Academic literature on the topic 'Quantum Mechanical Coupling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum Mechanical Coupling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum Mechanical Coupling"
Manukhova, Alisa D., Andrey A. Rakhubovsky, and Radim Filip. "Atom-Mechanical Hong-Ou-Mandel Interference." Quantum 6 (April 13, 2022): 686. http://dx.doi.org/10.22331/q-2022-04-13-686.
Full textBarrios, Gabriel, Francisco Peña, Francisco Albarrán-Arriagada, Patricio Vargas, and Juan Retamal. "Quantum Mechanical Engine for the Quantum Rabi Model." Entropy 20, no. 10 (October 7, 2018): 767. http://dx.doi.org/10.3390/e20100767.
Full textZloshchastiev, Konstantin G. "On the Dynamical Nature of Nonlinear Coupling of Logarithmic Quantum Wave Equation, Everett-Hirschman Entropy and Temperature." Zeitschrift für Naturforschung A 73, no. 7 (July 26, 2018): 619–28. http://dx.doi.org/10.1515/zna-2018-0096.
Full textHeinekey, D. Michael, Amber S. Hinkle, and John D. Close. "Quantum Mechanical Exchange Coupling in Iridium Trihydride Complexes." Journal of the American Chemical Society 118, no. 23 (January 1996): 5353–61. http://dx.doi.org/10.1021/ja952142c.
Full textWang, Jing-Jing, Ming-Song Ding, Li Xiong, and Li Zheng. "Enhancement of feasibility of macroscopic quantum superposition state with the quantum Rabi-Stark model." Communications in Theoretical Physics 74, no. 3 (March 1, 2022): 035105. http://dx.doi.org/10.1088/1572-9494/ac531b.
Full textKarg, Thomas M., Baptiste Gouraud, Chun Tat Ngai, Gian-Luca Schmid, Klemens Hammerer, and Philipp Treutlein. "Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart." Science 369, no. 6500 (May 7, 2020): 174–79. http://dx.doi.org/10.1126/science.abb0328.
Full textMavromatos, N. E., and D. V. Nanopoulos. "On Quantum Mechanical Aspects of Microtubules." International Journal of Modern Physics B 12, no. 05 (February 20, 1998): 517–42. http://dx.doi.org/10.1142/s0217979298000326.
Full textSabo-Etienne, Sylviane, and Bruno Chaudret. "Quantum Mechanical Exchange Coupling in Polyhydride and Dihydrogen Complexes." Chemical Reviews 98, no. 6 (September 1998): 2077–92. http://dx.doi.org/10.1021/cr9601066.
Full textSchmitt, H. A., and A. Mufti. "Noncompact orthosympletic supersymmetry: an example from N = 1, d = 1 supersymmetric quantum mechanics." Canadian Journal of Physics 68, no. 12 (December 1, 1990): 1454–55. http://dx.doi.org/10.1139/p90-208.
Full textAporvari, Ahmad Shafiei, and David Vitali. "Strong Coupling Optomechanics Mediated by a Qubit in the Dispersive Regime." Entropy 23, no. 8 (July 27, 2021): 966. http://dx.doi.org/10.3390/e23080966.
Full textDissertations / Theses on the topic "Quantum Mechanical Coupling"
Vaish, Nitika. "Optomechanical transducer based on a single quantum dot." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY074.
Full textIn the context of nanomechanics, quantum hybrid systems are mechanical oscillators coupled to a single individual quantum system. These systems offer radically new possibilities for the fabrication of extremely sensitive and ultra-compact optomechanical transducers, which can serve as position sensors or nano engines.The hybrid system investigated in this work consists of a single semiconducting quantum dot (QD) embedded in a vibrating photonic wire. It has been shown in the team, a few years ago, that the transition energy of the QD depends on the strain generated by the wire oscillations.In this thesis, we demonstrate the reverse effect, where each photon emitted by the QD comes along with a strain-induced force which drives the oscillations of the photonic wire. This realizes a nano engine run by a laser-driven single quantum object. The effect has been coined “Quantum Hammer effect”. This result opens the possibility for the future realization of a quantum state of motion via the transfer of the ”quantumness” of a two-level system towards the motion of a macroscopic mechanical oscillator
Rossich, Molina Estefanía. "Addressing the reactivity of biomolecules in the gas phase : coupling tandem mass spectrometry with chemical dynamics simulations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLE043.
Full textIn the present thesis, we address the study of the reactivity of biomolecules in the gasphase.The advent of soft ionization techniques such as electrospray ionization, made possible, in the last years, the gentle formation of ions in the gas phase without breaking the molecule understudy.Collision Induced Dissociation (CID) is aparticular case of tandem mass spectrometrydynamics simulations are pointed like asatisfactory tool. Using direct dynamics weavoid exploring the whole potential energysurface, which becomes really complicatedwhen dealing with big molecules.Since chemical dynamics simulations arerestricted to the short time scale reactivity,typically ~10ps, we make use of the Rice–Ramsperger–Kassel–Marcus (RRKM)unimolecular theory to study the reactivity atUniversité Paris-SaclayEspace Technologique / Immeuble DiscoveryRoute de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, Francethat we use in the present thesis. The aim of CIDis to activate the rovibrational modes of an ionicmolecular system by collisions with an inert gas,increasing the probability of the ion of beingfragmented.Despite being a really useful technique, tandemmass spectrometry does not give informationabout the mechanisms of the reactions takingplace in the collision cell; in order to obtain suchinformation, chemicallonger time scales to understand reaction pathsthat take place after intramolecular vibrationrelaxation (IVR).In the present thesis we have chosen to study asmodel system of nucleobase the uracil molecule.Furthermore, we also studied the gas-phase reactivity of carbohydrates (cellobiose, maltose and gentiobiose), which were preliminarily derivatized in order to simplify the charge localization, and consequently the theoretical study
Graves, Max. "Path Integral Quantum Monte Carlo Study of Coupling and Proximity Effects in Superfluid Helium-4." ScholarWorks @ UVM, 2014. http://scholarworks.uvm.edu/graddis/299.
Full textHadjar, Yassine. "Etude du couplage optomécanique dans une cavité de grande finesse; observation du mouvement Brownien d'un miroir." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1998. http://tel.archives-ouvertes.fr/tel-00004675.
Full textNous présentons les résultats obtenus dans notre expérience où un faisceau laser est envoyé dans une cavité à une seule entrée-sortie, dont le miroir mobile est déposé sur un résonateur mécanique. Nous avons observé le mouvement Brownien du miroir. Nous avons aussi utilisé un second faisceau modulé en intensité afin d'exciter les modes acoustiques du résonateur. Ceci permet de caractériser la réponse mécanique du résonateur et le couplage entre la lumière et les modes acoustiques. Nous avons enfin démontré l'efficacité de notre dispositif pour la mesure de petits déplacements du miroir. Le plus petit déplacement observable est égale à 2x10^(-19) m/Hz(1/2), en bon accord avec la prédiction théorique.
Fayon, Pierre. "Développement d’un schéma de couplage QM/MM (Quantum Mechanic / Molecular Mechanic) pour les états excités localisés dans les matériaux hybrides organique-inorganiques." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3018/document.
Full textLast years, the development of organic-inorganic hybrid materials has been a growing interest in the field of green chemistry. Hybrid materials based on silica functionalized with organic molecules have flexible properties, allowing their application in several fields (photochemistry, medicine, ...). From a theoretical point of view, the challenge of such a study results in determination of the optical properties. Indeed, the size of the system does not allow treatment with a purely quantum theory. The aim of this research is to develop a qm/mm/tddft (Quantum Mechanic / Molecular Mechanic / Time Dependent Density Functional Theory) code to calculate the excited electronic states localized in solids, with a particular application for the UV-visible region in organic-inorganic hybrid materials. In practice, the integration of classical equations of motion of all the nuclei are made by the molecular dynamics program dl poly, while contributions from the forces in the quantum simulation are evaluated by using the code siesta with the dft (Density Functional Theory) method . The electronic spectra are calculated with a new tddft code developed for this project, in which the use of dominants products accelerates the calculation significantly
Dednam, Wynand. "Atomistic simulations of competing influences on electron transport across metal nanocontacts." Thesis, Universidad de Alicante, 2019. http://hdl.handle.net/10500/26155.
Full textPhysics
Ph. D. (Physics)
Xavier, Francis George Densingh. "NONADIABATIC COLLISIONS OF PROTON WITH CO AND O2 MOLECULES : A QUANTUM MECHANICAL STUDY." Doctoral thesis, 2010. http://hdl.handle.net/10316/95854.
Full textNonadiabatic phenomena are ubiquitous in nature. The dynamics of proton-molecule collisions often evolve on highly coupled electronic potential energy surfaces leading to inelastic and charge transfer processes. In this thesis, we have investigated the quantum dynamics of energy transfer processes involving the inelastic vibrational excitations and the vibrational charge transfer collisions in the H+ + CO and the H+ + O2 systems on our newly obtained quasi-diabatic ab initio potential energy surfaces for collision energies 0-30 eV and compared the collision attributes with the earlier theoretical results as well as the available stateto- state experimental data obtained from the molecular beam study and H+/H energy-loss spectra. We have described the computational details of the ab initio potential energy surfaces at the configuration interaction level of accuracy employing the correlation consistent polarized valence triple zeta basis sets. We report the details of time-independent quantum dynamics calculations for the inelastic vibrational excitations and vibrational charge transfer processes under the framwork of vibrational close-coupling rotational infinite order sudden approximation. To the best of our knowledge the present ab initio global adiabatic and quasi-diabatic potential energy surfaces for the ground and the first excited electronic states for the H+ + CO system are being presented perhaps for the first time in the literature. The present theoretical results are found to be in good agreement with those of experiments for the inelastic vibrational excitations and they are in overall qualitative agreement for charge transfer channel in the experimental trend. It is suggested that quantitative agreement between theory and experiment can be achieved by modelling the dynamics as a three- and four-state process. For the H+ + O2 system. quantum dynamics with the two-state (the ground and the first excited electronic states) coupling yields results in general agreement with the experiments. Significant improvement is achieved when the dynamics is carried out with four-state (the ground and the lowest three excited electronic states) coupling. However, some quantitative agreement between theory and experiment is still lacking, which can be settled through an elaborate and more refined (over a fine mesh of molecular orientation) computations within the VCC-RIOSA framework. A summary of the present study is given at the end with the concluding remarks and the future direction of research followed by bibliography.
Skone, Jonathan H. Hammes-Schiffer Sharon. "Quantum mechanical methods for calculating proton tunneling splittings and proton-coupled electron transfer vibronic couplings." 2008. http://www.etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-2481/index.html.
Full text(7046690), Chuan-Hsun Li. "Bose-Einstein Condensates in Synthetic Gauge Fields and Spaces: Quantum Transport, Dynamics, and Topological States." Thesis, 2019.
Find full textBose-Einstein condensates (BECs) in light-induced synthetic gauge fields and spaces can provide a highly-tunable platform for quantum simulations. Chapter 1 presents a short introduction to the concepts of BECs and our BEC machine. Chapter 2 introduces some basic ideas of how to use light-matter interactions to create synthetic gauge fields and spaces for neutral atoms. Three main research topics of the thesis are summarized below.
Chapter 3: Recently, using bosonic quasiparticles (including their condensates) as spin carriers in spintronics has become promising for coherent spin transport over macroscopic distances. However, understanding the effects of spin-orbit (SO) coupling and many-body interactions on such a spin transport is barely explored. We study the effects of synthetic SO coupling (which can be turned on and off, not allowed in usual materials) and atomic interactions on the spin transport in an atomic BEC.
Chapter 4: Interplay between matter and fields in physical spaces with nontrivial geometries can lead to phenomena unattainable in planar spaces. However, realizing such spaces is often impeded by experimental challenges. We synthesize real and curved synthetic dimensions into a Hall cylinder for a BEC, which develops symmetry-protected topological states absent in the planar counterpart. Our work opens the door to engineering synthetic gauge fields in spaces with a wide range of geometries and observing novel phenomena inherent to such spaces.
Chapter 5: Rotational properties of a BEC are important to study its superfluidity. Recent studies have found that SO coupling can change a BEC's rotational and superfluid properties, but this topic is barely explored experimentally. We study rotational dynamics of a SO-coupled BEC in an effective rotating frame induced by a synthetic magnetic field. Our work may allow for studying how SO coupling modify a BEC's rotational and superfluid properties.
Chapter 6 presents some possible future directions.
Books on the topic "Quantum Mechanical Coupling"
Siebold, Christian Trenkel. Development of a superconducting torsion balance designed to search for a new short-range force coupling quantum-mechanical spin and matter. Birmingham: University of Birmingham, 1997.
Find full textAhia, Francis. Coupling constant threshold in non-relativistic quantum mechanics: A singular perturbation problem. Toronto: [s.n.], 1992.
Find full textHoring, Norman J. Morgenstern. Schwinger Action Principle and Variational Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0004.
Full textKachelriess, Michael. Quantum mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198802877.003.0002.
Full textTiwari, Sandip. Electromechanics and its devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0005.
Full textGlazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.
Full textAhia, Francis. Coupling constant threshold in non-relativistic quantum mechanics: a singular perturbation problem. 1992.
Find full textStrasberg, Philipp. Quantum Stochastic Thermodynamics. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192895585.001.0001.
Full textZinn-Justin, Jean. Quantum Field Theory and Critical Phenomena. 5th ed. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.001.0001.
Full textMashhoon, Bahram. Acceleration Kernel. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198803805.003.0003.
Full textBook chapters on the topic "Quantum Mechanical Coupling"
Scrocco, E. "Quantum Mechanical Interpretation of Nuclear Quadrupole Coupling Data." In Advances in Chemical Physics, 319–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470143513.ch7.
Full textChipman, Daniel M. "Magnetic Hyperfine Coupling Constants in Free Radicals." In Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, 109–38. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0193-6_3.
Full textSchulten, K. "Curve Crossing in a Protein: Coupling of the Elementary Quantum Process to Motions of the Protein." In Quantum Mechanical Simulation Methods for Studying Biological Systems, 85–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-09638-3_4.
Full textUnekis, Michael J., David W. Schwenke, Nancy Mullaney Harvey, and Donald G. Truhlar. "RMPROP: A Computer Program for Quantum Mechanical Close Coupling Calculations for Inelastic Collisions." In Modem Techniques in Computational Chemistry: MOTECC-91, 749–72. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3032-5_17.
Full textLi, J., P. Beroza, L. Noodleman, and D. A. Case. "Quantum Mechanical Modeling of Active Sites in Metalloproteins. Electrostatic Coupling to the Protein/Solvent Environment." In Molecular Modeling and Dynamics of Bioinorganic Systems, 279–306. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5171-9_13.
Full textHecht, K. T. "Angular Momentum Coupling Theory." In Quantum Mechanics, 263–68. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_27.
Full textGrandy, Walter T. "Electromagnetic Coupling." In Relativistic Quantum Mechanics of Leptons and Fields, 71–108. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3302-9_3.
Full textGröblacher, Simon. "Opto-Mechanics in the Strong Coupling Regime." In Quantum Opto-Mechanics with Micromirrors, 123–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34955-3_6.
Full textAragone, Carlos, and J. Stephany. "Non-Abelian Chern-Simons Topological Coupling from Self-Interaction." In Quantum Mechanics of Fundamental Systems 1, 27–32. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-3728-5_3.
Full textErdős, László. "Linear Boltzmann Equation as the Weak Coupling Limit of the Random Schrödinger Equation." In Mathematical Results in Quantum Mechanics, 233–42. Basel: Birkhäuser Basel, 1999. http://dx.doi.org/10.1007/978-3-0348-8745-8_20.
Full textConference papers on the topic "Quantum Mechanical Coupling"
Khare, Roopam, Steven Mielke, Jeffrey Paci, Sulin Zhang, George Schatz, and Ted Belytschko. "Two quantum mechanical/molecular mechanical coupling schemes appropriate for fracture mechanics studies." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2171.
Full textMakowski, J. D., B. D. Anderson, W. S. Chan, M. J. Saarinen, C. J. Palmstrom, and J. J. Talghader. "Coupling of quantum states with mechanical heterostructures." In TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference. IEEE, 2009. http://dx.doi.org/10.1109/sensor.2009.5285457.
Full textVerhagen, Ewold, Samuel Deleglise, Stefan Weis, Albert Schliesser, and Tobias J. Kippenberg. "Cavity quantum optomechanics: Coupling light and micromechanical oscillators." In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2014. http://dx.doi.org/10.1109/memsys.2014.6765593.
Full textSidhu, Mehra S., and Kamal P. Singh. "Spin based magneto-mechanical coupling of nanoscale glass cantilevers for quantum sensing." In Optical Sensors. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/sensors.2020.stu3d.3.
Full textVerhagen, Ewold, Samuel Deléglise, Stefan Weis, Albert Schliesser, and Tobias J. Kippenberg. "Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cavity Mode." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jm1k.1.
Full textLabeyrie, G., P. Gomes, E. Tesio, R. Kaiser, W. Firth, G. Robb, G. L. Oppo, and T. Ackemann. "Transverse self-organization in cold atoms due to opto-mechanical coupling." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801786.
Full textLi, Haibao, and Libo Yuan. "Quantum opto-mechanical coupling model for fiber micro-cantilever beam damping noise reduction." In Fifth Asia Pacific Optical Sensors Conference, edited by Byoungho Lee, Sang-Bae Lee, and Yunjiang Rao. SPIE, 2015. http://dx.doi.org/10.1117/12.2184002.
Full textOzkan, Cengiz S. "Assembly at the Nanoscale: Heterojunctions of Carbon Nanotubes and Nanocrystals (Keynote)." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82363.
Full textKoch, S. W., F. Jahnke, and H. C. Schneider. "Theory of Semiconductor Microcavities and Lasers." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qfb1.
Full textLi, You-Quan. "Spin current and spin Hall effects." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.asi1.
Full text