cubic to tetragonal) transition between 4 and 8 GPa at constant temperatures of 0 to 200 K in [Formula: see text] within the Landau mean field model given here.
45

Busiello, G. "Glass Transition in Quantum Dipole Glass Model." Advanced Materials Research 590 (November 2012): 138–42. http://dx.doi.org/10.4028/www.scientific.net/amr.590.138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We give a description of the phase transition in an ensemble of the electric dipole with internal degrees of freedom in dielectric glass model.The model predicts a freezing of the random projections of the electric dipole moments. The low temperature phase transition from disordered paraelectric phase to the electric dipole orientational like glass phase is considered
46

Li, Xian, Tian Qiu, Jiahao Zhang, Edoardo Baldini, Jian Lu, Andrew M. Rappe, and Keith A. Nelson. "Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3." Science 364, no. 6445 (June 13, 2019): 1079–82. http://dx.doi.org/10.1126/science.aaw4913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
“Hidden phases” are metastable collective states of matter that are typically not accessible on equilibrium phase diagrams. These phases can host exotic properties in otherwise conventional materials and hence may enable novel functionality and applications, but their discovery and access are still in early stages. Using intense terahertz electric field excitation, we found that an ultrafast phase transition into a hidden ferroelectric phase can be dynamically induced in quantum paraelectric strontium titanate (SrTiO3). The induced lowering in crystal symmetry yields substantial changes in the phonon excitation spectra. Our results demonstrate collective coherent control over material structure, in which a single-cycle field drives ions along the microscopic pathway leading directly to their locations in a new crystalline phase on an ultrafast time scale.
47

Courtens, E., G. Coddens, B. Hennion, B. Hehlen, J. Pelous, and R. Vacher. "Phonon anomalies in SrTiO3in the quantum paraelectric regime." Physica Scripta T49B (January 1, 1993): 430–35. http://dx.doi.org/10.1088/0031-8949/1993/t49b/008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ishikawa, T., M. Kurita, S. Koshihara, M. Takesada, and M. Itoh. "High Carrier Mobility Coupled with Quantum Paraelectric Fluctuation." Ferroelectrics 346, no. 1 (March 26, 2007): 10–15. http://dx.doi.org/10.1080/00150190601180042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Trybuła, Z., S. Miga, Sz Łoś, M. Trybuła, and J. Dec. "Evidence of polar nanoregions in quantum paraelectric KTaO3." Solid State Communications 209-210 (May 2015): 23–26. http://dx.doi.org/10.1016/j.ssc.2015.03.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Song, T. K., J. Kim, and S. I. Kwun. "Size effects on the quantum paraelectric SrTiO3 nanocrystals." Solid State Communications 97, no. 2 (January 1996): 143–47. http://dx.doi.org/10.1016/0038-1098(95)00615-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography