Academic literature on the topic 'Quantum oscillation in insulator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum oscillation in insulator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Quantum oscillation in insulator"

1

Sato, Yuki. "Quantum oscillations and charge-neutral fermions in Kondo insulator YbB₁₂." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bègue, Frédéric. "Isolants topologiques et magnétisme." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30392/document.

Full text
Abstract:
La découverte de l'effet Hall quantique par von Klitzing en 1980 a ouvert la voie à ce qui sera connu plus tard comme la théorie topologique des bandes. Dans le cadre de cette théorie, on ne s'intéresse plus uniquement à la relation de dispersion énergétique des électrons dans les cristaux, mais aussi à l'organisation topologique de la structure de bande. Cette théorie a permis la découverte d'une nouvelle phase de la matière, représentée par les isolants topologiques. Ces isolants topologiques ont de particulier qu'ils se comportent comme des isolants normaux dans le bulk, mais présentent des états de surface conducteurs. Dans cette thèse, on s'intéresse particu- lièrement aux isolants topologiques dits Z2, pour lesquels les états de surface sont protégés par la symétrie de renversement du temps : ils ne peuvent disparaître en présence d'une perturbation qui préserve cette symétrie sans que le système ne traverse une transition de phase quantique. Pour les isolants topologiques à trois dimensions, nous proposons dans cette thèse, un critère expérimental utilisant les oscillations quantiques magnétiques, permettant d'identifier un type particulier d'isolants topologiques : les isolants topologiques forts. Pour les systèmes à deux dimensions, nous nous sommes intéressés aux phénomènes liés à la rupture de la symétrie par renversement du temps à cause de la présence d'un ordre antiferro- magnétique. Dans ce cas, la symétrie d'importance devient le renversement du temps fois une translation. Dans ce contexte, nous avons tout d'abord établi analytiquement l'expression d'un invariant topologique pour les systèmes présentant aussi la symétrie d'inversion. Nous avons ensuite adapté trois méthodes numériques normalement utilisées dans le cadre des isolants topo- logiques invariants par renversement du temps : la méthode de la phase de jonction, la méthode des centres de charge des fonctions de Wannier et la construction explicite des états de bord. Nous avons montré qu'elles permettaient de tester la nature triviale ou topologique de plusieurs modèles théoriques pour lesquelles aucune méthode n'existait, par exemple les systèmes sans symétrie d'inversion<br>The discovery of the quantum Hall effect by von Klitzing in 1980 paved the way for what is now known as topological band theory. In this theory, we are interested not only in the energy spectra of the electrons in crystals, but also in the topological structure of the bands. A new phase of matter was discovered thanks to this theory : the topological insulators. Topological insulators are unique in the sense that they behave like trivial insulators in the bulk, but possess metallic edge states. In this thesis, we are particularly interested in so-called Z2 topological insulators, whose edge states are protected by time reversal symmetry : they cannot disappear in the presence of a perturbation that respects this symmetry, without the system undergoing a quantum phase transition. For three-dimensional topological insulators, we propose an experimental criterion based on magnetic quantum oscillations to identify a special kind of topological insulators : the strong topological insulator. In two dimensions, we study the consequences of time reversal symmetry breaking due to anti-ferromagnetic order. In this case, the important symmetry is time reversal times a trans- lation. In this context, we first establish an analytical expression for systems that also have inversion symmetry. We then adapt three numerical methods usually employed for time reversal symmetric systems : the reconnection phase method, the Wannier charge center method and the explicit construction of edge states. We show that they are useful to probe the topology of models for which no methods were available ; such as non-centrosymmetric systems
APA, Harvard, Vancouver, ISO, and other styles
3

Semeniuk, Konstantin. "Correlated low temperature states of YFe2Ge2 and pressure metallised NiS2." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274346.

Full text
Abstract:
While the free electron model can often be surprisingly successful in describing properties of solids, there are plenty of materials in which interactions between electrons are too significant to be neglected. These strongly correlated systems sometimes exhibit rather unexpected, unusual and useful phenomena, understanding of which is one of the aims of condensed matter physics. Heat capacity measurements of paramagnetic YFe$_{2}$Ge$_{2}$ give a Sommerfeld coefficient of about 100 mJ mol$^{−1}$ K$^{−2}$, which is about an order of magnitude higher than the value predicted by band structure calculations. This suggests the existence of strong electronic correlations in the compound, potentially due to proximity to an antiferromagnetic quantum critical point (QCP). Existence of the latter is also indicated by the non-Fermi liquid T$^{3/2}$ behaviour of the low temperature resistivity. Below 1.8 K a superconducting phase develops in the material, making it a rare case of a non-pnictide and non-chalcogenide iron based superconductor with the 1-2-2 structure. This thesis describes growth and study of a new generation of high quality YFe$_{2}$Ge$_{2}$ samples with residual resistance ratios reaching 200. Measurements of resistivity, heat capacity and magnetic susceptibility confirm the intrinsic and bulk character of the superconductivity, which is also argued to be of an unconventional nature. In order to test the hypothesis of the nearby QCP, resistance measurements under high pressure of up to 35 kbar have been conducted. Pressure dependence of the critical temperature of the superconductivity has been found to be rather weak. μSR measurements have been performed, but provided limited information due to sample inhomogeneity resulting in a broad distribution of the critical temperature. While the superconductivity is the result of an effective attraction between electrons, under different circumstances the electronic properties of a system can instead be dictated by the Coulomb repulsion. This is the case for another transition metal based compound NiS$_{2}$, which is a Mott insulator. Applying hydrostatic pressure of about 30 kbar brings the material across the Mott metal-insulator transition (MIT) into the metallic phase. We have used the tunnel diode oscillator (TDO) technique to measure quantum oscillations in the metallised state of NiS$_{2}$, making it possible to track the evolution of the principal Fermi surface and the associated effective mass as a function of pressure. New results are presented which access a wider pressure range than previous studies and provide strong evidence that the effective carrier mass diverges close to the Mott MIT, as expected within the Brinkman-Rice scenario and predicted in dynamical mean field theory calculations. Quantum oscillations have been measured at pressures as close to the insulating phase as 33 kbar and as high as 97 kbar. In addition to providing a valuable insight into the mechanism of the Mott MIT, this study has also demonstrated the potential of the TDO technique for studying materials at high pressures.
APA, Harvard, Vancouver, ISO, and other styles
4

Khan, Hasan. "Quantum Fluctuations Across the Superconductor-Insulator Transition." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1553188107263297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tan, Hong'En. "High pressure quantum oscillation study of BiTeI and Bi2Te3." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284884.

Full text
Abstract:
The work presented in this thesis investigates the behaviour of the Rashba semi-conductor BiTeI and of the topological insulator $\text{Bi}_2\text{Te}_3\,$ under pressure. Using Shubnikov-de Haas quantum oscillation measurements, the evolution of the Fermi surface of both materials was tracked as a function of pressure. At ambient pressure, two distinct quantum oscillation frequencies in BiTeI, corresponding to inner and outer Fermi surface orbits as a result of spin-splitting caused by the Rashba effect, were observed. Using a model Hamiltonian with a Rashba interaction term to model this system, experimental results were fitted to determine model parameters. Based on this model, carrier densities for the samples were calculated and there was good agreement with Hall effect measurements. The phase of the oscillations showed that both Fermi surfaces have a Berry phase of $\pi$ associated with them, consistent with theoretical predictions for a Rashba system. As pressure is applied, it was observed that the inner Fermi surface expands while the outer Fermi surface shrinks. Phase analysis of the oscillations showed deviations from the ambient pressure value, hinting at a topological transition. For $\text{Bi}_2\text{Te}_3\,$, we report the observation of two oscillation frequencies ($\sim 40$ T and $\sim 340$ T) at ambient pressures. Based on the angular dependence of the oscillation frequencies, phase analysis, and comparison against band structure from published ARPES results, it is deduced that the higher frequency oscillation corresponds to the surface state of $\text{Bi}_2\text{Te}_3$. Non-linear behaviour in the Hall measurement also suggests the presence of multiple bands, and a two-band model with parameters derived from quantum oscillation measurements is used to fit the experimental data. Under pressure, a slight decrease in the low field Hall coefficient and a new frequency appearing at $\sim 20$ kbar was observed. These may be signatures of a change in the Fermi surface of $\text{Bi}_2\text{Te}_3\,$ caused by an electronic topological transition.
APA, Harvard, Vancouver, ISO, and other styles
6

Doiron-Leyraud, Nicolas. "Quantum oscillation and high pressure studies on correlated metals." Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619930.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mottahedeh, Roya. "Various aspects of quantum Hall effect." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Renberg, Rasmus. "Superconductor-Insulator Quantum Phase Transitions in a Dissipative Environment." Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hsu, Yu-Te. "Unconventional Fermi surface in insulating SmB6 and superconducting YBa2Cu3O6+x probed by high magnetic fields." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/280314.

Full text
Abstract:
Fermi surface, the locus in momentum space of gapless low-energy excitations, is a concept of fundamental importance in solid state physics. Electronic properties of a material are determined by the long-lived low-energy excitations near the Fermi surface. Conventionally, Fermi surface is understood as a property exclusive to a metallic state, contoured by electronic bands crossed by the Fermi level, although there has been a continuing effort in searching for Fermi surface outside the conventional description. In this thesis, techniques developed to prepare high-quality single crystals of SmB$_6$ and YBa$_2$Cu$_3$O$_{6+x}$ (abbreviated as YBCO$_{6+x}$ hereinafter) are described. By utilising measurement techniques of exceptional sensitivity and exploring a wide range of temperatures, magnetic fields, and electrical currents, we found signatures of unconventional Fermi surfaces beyond the traditional description in these strongly correlated electronic systems. SmB$_6$ is a classic example of Kondo insulators whose insulating behaviour arises due to strong correlation between the itinerant $d$-electrons and localised $f$-electrons. The peculiar resistivity plateau onsets below 4 K has been a decades-long puzzle whose origin has been recently proposed as the manifestation of topological conducting surface states. We found that the insulating behaviour in electrical transport is robust against magnetic fields up to 45 T, while prominent quantum oscillations in magnetisation are observed above 10 T. Angular dependence of the quantum oscillations revealed a three-dimensional characteristics with an absolute amplitude consistent with a bulk origin, and temperature dependence showed a surprising departure from the conventional Lifshitz-Kosevich formalism. Complementary thermodynamic measurements showed results consistent with a Fermi surface originating from neutral itinerant low-energy excitations at low temperatures. Theoretical proposals of the unconventional ground state uncovered by our measurements in SmB$_6$ are discussed. YBCO$_{6+x}$ is a high-temperature superconductor with a maximum $T_{\rm c}$ of 93.5 K and the cleanest member in the family of copper-oxide, or {\it cuprate}, superconductors. The correct description of electronic ground state in the enigmatic pseudogap regime, where the antinodal density of states are suppressed below a characteristic temperature $T^*$ above $T_{\rm c}$, has been a subject of active debates. While the quantum oscillations observed in underdoped YBCO$_{6+x}$ have been predominately interpreted as a property of the normal state where the superconducting parameter is completely suppressed at $\approx$ 23 T, we made the discovery that YBCO$_{6.55}$ exhibits zero resistivity up to 45 T when a low electrical current is used, consistent with the observation of a hysteresis loop in magnetisation. Quantum oscillations in the underdoped YBCO$_{6+x}$ are thus seen to coexist with $d$-wave superconductivity. Characteristics of the quantum oscillations are consistent with an isolated Fermi pocket reconstructed by a charge density wave order parameter and unaccompanied by significant background density of states, suggesting the antinodal density of states is completely gapped out by a strong order parameter involving pairing correlations, potentially in addition to the other order parameters. Transport measurements performed over a wide doping range show signatures consistent with pairing correlations that persist up to the pseudogap temperature $T^*$. The surprising observation of quantum oscillations in insulating SmB$_6$ and superconducting YBCO$_{6+x}$ demonstrates a possible new paradigm of a Fermi surface without a conventional Fermi liquid. A new theoretical framework outside the realm of Fermi liquid theory may be needed to discuss the physics in these strongly correlated materials with enticing electronic properties.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Li. "Study of Metal-Insulator-Metal Diodes for Photodetection." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1367319217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography