To see the other types of publications on this topic, follow the link: Quantum Mechanics - Many Body Problems.

Dissertations / Theses on the topic 'Quantum Mechanics - Many Body Problems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Quantum Mechanics - Many Body Problems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lentz, Simon. "Exact eigenstates of the Inozemtsev spin chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297571.

Full text
Abstract:
This thesis deals with the following question: are there more eigenfunctions, other than the already known eigenfunctions, of the spin chain with elliptic interactions known as the Inozemtsev spin chain? The Inozemtsev spin chain interpolates between two quantum integrable spin chains, theHeisenberg spin chain and the Haldane-Shastry spin chain. Therefore it is interesting to explore eigenfunctions of the Inozemtsev spin chain in greater detail. Moreover, there exists connections between spin chains and their corresponding spinless continuum model, namely theCalogero-Sutherland models; a derivation of the connection between the Haldane-Shastry spin chain and the trigonometric interacting Calogero-Sutherland model is presented in this thesis. These connections state that the eigenfunctions of the Calogero-Sutherland model are also eigenfunctionsof the corresponding spin chain. An established connection between the Inozemtsev spin chain and the elliptic interacting Calogero-Sutherland model yields exact eigenfunctions with simple poles at coinciding arguments of the Inozemtsev spin chain. However, there are eigenfunctions of theelliptic Calogero-Sutherland model with second order zeros instead of simple poles at coinciding arguments. It is therefore interesting to see if a connection exists that relates the eigenfunctions of the elliptic Calogero-Sutherland model with second order zeros to eigenfunctionsof the Inozemtsev spin chain also with second order zeros. The main goal of this thesis is to explore eigenfunctions of the Inozemtsev spin chain with second order zeros for two magnons. This thesis uses analytical methods for finding these eigenfunctions and numerical methods have beenresorted to in the end. The numerical results indicate that the functions explored in this thesis fail to parametrise the eigenfunctions of the Inozemtsev spin chain, except for a few special cases.
Den här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
APA, Harvard, Vancouver, ISO, and other styles
2

Alkurtass, B. "A quantum information approach to many-body problems." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469005/.

Full text
Abstract:
This thesis investigates the properties of entanglement in one-dimensional many-body systems. In the first part, the non-equilibrium dynamics following a sudden global quench are exploited for the purpose of generating long-range entanglement. A number of initial states are considered. It is shown that the dynamics following the considered quench can be mapped to the problem of a state transfer. The quench can then be optimised by exploiting the literature about quantum state transfer to generate maximal long-range entanglement and maximal block entropy. In the second part of the thesis, a spin chain emulation of the two-channel, Kondo (2CK) model is proposed. Studying the local magnetisation and susceptibility we show that the spin-only emulation truly represent the two-channel Kondo model and extract the Kondo temperature. A detailed entanglement analysis is presented. Using density matrix renormalisation group (DMRG), which allow for real space analysis, Kondo temperature and Kondo length are evaluated. An entanglement measure, namely the negativity, as well as the Schmidt gap are used as possible order parameters predicting the critical point. An extensive analysis of the block entropy of the system is presented for different limiting values of Kondo coupling. A universal scaling of the impurity contribution to the entropy is found and the 2CK residual entropy is extracted. The last part explores quench dynamics in Kondo systems using time-dependent DMRG. For a quench in the Kondo coupling a travelling and breathing clouds are ob-served. A measurement-induced dynamics lead to an oscillation between an effective singlet and triplet states of the impurity and the Kondo cloud. Kondo temperature can be extracted from the frequency of the oscillation.
APA, Harvard, Vancouver, ISO, and other styles
3

Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.

Full text
Abstract:
Cette thèse est consacrée à l'étude mathématique de deux systèmes quantiques décrits par des modèles non linéaires : le polaron anisotrope et les électrons d'un cristal périodique. Après avoir prouvé l'existence de minimiseurs, nous nous intéressons à la question de l'unicité pour chacun des deux modèles. Dans une première partie, nous montrons l'unicité du minimiseur et sa non-dégénérescence pour le polaron décrit par l'équation de Choquard--Pekar anisotrope, sous la condition que la matrice diélectrique du milieu est presque isotrope. Dans le cas d'une forte anisotropie, nous laissons la question de l'unicité en suspens mais caractérisons précisément les symétries pouvant être dégénérées. Dans une seconde partie, nous étudions les électrons d'un cristal dans le modèle de Thomas--Fermi--Dirac--Von~Weizsäcker périodique, en faisant varier le paramètre devant le terme de Dirac. Nous montrons l'unicité et la non-dégénérescence du minimiseur lorsque ce paramètre est suffisamment petit et mettons en évidence une brisure de symétrie lorsque celui-ci est grand
This thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
APA, Harvard, Vancouver, ISO, and other styles
4

Benedikter, Niels [Verfasser]. "Effective Evolution Equations from Many-Body Quantum Mechanics / Niels Benedikter." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061079/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sengupta, Sanghita. "Quantum Many - Body Interaction Effects In Two - Dimensional Materials." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/939.

Full text
Abstract:
In this talk, I will discuss three problems related to the novel physics of two-dimensional quantum materials such as graphene, group-VI dichalcogenides family (TMDCs viz. MoS2 , WS2, MoSe2 , etc) and Silicene-Germanene class of materials. The first problem poses a simple question - how do the quantum excitations in a graphene membrane affect adsorption? Using the tools of diagrammatic perturbation theory, I will derive the scattering rates of a neutral atom on a graphene membrane. I will show how this seemingly naive model can serve as a non-relativistic condensed matter analogue of the infamous infrared problem in Quantum Electrodynamics. In the second problem, I will move from the framework of a single atom adsorption to a collective behavior of fluids near graphene and TMDC - interfaces. Following the seminal work of Dzyaloshinskii-Lifshitz-Pitaevskii on van der Waals interactions, I will develop a theory of liquid film growth on 2 dimensional surfaces. Additionally, I will report an exotic phenomenon of critical wetting instability which is a result of the dielectric engineering and discuss experimental and technological implications. Finally, the last problem will see the introduction of spin-orbit coupling effects in the 2D topological insulator family of Silicene-Germanene class of materials. I will present a unified theory for their in-plane magnetic field response leading to "anomalous", i.e electron interaction-dependent spin-flip transition moment. Can this correction to spin-flip transition moment be measured? I will propose magneto-optical experimental techniques that can probe the effects.
APA, Harvard, Vancouver, ISO, and other styles
6

Schiulaz, Mauro. "Ideal quantum glass transitions: many-body localization without quenched disorder?" Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4908.

Full text
Abstract:
In this work the role of disorder, interaction and temperature in the physics of quantum non-ergodic systems is discussed. I first review what is meant by thermalization in closed quantum systems, and how ergodicity is violated in the presence of strong disorder, due to the phenomenon of Anderson localization. I explain why localization can be stable against the addition of weak dephasing interactions, and how this leads to the very rich phenomenology associated with many-body localization. I also briefly compare localized systems with their closest classical analogue, which are glasses, and discuss their similarities and differences, the most striking being that in quantum systems genuine non ergodicity can be proven in some cases, while in classical systems it is a matter of debate whether thermalization eventually takes place at very long times. Up to now, many-body localization has been studies in the region of strong disorder and weak interaction. I show that strongly interacting systems display phenomena very similar to localization, even in the absence of disorder. In such systems, dynamics starting from a random inhomogeneous initial condition are non-perturbatively slow, and relaxation takes place only in exponentially long times. While in the thermodynamic limit ergodicity is ultimately restored due to rare events, from the practical point of view such systems look as localized on their initial condition, and this behavior can be studied experimentally. Since their behavior shares similarities with both many-body localized and classical glassy systems, these models are termed “quantum glasses”. Apart from the interplay between disorder and interaction, another important issue concerns the role of temperature for the physics of localization. In non-interacting systems, an energy threshold separating delocalized and localized states exist, termed “mobility edge”. It is commonly believed that a mobility edge should exist in interacting systems, too. I argue that this scenario is inconsistent because inclusions of the ergodic phase in the supposedly localized phase can serve as mobile baths that induce global delocalization. I conclude that true non-ergodicity can be present only if the whole spectrum is localized. Therefore, the putative transition as a function of temperature is reduced to a sharp crossover. I numerically show that the previously reported mobility edges can not be distinguished from finite size effects. Finally, the relevance of my results for realistic experimental situations is discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Bertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.

Full text
Abstract:
In this thesis we study three examples of interacting many-body systems undergoing a non equilibrium time evolution. Firstly we consider the time evolution in an integrable system: the sine-Gordon field theory in the repulsive regime. We will focus on the one point function of the semi-local vertex operator eiβφ(x)/2 on a specific class of initial states. By analytical means we show that the expectation value considered decays exponentially to zero at late times and we determine the decay time. The method employed is based on a form-factor expansion and uses the "Representative Eigenstate Approach" of Ref. [73] (a.k.a. "Quench Action"). In a second example we study the time evolution in models close to "special" integrable points characterised by hidden symmetries generating infinitely many local conservation laws that do not commute with one another, in addition to the infinite commuting family implied by integrability. We observe that both in the case where the perturbation breaks the integrability and when it breaks only the additional symmetries maintaining integrability, the local observables show a crossover behaviour from an initial to a final quasi stationary plateau. We investigate a weak coupling limit, identify a time window in which the effects of the perturbations become significant and solve the time evolution through a mean-field mapping. As an explicit example we study the XYZ spin-1/2 chain with additional perturbations that break integrability. Finally, we study the effects of integrability breaking perturbations on the non-equilibrium evolution of more general many-particle quantum systems, where the unperturbed integrable model is generic. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalisations of quantum Boltzmann equations. We benchmark our method against time dependent density matrix renormalisation group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalisation plateaux for local observables on all accessible time scales. Increasing the strength of the integrability breaking term induces a "drift" away from the prethermalisation plateaux towards thermal behaviour. We identify a time scale characterising this crossover.
APA, Harvard, Vancouver, ISO, and other styles
8

Russomanno, Angelo. "Periodic driving of a coherent quantum many body system and relaxation to the Floquet diagonal ensemble." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3904.

Full text
Abstract:
The coherent dynamics of many body quantum system is nowadays an experimental reality: by means of the cold atoms in optical lattices, many Hamiltonians and time-dependent perturbations can be engineered. In this Thesis we discuss what happens in these systems when a periodic perturbation is applied. Thanks to Floquet theory, we can see that -- if the Floquet spectrum obeys certain continuity conditions possible in the thermodynamic limit-- dephasing among Floquet quasi-energies makes local observables relax to a periodic steady regime described by an effective density matrix: the Floquet diagonal ensemble (FDE). By means of numerical examples on the Quantum Ising Chain and the Lipkin model, we discuss the properties of the FDE focusing on the difference among ergodic and regular quantum dynamics and on how this reflects on the thermal properties ($T=\infty$) of the asymptotic condition. We verify thermalization in the classically ergodic Lipkin model and we demonstrate that this effect is induced by the Floquet states being delocalized and obeying Eigenstate Thermalization Hypothesis.We discuss also, in the Ising chain case, the work probability distribution, whose asymptotic condition is not described by the form (Generalized Gibbs Ensemble) that FDE acquires for local obserbvables because of integrability. Dephasing makes some correlations invisible in the local observables, but they are still present in the system. We consider also the linear response limit: when the amplitude of the perturbation is vanishingly small, the Floquet diagonal ensemble is not sufficient to describe the asymptotic condition given by LRT. For every small but finite amplitude, there are quasi-degeneracies in the Floquet spectrum giving rise to pre-relaxation to the condition predicted by Linear Response; these phenomena are strictly related to energy absorption and boundedness of the spectrum.
APA, Harvard, Vancouver, ISO, and other styles
9

Mucciolo, Eduardo Rezende. "Universal correlations in the quantum spectra of chaotic systems and exactly solvable many-body problems." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.

Full text
Abstract:
Thesis (MSc (Physics))--University of Stellenbosch, 2010.
ENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
APA, Harvard, Vancouver, ISO, and other styles
11

Erne, Sebastian Anton [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Far-From-Equilibrium Quantum Many-Body Systems: From Universal Dynamics to Statistical Mechanics / Sebastian Anton Erne ; Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252805/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tucker, Adam Philip. "Local moment phases in quantum impurity problems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:538d2d83-963e-4a51-81cd-4235e9761da4.

Full text
Abstract:
This thesis considers quantum impurity models that exhibit a quantum phase transition (QPT) between a Fermi liquid strong coupling (SC) phase, and a doubly-degenerate non-Fermi liquid local moment (LM) phase. We focus on what can be said from exact analytic arguments about the LM phase of these models, where the system is characterized by an SU(2) spin degree of freedom in the entire system. Conventional perturbation theory about the non-interacting limit does not hold in the non-Fermi liquid LM phase. We circumvent this problem by reformulating the perturbation theory using a so-called `two self-energy' (TSE) description, where the two self-energies may be expressed as functional derivatives of the Luttinger-Ward functional. One particular paradigmatic model that possesses a QPT between SC and LM phases is the pseudogap Anderson impurity model (PAIM). We use infinite-order perturbation theory in the interaction, U, to self-consistently deduce the exact low-energy forms of both the self-energies and propagators in each of the distinct phases of the model. We analyse the behaviour of the model approaching the QPT from each phase, focusing on the scaling of the zero-field single-particle dynamics using both analytical arguments and detailed numerical renormalization group (NRG) calculations. We also apply two `conserving' approximations to the PAIM. First, second-order self-consistent perturbation theory and second, the fluctuation exchange approximation (FLEX). Within the FLEX approximation we develop a numerical algorithm capable of self-consistently and coherently describing the QPT coming from both distinct phases. Finally, we consider a range of static spin susceptibilities that each probe the underlying QPT in response to coupling to a magnetic field.
APA, Harvard, Vancouver, ISO, and other styles
13

Silvi, Pietro. "Tensor Networks: a quantum-information perspective on numerical renormalization groups." Doctoral thesis, SISSA, 2011. http://hdl.handle.net/20.500.11767/4293.

Full text
Abstract:
In this thesis, we will focus on a very general family of variational wave-functions, whose main peculiarity is that their descriptors/parameters are tailored according to simple linear algebraic relations. The computational power and success of these tools descends from arguments that were born within quantum information framework: entanglement [1]. Quantum entanglement is indeed a resource, but it is also a measure of internal correlations in multipartite systems. Once we characterized general entanglement properties of many-body ground states, then by controlling entanglement of a variational trial wavefunction we can exclusively address physical states, and disregard non-physical states, even before the simulation takes place. This is the central concept which Tensor Network architectures are based upon.
APA, Harvard, Vancouver, ISO, and other styles
14

Dargel, Piet. "Spectral functions of low-dimensional quantum systems." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2012. http://hdl.handle.net/11858/00-1735-0000-000D-F1A3-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Paolini, Fabio. "Dinâmica gaussiana de sistemas atômicos de Bose-Einstein frios." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24042009-145044/.

Full text
Abstract:
Estudamos as excitações de baixa energia, presentes em um gás de bosons homogêneo, de spin nulo, sujeitos a uma interação de dois corpos repulsiva e a temperatura zero, utilizando a aproximação gaussiana, que consiste num caso particular de aproximação de campo médio. As equações dinâmicas resultantes foram linearizadas ao redor da solução estática de Hartree-Fock-Bogoliubov. Obtivemos uma banda contínua e limitada inferiormente, além de um segundo ramo discreto, que define um limite inferior para as excitações e que, ao contrário do resultado proveniente do tratamento de Hartree-Fock-Bogoliubov, possui um comportamento linear sem gap com respeito ao momento da excitação no limite de grandes comprimentos de onda, ou seja, possui uma equação de dispersão do tipo fônon. Discutimos também a forma através da qual é possível gerar desvios do equilíbrio, vinculados aos estados excitados, e concluímos haver restrições sobre os possíveis desvios das grandezas características em campo médio gaussiano, quando tais desvios são gerados por transformações infinitesimais unitárias de um corpo tomadas até primeira ordem.
We study low-lying excitations of a spinless, homogeneous bose gas, with repulsive interaction, at zero temperature, in terms of a gaussian mean field approximation. The dynamical equations of this approximation have been linearized in small displacements from the well known static Hartree-Fock-Bogoliubov solution. We obtain a gapped continous band of excitations above a discrete branch with phonon behavior at large wavelengths. We also discuss the allowed forms of excitations and conclude that restrictions exist for the allowed deviations of the general set of gaussian mean field parameters, when they are generated in first orders by infinitesimal unitary transformations.
APA, Harvard, Vancouver, ISO, and other styles
16

Bidzhiev, Kemal. "Out-of-equilibrium dynamics in a quantum impurity model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS352/document.

Full text
Abstract:
Le domaine des problèmes quantiques à N-corps à l'équilibre et hors d'équilibre sont des sujets majeurs de la Physique et de la Physique de la matière condensée en particulier. Les propriétés d'équilibre de nombreux systèmes unidimensionnels en interaction sont bien comprises d'un point de vue théorique, des chaînes de spins aux théories quantiques des champs dans le continue. Ces progrès ont été rendus possibles par le développement de nombreuses techniques puissantes, comme, par exemple, l'ansatz de Bethe, le groupe de renormalisation, la bosonisation, les états produits de matrices ou la théorie des champs invariante conforme. Même si les propriétés à l'équilibre de nombreux modèles soient connues, ceci n'est en général pas suffisant pour décrire leurs comportements hors d'équilibre, et ces derniers restent moins explorés et beaucoup moins bien compris. Les modèles d'impuretés quantiques représentent certains des modèles à N-corps les plus simples. Mais malgré leur apparente simplicité ils peuvent capturer plusieurs phénomènes expérimentaux importants, de l'effet Kondo dans les métaux aux propriétés de transports dans les nanostructures, comme les points quantiques. Dans ce travail nous considérons un modèle d'impureté appelé "modèle de niveau résonnant en interaction" (IRLM). Ce modèle décrit des fermions sans spin se propageant dans deux fils semi-infinis qui sont couplés à un niveau résonant -- appelé point ou impureté quantique -- via un terme de saut et une répulsion Coulombienne. Nous nous intéressons aux situations hors d'équilibre où un courant de particules s'écoule à travers le point quantique, et étudions les propriétés de transport telles que le courant stationnaire (en fonction du voltage), la conductance différentielle, le courant réfléchi, le bruit du courant ou encore l'entropie d'intrication. Nous réalisons des simulations numériques de la dynamique du modèle avec la méthode du groupe de renormalisation de la matrice densité dépendent du temps (tDMRG), qui est basée sur une description des fonctions d'onde en terme d'états produits de matrices. Nous obtenons des résultats de grande précision concernant les courbes courant-voltage ou bruit-voltage de l'IRLM, dans un grand domaine de paramètres du modèle (voltage, force de l'interaction, amplitude de saut vers le dot, etc.). Ces résultats numériques sont analysés à la lumière de résultats exacts de théorie des champs hors d'équilibre qui ont été obtenus pour un modèle similaire à l'IRLM, le modèle de Sine-Gordon avec bord (BSG). Cette analyse est en particulier basée sur l'identification d'une échelle d'énergie Kondo et d'exposants décrivant les régimes de petit et grand voltage. Aux deux points particuliers où les modèles sont connus comme étant équivalents, nos résultats sont en accord parfait avec la solution exacte. En dehors de ces deux points particuliers nous trouvons que les courbes de transport de l'IRLM et du modèle BSG demeurent très proches, ce qui était inattendu et qui reste dans une certaine mesure inexpliqué
The fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained
APA, Harvard, Vancouver, ISO, and other styles
17

Hanssen, James Louis. "Controlling atomic motion: from single particle classical mechanics to many body quantum dynamics." Thesis, 2004. http://hdl.handle.net/2152/1193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hanssen, James Louis Raizen Mark George. "Controlling atomic motion from single particle classical mechanics to many body quantum dynamics /." 2004. http://wwwlib.umi.com/cr/utexas/fullcit?p3142736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gezzi, Riccardo [Verfasser]. "Functional renormalization group for non-equilibrium quantum many-body problems / vorgelegt von Riccardo Gezzi." 2008. http://d-nb.info/991013352/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Chhenh, Chunhoa. "Corner transfer matrix derived variational methods in lattice statistical mechanics and quantum many-body systems." Phd thesis, 2011. http://hdl.handle.net/1885/150093.

Full text
Abstract:
The concept of the corner transfer matrix (CTM) was first discovered by Baxter in 1968, when he derived a set of variational matrix equations, which for finite matrix sizes, could be numerically solved to obtain a sequence of approximations for the statistical mechanical properties of a system of monomers and dimers on a rectangular lattice [1]. It was not until 1978, however, in a seminal paper entitled "Variational Approximations for Square Lattice Models in Statistical Mechanics" [4], that Baxter outlined his CTM variational method, which brought to light the potential power of the former objects to obtain numerics and series expansions for unsolved models and to calculate the order parameter of solved ones. Subsequent numerical work led to the realisation that the method, though general, was not very efficient; and increasing efficiency required making model specific modifications, which restricted the transferability of the resulting algorithm to other models. The CTM variational method was thus not widely adopted, despite holding much promise. More recently, however, Nishino and Okunishi discovered that White's density matrix renormalisation group (DMRG) algorithm [55, 56] could be efficiently extended to study two-dimensional classical lattice models, if the density matrix was approximated by Baxters CTMs. Numerical tests of their algorithm, the corner transfer matrix renormalisation group (CTMRG) method, were met with much success. Notable among these is its implementation within the infinite projected entangled-pair states (iPEPS) algorithm of Orus and Vidal to simulate the ground state of infinite two-dimensional quantum systems. In this thesis we review CTM derived variational methods: Baxter's original CTM iterative method, and developments of the CTM concept within the DMRG algorithm by Nishino and Okunishi, which led to the CTMRG method to calculate critical phenomena of classical and quantum systems. This will begin with elucidating the theoretical formalisms of both methods in two dimensions and their generalisations to three dimensions; followed by review of important application, namely, within the iPEPS algorithm of Orus and Vidal to numerically study infinite planar quantum systems.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography