Academic literature on the topic 'Quantum optics and quantum optomechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum optics and quantum optomechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum optics and quantum optomechanics"

1

Li, Lingchao, and Jian-Qi Zhang. "Force Dependent Quantum Phase Transition in the Hybrid Optomechanical System." Photonics 8, no. 12 (December 18, 2021): 588. http://dx.doi.org/10.3390/photonics8120588.

Full text
Abstract:
The optomechanics shows a great potential in quantum control and precise measurement due to appropriate mechanical control. Here we theoretically study the quantum phase transition in a hybrid atom-optomechanical cavity with an external force. Our study shows, in the thermodynamic limit, the critical value of quantum phase transition between the normal phase and super-radiant phase can be controlled and modified by the external force via the tunable frequency of optomechanics, then a force dependent quantum phase transition can be achieved in our system. Moreover, this force dependent quantum phase transition can be employed to detect the external force variation. In addition, our numerical simulations illustrate the sensitivity of the external force measurement can be improved by the squeezing properties of the quantum phase transition.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Ning, Kaiyu Cui, Xue Feng, Fang Liu, Wei Zhang, and Yidong Huang. "Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics." Photonics 9, no. 2 (January 29, 2022): 78. http://dx.doi.org/10.3390/photonics9020078.

Full text
Abstract:
Multimode optomechanics exhibiting several intriguing phenomena, such as coherent wavelength conversion, optomechanical synchronization, and mechanical entanglements, has garnered considerable research interest for realizing a new generation of information processing devices and exploring macroscopic quantum effect. In this study, we proposed and designed a hetero-optomechanical crystal (OMC) zipper cavity comprising double OMC nanobeams as a versatile platform for multimode optomechanics. Herein, the heterostructure and breathing modes with high mechanical frequency ensured the operation of the zipper cavity at the deep-sideband-resolved regime and the mechanical coherence. Consequently, the mechanical breathing mode at 5.741 GHz and optical odd mode with an intrinsic optical Q factor of 3.93 × 105 were experimentally demonstrated with an optomechanical coupling rate g0 = 0.73 MHz between them, which is comparable to state-of-the-art properties of the reported OMC. In addition, the hetero-zipper cavity structure exhibited adequate degrees of freedom for designing multiple mechanical and optical modes. Thus, the proposed cavity will provide a playground for studying multimode optomechanics in both the classical and quantum regimes.
APA, Harvard, Vancouver, ISO, and other styles
3

Khosla, Kiran E., George A. Brawley, Michael R. Vanner, and Warwick P. Bowen. "Quantum optomechanics beyond the quantum coherent oscillation regime." Optica 4, no. 11 (November 7, 2017): 1382. http://dx.doi.org/10.1364/optica.4.001382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Farooq, K., M. A. Khan, L. C. Wang, and X. X. Yi. "Dynamics and transmissivity of optomechanical system in squeezed environment." International Journal of Modern Physics B 29, no. 28 (October 29, 2015): 1550201. http://dx.doi.org/10.1142/s021797921550201x.

Full text
Abstract:
Cavity quantum optomechanics offers the potential to explore quantum nature and characteristics in microscopic and nanoquantum systems. In this area, various experimental setup trends to explore, while theoretical approaches seek to lead the concrete bases for these amazing characteristics. In this paper, we present the dynamic features, stabilization and the optical response (transmission) properties of an optomechanical system in the squeezed environment theoretically. Particularly, we calculate optical intensity transmission coefficient of the optomechanical system. The optomechanical system has driven coherently with the external laser field.
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, Xunwei, Yanjun Zhao, Hui Wang, Hui Jing, and Aixi Chen. "Quantum nonreciprocality in quadratic optomechanics." Photonics Research 8, no. 2 (January 22, 2020): 143. http://dx.doi.org/10.1364/prj.8.000143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shahandeh, Farid, and Martin Ringbauer. "Optomechanical state reconstruction and nonclassicality verification beyond the resolved-sideband regime." Quantum 3 (February 25, 2019): 125. http://dx.doi.org/10.22331/q-2019-02-25-125.

Full text
Abstract:
Quantum optomechanics uses optical means to generate and manipulate quantum states of motion of mechanical resonators. This provides an intriguing platform for the study of fundamental physics and the development of novel quantum devices. Yet, the challenge of reconstructing and verifying the quantum state of mechanical systems has remained a major roadblock in the field. Here, we present a novel approach that allows for tomographic reconstruction of the quantum state of a mechanical system without the need for extremely high quality optical cavities. We show that, without relying on the usual state transfer presumption between light an mechanics, the full optomechanical Hamiltonian can be exploited to imprint mechanical tomograms on a strong optical coherent pulse, which can then be read out using well-established techniques. Furthermore, with only a small number of measurements, our method can be used to witness nonclassical features of mechanical systems without requiring full tomography. By relaxing the experimental requirements, our technique thus opens a feasible route towards verifying the quantum state of mechanical resonators and their nonclassical behaviour in a wide range of optomechanical systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Farooq, K., H. M. Noor ul Huda Khan Asghar, M. A. Khan, and Khalil Khan. "Transmissivity of optomechanical system containing a two-level system." International Journal of Modern Physics B 33, no. 22 (September 10, 2019): 1950252. http://dx.doi.org/10.1142/s0217979219502527.

Full text
Abstract:
The field of quantum optomechanics is newly grooming research field, availed good attention in the last couple of years. Here, we theoretically study the system of optomechanics containing a two-level atom, which is coupled to the cavity field, and driven coherently by external fields. Analytical results for the system’s operator dynamics, steady state solutions and transmissivity of optomechanical system are calculated. Transmission (optical response) from the optomechanical system shows some useful information about the current optomechanical system. Particularly, [Formula: see text] = [Formula: see text]-g0([Formula: see text] + [Formula: see text]) is a crucial quantity in optomechanics, focused as main parameters in this paper. Optical transmission is studied in two regions. The first region (case) (i) when [Formula: see text] = [Formula: see text] - [Formula: see text], and in second region (case), (ii) [Formula: see text] = [Formula: see text] + [Formula: see text]. The transmission is examined and discussed with respect to the mechanical frequency of the oscillating mirror.
APA, Harvard, Vancouver, ISO, and other styles
8

Ventura-Velázquez, C., B. M. Rodríguez-Lara, and H. M. Moya-Cessa. "Operator approach to quantum optomechanics." Physica Scripta 90, no. 6 (May 13, 2015): 068010. http://dx.doi.org/10.1088/0031-8949/90/6/068010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rodríguez-Lara, B. M., and H. M. Moya-Cessa. "An optical analog of quantum optomechanics." Physica Scripta 90, no. 7 (June 1, 2015): 074004. http://dx.doi.org/10.1088/0031-8949/90/7/074004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lahlou, Y., M. Amazioug, J. El Qars, N. Habiballah, M. Daoud, and M. Nassik. "Quantum coherence versus nonclassical correlations in optomechanics." International Journal of Modern Physics B 33, no. 29 (November 20, 2019): 1950343. http://dx.doi.org/10.1142/s0217979219503430.

Full text
Abstract:
Coherence arises from the superposition principle, where it plays a central role in quantum mechanics. In Phys. Rev. Lett. 114, 210401 (2015), it has been shown that the freezing phenomenon of quantum correlations beyond entanglement is intimately related to the freezing of quantum coherence (QC). In this paper, we compare the behavior of entanglement and quantum discord with quantum coherence in two different subsystems (optical and mechanical). We use respectively the entanglement of formation (EoF) and the Gaussian quantum discord (GQD) to quantify entanglement and quantum discord. Under thermal noise and optomechanical coupling effects, we show that EoF, GQD and QC behave in the same way. Remarkably, when entanglement vanishes, GQD and QC remain almost unaffected by thermal noise, keeping nonzero values even for high-temperature, which is in concordance with Phys. Rev. Lett. 114, 210401 (2015). Also, we find that the coherence associated with the optical subsystem is more robust — against thermal noise — than those of the mechanical subsystem. Our results confirm that optomechanical cavities constitute a powerful resource of QC.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum optics and quantum optomechanics"

1

Kelly, Stephen C. "EXPLORATION OF QUBIT ASSISTED CAVITY OPTOMECHANICS." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1408097717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Elouard, Cyril. "Thermodynamics of quantum open systems : applications in quantum optics and optomechanics." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY046/document.

Full text
Abstract:
La thermodynamique a été développée au XIXe siècle pour décrire la physique des moteurs et autres machines thermiques macroscopiques. Depuis lors, le progrès des nanotechnologies a rendu nécessaire d'étendre ces lois, initialement pensées pour des systèmes classiques, aux systèmes obéissant à la mécanique quantique. Durant cette thèse, j'ai mis en place un formalisme pour étudier la thermodynamique stochastique des systèmes quantiques, dans lequel la mesure quantique occupe une place centrale: à l'instar du bain thermique de la thermodynamique statistique classique, la mesure est ici la source première d'aléatoire dans la dynamique. Dans un premier temps, j'ai étudié la mesure projective comme une transformation thermodynamique à part entière. J'ai montré que la mesure cause un changement incontrôlé de l'énergie du système quantique étudié, que j'ai appelé chaleur quantique, ainsi qu'une production d'entropie. Comme application de ces concepts, j'ai proposé un moteur qui extrait du travail à partir des fluctuations quantiques induites par la mesure. Ensuite, j'ai étudié les mesures généralisées, ce qui a permis de décrire des systèmes quantiques ouverts. J'ai défini les notions de travail, de chaleur, et de production d'entropie pour une réalisation unique d'une transformation thermodynamique, et retrouvé que ces quantités obéissent à des théorèmes de fluctuation. Ce formalisme m'a permis d'analyser le comportement thermodynamique de la situation canonique de l'optique quantique : un atome à deux niveaux en couplé à un laser et au vide électromagnétique. Enfin, j'ai étudié une plate-forme prometteuse pour tester la thermodynamique d'un Qubit : un système hybride optomécanique.Le formalisme développé dans cette thèse peut être d'un grand intérêt pour la communauté de thermodynamique quantique car il permet de caractériser les performances des machines thermiques quantiques et de les comparer à leurs analogues classiques. En outre, en caractérisant la mesure quantique comme un processus thermodynamique, il ouvre la voie à de nouveaux types de machines thermiques, exploitant d'une manière inédite les spécificités du monde quantique
Thermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way
APA, Harvard, Vancouver, ISO, and other styles
3

McCutcheon, Robert A. "Hybrid Optomechanics and the Dynamical Casimir Effect." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501191323617929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seok, HyoJun. "Aspects Of Multimode Quantum Optomechanics." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332877.

Full text
Abstract:
This dissertation aims to investigate systems in which several optical and mechanical degrees of freedom are coupled through optomechanical interactions. Multimode optomechanics creates the prospect of integrated functional devices and it allows us to explore new types of optomechanical interactions which account for collective dynamics and optically mediated mechanical interactions. Owing to the development of fabrication techniques for micro- and nano-sized mechanical elements, macroscopic mechanical oscillators can be cooled to the deep quantum regime via optomechanical interaction. Based on the possibility to control the motion of mechanical oscillators at the quantum level, we design several schemes involving mechanical systems of macroscopic length and mass scales and we explore the nonlinear dynamics of mechanical oscillators. The first scheme includes a quantum cantilever coupled to a classical tuning fork via magnetic dipole-dipole interaction and also coupled to a single optical field mode via optomechanical interaction. We investigate the generation of nonclassical squeezed states in the quantum cantilever and their detection by transferring them to the optical field. The second scheme involves a quantum membrane coupled to two optical modes via optomechanical interaction. We explore dynamic stabilization of an unstable position of a quantum mechanical oscillator via modulation of the optical fields. We then develop a general formalism to fully describe cavity mediated mechanical interactions. We explore a rather general configuration in which multiple mechanical oscillators interact with a single cavity field mode. We specifically consider the situation in which the cavity dissipation is the dominant source of damping so that the cavity field follows the dynamics of the mechanical modes. In particular, we study two limiting regimes with specific applications: the weak-coupling regime and single-photon strong-coupling regime. In the weak-coupling regime, we build a protocol for quantum state transfer between mechanical modes. In the single-photon coupling regime, we investigate the nonlinear nature of the mechanical system which generates bistability and bifurcation in the classical analysis and we also explore how these features manifest themselves in interference, entanglement, and correlation in the quantum theory.
APA, Harvard, Vancouver, ISO, and other styles
5

Tumanov, Dmitrii. "Actuation and motion detection of different micro- and nano-structures." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY045/document.

Full text
Abstract:
Cette thèse s’inscrit dans le domaine de l'opto-mécanique et propose l'utilisation de différentes techniques de mesure et de manipulation des propriétés mécaniques de nano-structures.La première partie de ce travail est dédiée aux fils photoniques. Ces objets sont des structures en GaAs en forme de cône inversé, avec une longueur d’une dizaine de µm et un diamètre inférieur au µm, contenant une couche de boîtes quantiques à l'intérieur. Nous avons démontré une méthode de réglage statique du spectre de photoluminescence de ces boîtes quantiques sensibles à la contrainte, en utilisant des nano-manipulateurs pour contraindre mécaniquement les fils. De plus, grâce à la dépendance spatiale du décalage spectral, il est possible d’établir une carte de la position des boîtes quantiques.La deuxième partie de ce travail concerne la mise en mouvement de ces fils photoniques à l’aide d’un faisceau laser modulé à la fréquence de résonance mécanique. Les mécanismes physiques à l’origine de ces effets sont présentés et discutés.Dans la troisième partie, nous présentons une méthode permettant l’observation d'oscillations mécaniques de nano-fils fins (moins de 50 nm de diamètre) en utilisant un microscope électronique à balayage. Cette méthode originale offre la possibilité de contrôler de nombreux types de structures micro et nano-électromécaniques, dont la détection du mouvement n’est pas possible optiquement en raison de la limite de diffraction de la lumière. De plus, cette méthode permet également d'agir sur les propriétés mécaniques des structures via une force de contre-réaction qui devient non négligeable pour ces structures très légères. Cela ouvre la possibilité d'études fondamentales complémentaires liées au refroidissement du mouvement mécanique
This thesis is related to the field of opto-mechanics and the use of different techniques for the measurement and manipulation of mechanical properties of nano-structures.First part of the work is dedicated to the photonic wires. These objects are GaAs structures with an inverted conical shape of length of the order of 10 µm and diameter of less than 1 µm, containing a layer of InAs quantum dots inside. Wide-range static stress-tuning of quantum dots photoluminescence spectrum was demonstrated using nano-manipulators to bend the wires. Additionally, owing to the spatial dependence of the spectral shift, this technique offers the possibility of QD positions mapping.The second part of this work concerns the optical actuation of these photonic wires. A laser beam focused on the wire and modulated at the mechanical resonance frequency can set the wire in motion. The physical mechanisms responsible for these effects are presented and discussed.In the third part is presented a method enabling the detection of mechanical oscillations of small (less than 50 nm in diameter) nanowires with the use of a Scanning Electron Microscope. This original method offers a possibility to detect the motion of many types of micro- and nano-electromechanical devices which are too small to be detected optically owing to light diffraction limit.Moreover, this method also affects the mechanical properties of the structures via a back-action force that becomes non-negligible for such small devices. It opens up the possibility for further fundamental studies related to cooling of the mechanical motion
APA, Harvard, Vancouver, ISO, and other styles
6

Yeo, Inah. "A quantum dot in a photonic wire : spectroscopy and optomechanics." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY076/document.

Full text
Abstract:
Dans cette thèse, nous avons étudié les propriétés optiques de boîtes quantiques InAs/GaAs contenues dans un fil photonique. Des résultats antérieurs à cette thèse ont montré que ces fils photoniques permettent d’extraire les photons avec une efficacité très élevée.Le premier résultat original de ce travail est l’observation de la dérive temporelle de la raie d’émission de la photoluminescence d’une boîte quantique. Cet effet a été attribué à la lente modification de la charge de surface du fil due à l’absorption des molécules d’oxygène présentes dans le vide résiduel du cryostat. Nous avons montré qu’une fine couche de Si3N4 permettait de supprimer cette dérive. La dérive temporelle pouvant être différente pour différentes boites quantiques, nous avons pu tirer partie de cet effet pour mettre en résonance deux boites quantiques contenues dans le même fil.Le deuxième résultat original est la mise en évidence de la modification de l’énergie d’émission d’une boîte quantique soumise à une contrainte mécanique induite par la vibration du fil. Nous avons observé que le spectre de la raie d’émission d’une boîte quantique s’élargit considérablement lorsque le fil est mécaniquement excité à sa fréquence de résonance. A l’aide d’une illumination stroboscopique synchronisée avec l’excitation mécanique, nous avons pu reconstruire l’évolution du spectre d’une boîte quantique au cours d’une période de la vibration mécanique. L’amplitude de l’oscillation spectrale de la raie de luminescence dépend de la position de la boîte dans le fil à cause d’un très fort gradient de contrainte. En utilisant deux modes d’oscillation mécanique de polarisations linéaires et orthogonales, nous pouvons extraire une cartographie complète de la position des boîtes quantiques à l’intérieur du fil. Enfin, grâce à ce gradient, on peut, dans certains cas, trouver une position du fil pour laquelle deux boites quantiques peuvent être amenées en résonance
In the framework of this thesis, single InAs/GaAs quantum dot devices were studied by optical means. Starting with a general description of self-assembled InAs QDs, two types of single QD devices were presented. The first approach was a tapered GaAs photonic wire embedding single InAs QDs whose efficiency as a single photon source was previously shown to be 90%. We investigated several optical properties of the single QDs. The charged and neutral states of the QD were identified and selectively excited using quasi-resonant excitation.The first original result of this thesis is the observation of a continuous temporal blue-drift of the QD emission energy. We attributed this blue drift to oxygen adsorption onto the sidewall of the wire, which modified the surface charge and hence the electric field seen by the QD. Moreover, we demonstrated that a proper coating of the GaAs photonic nanowire surface suppressed the drift. The temperature effect on this phenomenon revealed an adsorption peak around 20K, which corresponds to the adsorption of oxygen on GaAs. This observation is in good agreement with previous temperature studies with a tapered photonic wire. This was the first study of the spectral stability of photonic wires embedding QDs, crucial for resonant quantum optics experiments. As an alternative, we took advantage of this temporal drift to tune QD emission energies. In a controlled way, we tuned into resonance two different QDs which were embedded in the same photonic nanowire. In the last part of this work, we studied the influence of the stress on single QDs contained in a trumpet-like GaAs photonic wire. The main effect of stress is to shift the luminescence lines of a QD. We applied the stress by exciting mechanical vibration modes of the wire. When the wire is driven at its the mechanical resonance the time-integrated photoluminescence spectrum is broaden up to 1 meV owing to the oscillating stress, The measured spectral modulation is a first signature of strain-mediated coupling between a mechanical resonator and embedded QD single light emitter. With a stroboscopic technique, we isolated a certain phase of the oscillating wire and thereby selected a value of QD emission energies. As a highlight of our study, we managed to bring two different QDs contained in the same wire into resonance by controlling their relative phase. In addition, we could extract the 2D spatial positioning of embedded QDs from the spectral shifts observed for two orthogonal mechanical polarizations.. The investigation of the strain-mediated tuning of QDs can, therefore, be an effective tool to explore the QD positions without destroying the sample
APA, Harvard, Vancouver, ISO, and other styles
7

Mirza, Imran. "Storage, Interference and Mechanical Effects of Single Photons in Coupled Optical Cavities." Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18525.

Full text
Abstract:
We study different phenomena associated with single-photon propagation in optical cavities coupled through optical fibers. We first address the issue of storing and delaying single-photon wavepackets in an array of microcavities. This has possible applications in developing reliable and efficient quantum repeaters that will be utilized in building long distance quantum networks. Second, we investigate a Hong-Ou-Mandel (HOM) type of interference between two photons that are produced in two coupled atom-cavity systems. The HOM effect in this setup can test the degree of indistinguishability between photons when they are stored inside cavities. This part of the dissertation also includes the study of entanglement between atoms, cavities and atom-cavity systems induced by the photons. Finally, we focus on single-photon interactions with a tiny movable mirror in the context of quantum optomechanics. We investigate how the mechanical motion of the mirror leaves its imprints on the optical spectrum of the photon This dissertation includes previously published and unpublished co-authored material.
10000-01-01
APA, Harvard, Vancouver, ISO, and other styles
8

Abbs, Charlotte. "Quantum dynamics of non-linear optomechanical systems." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/27692/.

Full text
Abstract:
This thesis explores the dynamics of optomechanical systems, which use radiation pressure to couple together optical and mechanical modes. Such systems display dynamics ranging from the quantum to the classical, with a variety of applications including ground state cooling and precision measurements. In this thesis two different geometries are presented for such a system in the form of the ‘reflective’ and ‘dispersive’ systems. Different aspects of the dynamics are investigated numerically and analytically. Firstly the reflective system is introduced, which consists of a cavity formed from a fixed and a moveable mirror. The optical frequency of the cavity couples linearly to the moveable mirror’s position. This geometry is explored as the cavity is driven by a laser, revealing a range of dynamical states in the mirror as the drive frequency is varied. An alternative geometry is presented in the form of the dispersive optomechanical system. Two fixed mirrors with a partially transmitting membrane at the centre provide a cavity supporting two optical modes, that couple approximately linearly or quadratically to the membrane position, depending on where the membrane is fixed. The system is explored in both linear and quadratic coupling regimes. Quadratic coupling is explored for a single optical mode by selecting a high tunnelling rate through the membrane. The dynamics of the membrane are explored via a similar set of techniques to those applied to the reflective system. Linear coupling for two optical modes is explored in the regimes of blue and red detuning. First resolved sideband cooling is explored, providing an alternative approach ground state cooling (which has been explored for the reflective case). Finally, strongly driving the system over a range of coupling strengths induces classical behaviour, extending from limit cycle oscillations to chaotic motion.
APA, Harvard, Vancouver, ISO, and other styles
9

Monsel, Juliette. "Thermodynamique quantique et optomécanique." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY051.

Full text
Abstract:
La thermodynamique a été développée au XIXème siècle pour étudier les machines à vapeur exploitant les transformations cycliques d'un fluide calorifique pour extraire de la chaleur de bains thermiques et la convertir en travail, éventuellement stocké dans une batterie. Cette discipline appliquée a finalement permis d'élaborer des concepts fondamentaux tels que l'irréversibilité. La thermodynamique quantique vise à revisiter ces résultats lorsque les fluides calorifiques, bains et batteries deviennent des systèmes quantiques. Ses résultats sont encore essentiellement théoriques.Cette thèse propose donc des méthodes de mesure in situ du travail, directement dans la batterie, et démontre le potentiel de deux plateformes pour ouvrir la voie à l'exploration expérimentale de ce domaine en plein essor.J'ai tout d'abord étudié les systèmes hybrides optomécaniques qui se composent d'un qubit couplé au champ électromagnétique d'une part, et à un résonateur mécanique d'autre part. La fréquence de transition du qubit est modulée par les vibrations du système mécanique, qui exerce ainsi une force sur le système. Le degré de liberté mécanique échange du travail avec le qubit et se comportant donc comme une batterie dispersive, c'est-à-dire dont la fréquence propre est très différente de celle de la transition du qubit. Enfin, le champ électromagnétique joue le rôle du bain. J'ai d'abord montré que les fluctuations d'énergie mécanique de la batterie sont égales aux fluctuations du travail, ce qui permet de mesurer directement l'entropie produite. En conséquence, les systèmes hybrides optomécaniques sont prometteurs pour tester expérimentalement les théorèmes de fluctuations dans un système quantique ouvert. Par ailleurs, j'ai étudié la conversion d'énergie optomécanique. J'ai montré qu'un système hybride optomécanique peut être considéré comme une machine thermique autonome et réversible permettant aussi bien de refroidir le résonateur mécanique que de construire un état cohérent de phonons en partant du bruit thermique.Par ailleurs, j'ai montré qu'il est possible de réaliser un moteur quantique à deux temps extrayant du travail d'un bain unique, non thermique. Le qubit se trouve dans un guide d'ondes unidimensionnel et la batterie est le mode du guide de même fréquence que la transition du qubit. Il s'agit donc d'une batterie résonante, contrairement au cas précédent. Premièrement, le qubit est couplé au bain ingéniéré, source d'énergie et de cohérence, qui le fait relaxer dans une superposition expérimentalement contrôlable d'états d'énergie. Deuxièmement, le bain est déconnecté et du travail est extrait en couplant qubit à un champ cohérent résonant. Ce type de système, appelé atome unidimensionnel, peut être réalisé avec des circuits supraconducteurs ou semi-conducteurs. La cohérence de l'état du qubit améliore les performances de ce moteur à la fois dans le régime classique, où un grand nombre de photons est injecté dans la batterie, et dans le régime quantique des petits nombres de photons.Cette thèse met en évidence le potentiel des systèmes hybrides optomécaniques et des atomes unidimensionnels pour explorer expérimentalement d'une part, l'irréversibilité et les théorèmes de fluctuations dans les systèmes quantiques ouverts, et d'autre part, le rôle de la cohérence dans l'extraction de travail
Thermodynamics was developed in the 19th century to study steam engines using the cyclical transformations of a working substance to extract heat from thermal baths and convert it into work, possibly stored in a battery. This applied science eventually led to the development of fundamental concepts such as irreversibility. Quantum thermodynamics aims at revisiting these results when the working substances, baths and batteries become quantum systems. Its results are still mainly theoretical. This thesis therefore propose methods to measure work in situ, directly inside the battery, and demonstrate the potential of two platforms to pave the way to the experimental exploration of this fast-growing field.First, I studied hybrid optomechanical systems which consist of a qubit coupled to the electromagnetic field on the one hand, and to a mechanical resonator on the other hand. The qubit's transition frequency is modulated by the vibrations of the mechanical system that exerts in this way a force on the qubit. The mechanical degree of freedom exchanges work with the qubit and therefore behaves like a dispersive battery, i.e. whose natural frequency is very different from the one of the qubit's transition. Finally, the electromagnetic field plays the role of the bath. I showed that the fluctuations of the mechanical energy are equal to the fluctuations of work, which allows the direct measurement of entropy production. As a result, hybrid optomechanical systems are promising for experimentally testing fluctuation theorems in open quantum systems. In addition, I studied optomechanical energy conversion. I showed that a hybrid optomechanical system can be considered as an autonomous and reversible thermal machine allowing either to cool the mechanical resonator or to build a coherent phonon state starting from thermal noise.Secondly, I showed that a two-stroke quantum engine extracting work from a single, non-thermal, bath can be made. The qubit is embedded in a one-dimensional waveguide and the battery is the waveguide mode of same frequency as the qubit's transition. Therefore, this is a resonant battery, unlike in the previous case. First, the qubit is coupled to the engineered bath, source of energy and coherence, that makes it relax in a experimentally controllable superposition of energy states. Secondly, the bath is disconnected and work is extracted by driving the qubit with a resonant coherent field. This kind of system, called one-dimensional atom, can be implemented in superconducting or semiconducting circuits. The coherence of the qubit's state improves the performances of this engine both in the regime of classical drive, where a large number of photons is injected in the battery, and in the quantum drive regime of low photon numbers.This thesis evidences the potential of hybrid optomechanical systems and one-dimensional atoms to explore experimentally on the one hand, irreversibility and fluctuation theorems, and on the other hand, the role of coherence in work extraction
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Young-Shin 1972. "Radiation pressure cooling of a silica optomechanical resonator." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10559.

Full text
Abstract:
xi, 125 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
This dissertation presents experimental and theoretical studies of radiation pressure cooling in silica optomechanical microresonators where whispering gallery modes (WGMs) are coupled to thermal mechanical vibrations. In an optomechanical system, circulating optical fields couple to mechanical vibrations via radiation pressure, inducing Stokes and anti-Stokes scattering of photons. In analogy to laser cooling of trapped ions, the mechanical motion can in principle be cooled to its ground state via the anti-Stokes process in the resolved-sideband limit, in which the cavity photon lifetime far exceeds the mechanical oscillation period. Our optomechanical system is a slightly deformed silica microsphere (with a diameter 25-30 μm ), featuring extremely high Q -factors for both optical ( Q o ∼ 10 8 ) and mechanical ( Q m ∼ 10 4 ) systems. Exploiting the unique property of directional evanescent escape in the deformed resonator, we have developed a free-space configuration for the excitation of WGMs and for the interferometric detection of mechanical displacement, for which the part of input laser that is not coupled into the microsphere serves as a local oscillator. Measurement sensitivity better than 5 × 10 -18 m /[Special characters omitted.] has been achieved. The three optically active mechanical modes observed in the displacement power spectrum are well described by finite element analysis. Both radiation pressure cooling and parametric instabilities have been observed in our experiments. The dependence of the mechanical resonator frequency and linewidth on the detuning as well as the intensity of the input laser show excellent agreement with theoretical calculations with no adjustable parameters. The free-space excitation technique has enabled us to combine resolved sideband cooling with cryogenic cooling. At a cryogenic temperature of 1.4 K, the sideband cooling leads to an effective temperature as low as 210 m K for a 110 MHz mechanical oscillator, corresponding to an average phonon occupation of 37, which is one of the three lowest phonon occupations achieved thus far for optomechanical systems. The cooling process is limited by ultrasonic attenuation in fused silica, which should diminish when bath temperature is further lowered, with a 3 He cryostat, to a few hundred millikelvin. Our experimental studies thus indicate that we are tantalizingly close to realizing the ground-state cooling for the exploration of quantum effects in an otherwise macroscopic mechanical system.
Committee in charge: Michael Raymer, Chairperson, Physics; Jens Noeckel, Member, Physics; Hailin Wang, Member, Physics; Paul Csonka, Member, Physics; Jeffrey Cina, Outside Member, Chemistry
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum optics and quantum optomechanics"

1

service), SpringerLink (Online, ed. Exploring Macroscopic Quantum Mechanics in Optomechanical Devices. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Monsel, Juliette. Quantum Thermodynamics and Optomechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walls, D. F. Quantum optics. Berlin: Springer, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scully, Marlan O. Quantum optics. Cambridge: Cambridge University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

J, Milburn G., ed. Quantum optics. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walls, D. F. Quantum optics. 2nd ed. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Walls, D. F. Quantum optics. 2nd ed. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garrison, John C. Quantum optics. Oxford: Oxford University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meystre, Pierre. Quantum Optics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orszag, Miguel. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum optics and quantum optomechanics"

1

Meystre, Pierre. "Quantum Optomechanics." In Quantum Optics, 325–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kamandar Dezfouli, Mohsen, and Stephen Hughes. "Quantum Optical Theories of Molecular Optomechanics." In Single Molecule Sensing Beyond Fluorescence, 163–204. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90339-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miao, Haixing. "Modifying Input Optics: Double Squeezed-Input." In Exploring Macroscopic Quantum Mechanics in Optomechanical Devices, 51–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25640-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monsel, Juliette. "Coherent Quantum Engine." In Quantum Thermodynamics and Optomechanics, 91–118. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Monsel, Juliette. "Introduction." In Quantum Thermodynamics and Optomechanics, 1–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Monsel, Juliette. "Thermodynamics of Open Quantum Systems." In Quantum Thermodynamics and Optomechanics, 11–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Monsel, Juliette. "Average Thermodynamics of Hybrid Optomechanical Systems." In Quantum Thermodynamics and Optomechanics, 29–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Monsel, Juliette. "Stochastic Thermodynamics of Hybrid Optomechanical Systems." In Quantum Thermodynamics and Optomechanics, 45–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monsel, Juliette. "Optomechanical Energy Conversion." In Quantum Thermodynamics and Optomechanics, 65–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Monsel, Juliette. "Conclusion." In Quantum Thermodynamics and Optomechanics, 119–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54971-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum optics and quantum optomechanics"

1

Bowen, Warwick Paul. "Quantum Optomechanics." In Conference on Lasers and Electro-Optics/Pacific Rim. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleopr.2018.tu2g.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bowen, W. P. "Quantum optomechanics." In 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2015. http://dx.doi.org/10.1109/cleopr.2015.7375877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pfeifer, Hannes, Hengjiang Ren, Greg MacCabe, and Oskar Painter. "Two dimensional optomechanical crystals for quantum optomechanics." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Harris, J. G. E., A. D. Kashkanova, A. B. Shkarin, C. D. Brown, S. Garcia, K. Ott, and J. Reichel. "Quantum optomechanics experiments in superfluid helium." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/cqo.2019.tu2b.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barclay, Paul E. "Nanocavity Optomechanics for Coupling to Quantum Systems." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fth3e.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xia, Xunmin Zhu, Nan Li, Mengzhu Hu, Wenqiang Li, Xingfan Chen, and Huizhu Hu. "External digital power stabilization system for levitated optomechanics sensor." In Quantum and Nonlinear Optics VIII, edited by Qiongyi He, Chuan-Feng Li, and Dai-Sik Kim. SPIE, 2021. http://dx.doi.org/10.1117/12.2601383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hao, Shan, Robinjeet Singh, Jingchen Zhang, and Thomas P. Purdy. "Cavity-less Quantum Optomechanics with Nanostring Mechanical Resonators." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.fw5c.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aspelmeyer, Markus. "New Frontiers in Quantum Optomechanics: from levitation to gravitation." In Frontiers in Optics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/fio.2016.ff3d.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mavalvala, Nergis. "Quantum Optics and Optomechanics in Gravitational Wave Detectors." In Laser Science. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/ls.2013.lm4h.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barzanjeh, Sh, M. Abdi, G. J. Milburn, P. Tombesi, and D. Vitali. "Quantum interface between optics and microwaves with optomechanics." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801643.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum optics and quantum optomechanics"

1

Scully, Marlan O. Quantum Optics Initiative. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada475607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scully, Marlan O. Fundamental and Applied Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada409783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Franson, J. D. Nonclassical Effects in Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Franson, J. D. Linear Optics Approach to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada440858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franson, J. D. Technology Development for Linear Optics Quantum Computing Program. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada441502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eberly, J. H. Seventh Rochester Conference on Coherence and Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, November 1996. http://dx.doi.org/10.21236/ada319112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada253666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada218772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scully, Marlan O. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada558091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scully, Marlan O. Laser and Stand-off Spectroscopy Quantum and Statistical Optics. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada534915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography