Academic literature on the topic 'Quantum optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum optics"

1

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, no. 5270 (June 28, 1996): 1897–98. http://dx.doi.org/10.1126/science.272.5270.1897-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schleich, W. P. "Quantum Optics: Optical Coherence and Quantum Optics." Science 272, no. 5270 (June 28, 1996): 1897b—1898b. http://dx.doi.org/10.1126/science.272.5270.1897b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walls, Daniel F., Gerard J. Milburn, and Wolfgang P. Schleich. "Quantum Optics." Physics Today 48, no. 6 (June 1995): 55–56. http://dx.doi.org/10.1063/1.2808065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Scully, Marlan O., M. Suhail Zubairy, and Ian A. Walmsley. "Quantum Optics." American Journal of Physics 67, no. 7 (July 1999): 648. http://dx.doi.org/10.1119/1.19344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bienfang, Joshua C., Alex J. Gross, Alan Mink, Charles W. Clark, Robert W. Boyd, Ryan S. Bennink, Sean J. Bentley, John C. Howell, D. R. Solli, and J. M. Hickmann. "Quantum Optics." Optics and Photonics News 15, no. 12 (December 1, 2004): 38. http://dx.doi.org/10.1364/opn.15.12.000038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walls, D. F., G. J. Milburn, and John C. Garrison. "Quantum Optics." American Journal of Physics 63, no. 5 (May 1995): 477–78. http://dx.doi.org/10.1119/1.17886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, R. C. "Quantum Optics." Journal of Modern Optics 42, no. 2 (February 1995): 489. http://dx.doi.org/10.1080/09500349514550441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KLYSHKO, D. N. "Quantum Optics." Annals of the New York Academy of Sciences 755, no. 1 (April 1995): 13–26. http://dx.doi.org/10.1111/j.1749-6632.1995.tb38953.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scully, Marian O., M. Suhail Zubairy, and Peter W. Milonni. "Quantum Optics." Physics Today 51, no. 10 (October 1998): 90–92. http://dx.doi.org/10.1063/1.882421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mekhov, I. B., and H. Ritsch. "Quantum optics with quantum gases." Laser Physics 19, no. 4 (April 2009): 610–15. http://dx.doi.org/10.1134/s1054660x09040136.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum optics"

1

Gao, Xuesong. "Quantum Nonlinear Optics." University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1564662783494271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garrido, Mauricio. "Quantum Optics in Coupled Quantum Dots." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1273589966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hessmo, Björn. "Quantum optics in constrained geometries." Doctoral thesis, Uppsala University, Department of Quantum Chemistry, 2000. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1208.

Full text
Abstract:

When light exhibits particle properties, and when matter exhibits wave properties quantum mechanics is needed to describe physical phenomena.

A two-photon source produces nonmaximally entangled photon pairs when the source is small enough to diffract light. It is shown that diffraction degrades the entanglement. Quantum states produced in this way are used to probe the complementarity between path information and interference in Young's double slit experiment.

When two photons have a nonmaximally entangled polarization it is shown that the Pancharatnam phase is dependent on the entanglement in a nontrivial way. This could be used for implementing simple quantum logical circuits.

Magnetic traps are capable of holding cold neutral atoms. It is shown that magnetic traps and guides can be generated by thin wires etched on a surface using standard nanofabrication technology. These atom chips can hold and manipulate atoms located a few microns above the surface with very high accuracy. The potentials are very versatile and allows for highly complex designs, one such design implemented here is a beam splitter for neutral atoms. Interferometry with these confined de Broglie is also considered. These atom chips could be used for implementing quantum logical circuits.

APA, Harvard, Vancouver, ISO, and other styles
4

Stock, Ryan. "Silicon-based quantum optics and quantum computing." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/111871/.

Full text
Abstract:
In this thesis is presented a brief review of quantum computing, the DiVincenzo criteria, and the possibility of using a solid state system for building a quantum computing architecture. Donor electron systems in silicon are discussed, before chalcogen, \deep", double donors are suggested as a good candidate for fulfilment of the criteria; the optically driven Stoneham proposal, where the spin-spin interaction between two donor electron spin qbits is mediated by the optically controlled, excited, state of a third donor electron, forms the basis of this [1]. Coherence lifetimes are established as a vital requirement of a quantum bit, but radiative lifetimes must also be long. If the spin-spin interaction between qbits is decreased, or turned off, by the de-excitation of the mediating donor electron then the coherence of the qbit is rendered irrelevant; de-excitation will ruin quantum computations that depend upon an interaction that only happens when the mediating electron is in an excited state. Effective mass theory is used to estimate excited state donor, 2P, wavefunctions for selenium doped silicon, and recent Mott semiconductor to metal transition doping data [2] is used to scale the spatial extent of the 1S(A1) ground state wavefunction. Using these wavefunctions, the expected radiative lifetimes are then calculated, via Fermi's golden rule, to be between 9 ns and 17 ns for the 2P0 state, and 12 ns to 20 ns for the 2P_1 state. Fourier Transform InfraRed (FTIR) absorbance spectroscopy is used to determine the optical transitions for selenium donors in silicon, this has allowed agreement between literature, measured, and effective mass theory energy values for the particular samples measured. FTIR time resolved spectroscopy has then been used to measure the radiative emission spectrum of selenium doped silicon samples at 10-300K, following a 1220 nm laser pulse. Fitting to the exponentially decaying emission data, selenium radiative lifetimes as long as 80 ns are found; for the 2P0 to 1S(A1) transition in an atomic selenium donor complex at 10K. A factor of between 4 and 8 agreement is found between calculated and measured radiative lifetimes. This offers the possibility of nanosecond scale donor electron coherence times for chalcogen dopants in silicon.
APA, Harvard, Vancouver, ISO, and other styles
5

Ekert, Artur Konrad. "Correlations in quantum optics." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Htoon, Han. "Studies on quantum coherence phenomena of self-assembled quantum dots." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

HOLM, DAVID ALLEN. "QUANTUM THEORY OF MULTIWAVE MIXING (RESONANCE FLUORESCENCE, SATURATION SPECTROSCOPY, MODULATION, PHASE CONJUGATION, QUANTUM NOISE)." Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187980.

Full text
Abstract:
This dissertation formulates and applies a theory describing how one or two strong classical waves and one or two weak quantum mechanical waves interact in a two-level medium. The theory unifies many topics in quantum optics, such as resonance fluorescence, saturation spectroscopy, modulation spectroscopy, the build up of laser and optical bistability instabilities, and phase conjugation. The theory is based on a quantum population pulsation approach that resembles the semiclassical theories, but is substantially more detailed. Calculations are performed to include the effects of inhomogeneous broadening, spatial hole burning, and Gaussian transverse variations. The resonance fluorescence spectrum in a high finesse optical cavity is analyzed in detail, demonstrating how stimulated emission and multiwave processes alter the spectrum from the usual three peaks. The effects of quantum noise during the propagation of weak signal and conjugate fields in phase conjugation and modulation spectroscopy are studied. Our analysis demonstrates that quantum noise affects not only the intensities of the signal and conjugate, but also their relative phase, and in particular we determine a quantum limit to the semiclassical theory of FM modulation spectroscopy. Finally, we derive the corresponding theory for the two-photon, two-level medium. This yields the first calculation of the two-photon resonance fluorescence spectrum. Because of the greater number of possible interactions in the two-photon two-level model, the theoretical formalism is considerably more complex, and many effects arise that are absent in the one-photon problem. We discuss the role of the Stark shifts on the emission spectrum and show how the Rayleigh scattering is markedly different.
APA, Harvard, Vancouver, ISO, and other styles
8

Bocquillon, Erwann. "Electron quantum optics in quantum Hall edge channels." Paris 6, 2012. http://www.theses.fr/2012PA066692.

Full text
Abstract:
Cette thèse est consacrée à la manipulation d'excitations mono-électroniques dans un conducteur quantique balistique, par l'implémentation d'expériences d'optique quantique électronique avec la résolution d'une charge élémentaire. Une capacité mésoscopique produit à la demande des excitations monoélectroniques dans le canal de bord externe de l'effet Hall quantique. Nous mesurons les fluctuations de courant après partitionnement des excitations sur une lame séparatrice électronique, dans un analogue de l'expérience de Hanbury-Brown & Twiss, afin de révéler les excitations neutres (paires électron/trou) qui peuvent accompagner la charge produite. Les excitations thermiques dans la mer de Fermi sont alors responsables d'interférences à deux particules qui permettent d'obtenir des informations sur la distribution en énergie des quasiparticules émises par la source. A l'aide de deux sources indépendantes et synchronisées, nous générons deux quasi-particules indiscernables, qui interfèrent sur une lame séparatrice dans un analogue de l'expérience de Hong-Ou-Mandel. La visibilité de ce phénomène est possiblement limité par la décohérence des paquets d'ondes électroniques par interaction avec l'environnement, notamment les autres canaux de bords. En mesurant le couplage capacitif entre deux canaux de bords co-propageant, nous caractérisons les effets de l'interaction coulombienne et mettons en évidence un mode neutre de propagation. Ces expériences constituent les premières implémentations d'expériences d'optique quantique électronique avec des charges uniques, et permettent d'envisager des expériences plus complexes comme la tomographie d'un paquet d'onde mono-électronique
This thesis is devoted to the implementation of quantum optics experiments in a ballistic quantum conductor, with single charge resolution. A mesoscopic capacitor produces on-demand single-electron excitations in the outermost edge channel of quantum Hall effect. We measure current fluctuations after partitioning of excitations on an electronic beamsplitter, in analogy with the Hanbury-Brown & Twiss experiment, so as to unveil neutral excitations (electron/holes pairs) that can accompany the emission of the charge. Thermal excitations in the Fermi sea are then responsible for two-particle interferences that yield information on the energy distribution of the generated quasiparticles. Using two independent and synchronized sources, we generate two indistinguishable quasiparticles that interfere on a beamsplitter as in the Hong-Ou-Mandel experiment. The visibility of this phenomenon could be limited by decoherence of the wavepackets due to interactions with the environment and especially with other co-propagating edge channels. By measuring the capacitive coupling between two co-propagating edge channels, we characterize the effects of Coulomb interaction on propagation and highlight a neutral mode of propagation. These experiments constitute the first implementations of electron quantum optics experiments with single charges. They pave the way to more complex experiments such as the tomography of a mono-electronic wavepacket
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Zheshen. "New techniques for quantum communication systems." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42843.

Full text
Abstract:
Although mathematical cryptography has been widely used, its security has only been proven under certain assumptions such as the computational power of opponents. As an alternative, quantum communication, in particular quantum key distribution (QKD) can get around unproven assumptions and achieve unconditional security. However, the key generation rate of practical QKD systems is limited by device imperfections, excess noise from the quantum channel, limited rate of true random-number generation, quantum entanglement preparation, and/or post-processing efficiency. This dissertation contributes to improving the performance of quantum communication systems. First, it proposes a new continuous-variable QKD (CVQKD) protocol that loosens the efficiency requirement on post-processing, a bottleneck for long-distance CVQKD systems. It also demonstrates an experimental implementation of the proposed protocol. To achieve high rates, the CVQKD experiment uses a continuous-wave local oscillator (CWLO). The excess noise caused by guided acoustic-wave Brillioun scattering (GAWBS) is avoided by a frequency-shift scheme, resulting in a 32 dB noise reduction. The statistical distribution of the GAWBS noise is characterized by quantum tomography. Measurements show Gaussian statistics upto 55 dB of dynamical range, which validates the security calculations in the proposed CVQKD protocol. True random numbers are required in quantum and classical cryptography. A second contribution of this thesis is that it experimentally demonstrates an ultrafast quantum random-number generator (QRNG) based on amplified spontaneous emission (ASE). Random numbers are produced by a multi-mode photon counting measurement on ASE light. The performance of the QRNG is analyzed with quantum information theory and verified with NIST standard random-number test. The QRNG experiment demonstrates a random-number generation rate at 20 Gbits/s. Theoretical studies show fundamental limits for such QRNGs. Quantum entanglement produced in nonlinear optical processes can help to increase quantum communication distance. A third contribution is the research on nonlinear optics of graphene, a novel 2D material with unconventional physical properties. Based on a quantum-dynamical model, optical responses of graphene are derived, showing for the first time a link between the complex linear optical conductivity and the quantum decoherence. Nonlinear optical responses, in particular four-wave mixing, is studied for the first time. The theory predicts saturation effects in graphene and relates the saturation threshold to the ultrafast quantum decoherence and carrier relaxation in graphene. For the experimental part, four-wave mixing in graphene is demonstrated. Twin-photon production in graphene is under investigation.
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Xunmimg. "Nonlinear dynamics in quantum optics /." St. Lucia, Qld, 2004. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17835.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum optics"

1

Walls, D. F. Quantum optics. 2nd ed. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meystre, Pierre. Quantum Optics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Orszag, Miguel. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orszag, Miguel. Quantum Optics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Walls, D. F., and G. J. Milburn. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79504-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walls, D. F., and Gerard J. Milburn, eds. Quantum Optics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-28574-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Garrison, John C. Quantum optics. Oxford: Oxford University Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

J, Milburn G., ed. Quantum optics. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walls, D. F. Quantum optics. Berlin: Springer, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1936-, Kujawski Adam, Lewenstein Maciej 1955-, Instytut Fizyki (Polska Akademia Nauk), and International School of Coherent Optics, (6th : 1985 : Ulstron), eds. Quantum optics. Warszawa: Polish Academy of Sciences Institute of Physics, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum optics"

1

Yamamoto, Y. "Quantum Optics." In Mesoscopic Electron Transport, 617–56. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8839-3_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ukai, Ryuji. "Quantum Optics." In Multi-Step Multi-Input One-Way Quantum Information Processing with Spatial and Temporal Modes of Light, 15–29. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55019-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Milburn, Gerard. "Quantum Optics." In Springer Handbook of Lasers and Optics, 1305–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19409-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carmichael, Howard. "Quantum Optics." In Photonics, 77–119. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119009719.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Milburn, Gerard. "Quantum Optics." In Springer Handbook of Lasers and Optics, 1053–78. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30420-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Orszag, Miguel. "Quantum Phase." In Quantum Optics, 231–47. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orszag, Miguel. "Quantum Trajectories." In Quantum Optics, 249–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orszag, Miguel. "Quantum Correlations." In Quantum Optics, 401–8. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29037-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Orszag, Miguel. "Quantum Phase." In Quantum Optics, 191–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Orszag, Miguel. "Quantum Trajectories." In Quantum Optics, 205–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04114-7_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum optics"

1

Rarity, J. G. "Quantum Technologies." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctul1.

Full text
Abstract:
Could we send information encoded in single photons possibly exploiting the wave particle duality inherent in quanta? Could we even build arbitrary processors using single quanta to encode bits of information? Within this talk I would hope to introduce you to the area of quantum information which is largely a theoretical preserve at the moment. There are however various experimental in-roads into this area, the most notable being secure key exchange using quantum cryptography.
APA, Harvard, Vancouver, ISO, and other styles
2

FIUTAK, J., and J. MIZERSKI. "QUANTUM OPTICS." In XIII Summer School on Quantum Optics. WORLD SCIENTIFIC, 1986. http://dx.doi.org/10.1142/9789814542357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mabuchi, Hideo. "Quantum optics and quantum information science." In Optics in Computing. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/oc.2003.othc2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takeuchi, Shigeki. "Photonic quantum circuits and quantum metrologies." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw4c.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Imamoglu, A. "Quantum optics with quantum dots." In 2005 IEEE LEOS Annual Meeting. IEEE, 2005. http://dx.doi.org/10.1109/leos.2005.1547864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Imamoḡlu, A. "Quantum Optics with Quantum Dots." In Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Giesz, Valérian, Niccolo Somaschi, Lorenzo De Santis, Simone Luca Portalupi, Christophe Arnold, Olivier Gazzano, Anna Nowak, et al. "Quantum dot based quantum optics." In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jackson, Deborah J., George M. Hockney, and Jon P. Dowling. "High quantum efficiency photodetectors for quantum instruments." In Frontiers in Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/fio.2003.waa3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Atature, Mete. "Quantum Dots as tools for Quantum Technologies." In Frontiers in Optics. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/fio.2012.ftu2d.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gyongyosi, Laszlo, and Sandor Imre. "Quantum Communication over Partially Degradable Quantum Channels." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fm3c.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum optics"

1

Scully, Marlan O. Quantum Optics Initiative. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada475607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scully, Marlan O. Fundamental and Applied Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada409783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Franson, J. D. Nonclassical Effects in Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, February 2004. http://dx.doi.org/10.21236/ada420491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Franson, J. D. Linear Optics Approach to Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada440858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franson, J. D. Technology Development for Linear Optics Quantum Computing Program. Fort Belvoir, VA: Defense Technical Information Center, October 2005. http://dx.doi.org/10.21236/ada441502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eberly, J. H. Seventh Rochester Conference on Coherence and Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, November 1996. http://dx.doi.org/10.21236/ada319112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fluegel, Brian. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada253666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gaskill, J. D. Fellowship in Physics/Modern Optics and Quantum Electronics. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada218772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steel, Duncan G. Nano-Optics: Coherent Nonlinear Optical Response and Control of Single Quantum Dots. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada402598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Scully, Marlan O. Laser and Stand-off Spectroscopy Quantum and Statistical Optics. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada534915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography