Academic literature on the topic 'Quantum Mechanics - Many Body Problems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Mechanics - Many Body Problems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum Mechanics - Many Body Problems"
ALBEVERIO, SERGIO, LUDWIK DABROWSKI, and SHAO-MING FEI. "A REMARK ON ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH POINT INTERACTIONS." International Journal of Modern Physics B 14, no. 07 (March 20, 2000): 721–27. http://dx.doi.org/10.1142/s0217979200000601.
Full textHerrera, William J., Herbert Vinck-Posada, and Shirley Gómez Páez. "Green's functions in quantum mechanics courses." American Journal of Physics 90, no. 10 (October 2022): 763–69. http://dx.doi.org/10.1119/5.0065733.
Full textWu, Yueyang. "A New Simple Method of Simulating One Dimensional Quantum Problem Based on Lattice Point Concepts." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 461–69. http://dx.doi.org/10.54097/hset.v38i.5868.
Full textMeisinger, Peter N., and Michael C. Ogilvie. "PT symmetry in classical and quantum statistical mechanics." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1989 (April 28, 2013): 20120058. http://dx.doi.org/10.1098/rsta.2012.0058.
Full textWu, Yusen, and Jingbo B. Wang. "Estimating Gibbs partition function with quantum Clifford sampling." Quantum Science and Technology 7, no. 2 (February 14, 2022): 025006. http://dx.doi.org/10.1088/2058-9565/ac47f0.
Full textKUZEMSKY, A. L. "BOGOLIUBOV'S VISION: QUASIAVERAGES AND BROKEN SYMMETRY TO QUANTUM PROTECTORATE AND EMERGENCE." International Journal of Modern Physics B 24, no. 08 (March 30, 2010): 835–935. http://dx.doi.org/10.1142/s0217979210055378.
Full textSattath, Or, Siddhardh C. Morampudi, Chris R. Laumann, and Roderich Moessner. "When a local Hamiltonian must be frustration-free." Proceedings of the National Academy of Sciences 113, no. 23 (May 19, 2016): 6433–37. http://dx.doi.org/10.1073/pnas.1519833113.
Full textHolland, Peter. "Uniting the wave and the particle in quantum mechanics." Quantum Studies: Mathematics and Foundations 7, no. 1 (October 5, 2019): 155–78. http://dx.doi.org/10.1007/s40509-019-00207-4.
Full textYung, Man-Hong, Xun Gao, and Joonsuk Huh. "Universal bound on sampling bosons in linear optics and its computational implications." National Science Review 6, no. 4 (April 9, 2019): 719–29. http://dx.doi.org/10.1093/nsr/nwz048.
Full textMovassagh, Ramis, and Peter W. Shor. "Supercritical entanglement in local systems: Counterexample to the area law for quantum matter." Proceedings of the National Academy of Sciences 113, no. 47 (November 7, 2016): 13278–82. http://dx.doi.org/10.1073/pnas.1605716113.
Full textDissertations / Theses on the topic "Quantum Mechanics - Many Body Problems"
Lentz, Simon. "Exact eigenstates of the Inozemtsev spin chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297571.
Full textDen här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
Alkurtass, B. "A quantum information approach to many-body problems." Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1469005/.
Full textRicaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.
Full textThis thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Benedikter, Niels [Verfasser]. "Effective Evolution Equations from Many-Body Quantum Mechanics / Niels Benedikter." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061079/34.
Full textSengupta, Sanghita. "Quantum Many - Body Interaction Effects In Two - Dimensional Materials." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/939.
Full textSchiulaz, Mauro. "Ideal quantum glass transitions: many-body localization without quenched disorder?" Doctoral thesis, SISSA, 2015. http://hdl.handle.net/20.500.11767/4908.
Full textBertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.
Full textRussomanno, Angelo. "Periodic driving of a coherent quantum many body system and relaxation to the Floquet diagonal ensemble." Doctoral thesis, SISSA, 2014. http://hdl.handle.net/20.500.11767/3904.
Full textMucciolo, Eduardo Rezende. "Universal correlations in the quantum spectra of chaotic systems and exactly solvable many-body problems." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35996.
Full textHafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.
Full textENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
Books on the topic "Quantum Mechanics - Many Body Problems"
March, Norman H. The many-body problem in quantum mechanics. New York: Dover Publications, 1995.
Find full textMany-body problems and quantum field theory. New York: Springer, 2001.
Find full textVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. 2nd ed. Hackensack, NJ: World Scientific, 2008.
Find full textVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Hackensack, NJ: World Scientific, 2005.
Find full textDickhoff, Willem Hendrik. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Singapore: World Scientific, 2006.
Find full textM, Eisenberg Judah, ed. Quantum mechanics of many degrees of freedom. New York: Wiley, 1988.
Find full textBethe, Hans Albrecht. Quantum mechanics of one- and two-electron atoms. Mineola, N.Y: Dover Publications, 2008.
Find full textTrump, M. A. Classical Relativistic Many-Body Dynamics. Dordrecht: Springer Netherlands, 1999.
Find full textMathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textKadanoff, Leo P. Quantum statistical mechanics: Green's function methods in equilibrium and nonequilibrium problems. Redwood City, Calif: Addison-Wesley Pub. Co., Advanced Book Program, 1989.
Find full textBook chapters on the topic "Quantum Mechanics - Many Body Problems"
Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.
Full textBes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.
Full textFlügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 335–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57974-5_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 367–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56826-8_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-00707-5_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-30374-0_14.
Full textLee, T. D., and C. N. Yang. "Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics." In Selected Papers, 545–46. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5397-6_39.
Full textVerbeure, A., and V. A. Zagrebnov. "Quantum Fluctuations in the Many-Body Problem." In Mathematical Results in Quantum Mechanics, 207–12. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8545-4_25.
Full textLee, T. D., and C. N. Yang. "Many-Body Problem in Quantum Statistical Mechanics. I. General Formulation." In Selected Papers, 581–93. Boston, MA: Birkhäuser Boston, 1986. http://dx.doi.org/10.1007/978-1-4612-5397-6_44.
Full textConference papers on the topic "Quantum Mechanics - Many Body Problems"
Wessels, V. "Euclidean relativistic quantum mechanics." In FEW-BODY PROBLEMS IN PHYSICS: The 19th European Conference on Few-Body Problems in Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1932974.
Full textDesplanques, B. "A relativistic quantum mechanics approach inspired by the Dirac’s point form." In FEW-BODY PROBLEMS IN PHYSICS: The 19th European Conference on Few-Body Problems in Physics. AIP, 2005. http://dx.doi.org/10.1063/1.1932970.
Full textZhao, Xuncheng, Mingfan Li, Qian Xiao, Junshi Chen, Fei Wang, Li Shen, Meijia Zhao, et al. "AI for Quantum Mechanics: High Performance Quantum Many-Body Simulations via Deep Learning." In SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2022. http://dx.doi.org/10.1109/sc41404.2022.00053.
Full text"General Problems of Quantum Kinetic Theory." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_others02.
Full textFujita, M. "New Canonical Transformations to Eliminate External Fields in Quantum Many-Body Problems." In SLOW DYNAMICS IN COMPLEX SYSTEMS: 3rd International Symposium on Slow Dynamics in Complex Systems. AIP, 2004. http://dx.doi.org/10.1063/1.1764294.
Full textFORBERT, H. A., and S. A. CHIN. "A FOURTH ORDER DIFFUSION MONTE CARLO ALGORITHM FOR SOLVING QUANTUM MANY-BODY PROBLEMS." In Proceedings of the 10th International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792754_0056.
Full textDEAN, D. J. "COMPUTATIONAL CHALLENGES OF QUANTUM MANY-BODY PROBLEMS IN NUCLEAR STRUCTURE: COUPLED-CLUSTER THEORY." In Proceedings of the Symposium in Honor of Jerry P Draayer's 60th Birthday. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812703026_0016.
Full textYamada, Susumu, Toshiyuki Imamura, Takuma Kano, and Masahiko Machida. "Gordon Bell finalists I---High-performance computing for exact numerical approaches to quantum many-body problems on the earth simulator." In the 2006 ACM/IEEE conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1188455.1188504.
Full textDatta, Ranadev, and Debabrata Sen. "A B-Spline Time Domain Solution for the Forward Speed Diffraction Problems." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92080.
Full textZhang, Sheguang, Kenneth M. Weems, Woei-Min Lin, Hongmei Yan, and Yuming Liu. "Application of a Quadratic Boundary Element Method to Ship Hydrodynamic Problems." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57187.
Full text