Academic literature on the topic 'Quantum many body'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum many body.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Quantum many body"

1

Hainzl, Christian, Benjamin Schlein, Robert Seiringer, and Simone Warzel. "Many-Body Quantum Systems." Oberwolfach Reports 16, no. 3 (September 9, 2020): 2541–603. http://dx.doi.org/10.4171/owr/2019/41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wimberger, Sandro. "Many Body Quantum Chaos." Condensed Matter 5, no. 2 (June 12, 2020): 41. http://dx.doi.org/10.3390/condmat5020041.

Full text
Abstract:
This editorial remembers Shmuel Fishman, one of the founding fathers of the research field “quantum chaos”, and puts into context his contributions to the scientific community with respect to the twelve papers that form the special issue.
APA, Harvard, Vancouver, ISO, and other styles
3

Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mukherjee, Victor, and Uma Divakaran. "Many-body quantum thermal machines." Journal of Physics: Condensed Matter 33, no. 45 (August 27, 2021): 454001. http://dx.doi.org/10.1088/1361-648x/ac1b60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Palev, T. D., and N. I. Stoilova. "Many-body Wigner quantum systems." Journal of Mathematical Physics 38, no. 5 (May 1997): 2506–23. http://dx.doi.org/10.1063/1.531991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.

Full text
Abstract:
A new method for bound-state quantum electrodynamics (QED) calculations on many-electron systems is presented that is a combination of the non-QED many-body technique for quasi-degenerate systems and the newly developed covariant-evolution-operator technique for QED calculations. The latter technique has been successfully applied to the fine structure of excited states of medium-heavy heliumlike ions, and it is expected that the new method should be applicable also to light elements, hopefully down to neutral helium. PACS Nos.: 31.30.Jv, 31.15.Md, 31.25.Jf, 33.15.Pw
APA, Harvard, Vancouver, ISO, and other styles
7

Vojta, Thomas. "Disorder in Quantum Many-Body Systems." Annual Review of Condensed Matter Physics 10, no. 1 (March 10, 2019): 233–52. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433.

Full text
Abstract:
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single-particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground-state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
APA, Harvard, Vancouver, ISO, and other styles
8

Daley, Andrew J. "Quantum trajectories and open many-body quantum systems." Advances in Physics 63, no. 2 (March 4, 2014): 77–149. http://dx.doi.org/10.1080/00018732.2014.933502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monras, A., and O. Romero-Isart. "Quantum information processing with quantum zeno many-body dynamics." Quantum Information and Computation 10, no. 3&4 (March 2010): 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.

Full text
Abstract:
We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal quantum computation can be achieved in a spin chain with an {\em always-on} and {\em constant} many-body Hamiltonian. We also show some possible modifications of the initially assumed dynamics in order to create maximally entangled qubit pairs and single qubit gates.
APA, Harvard, Vancouver, ISO, and other styles
10

Gómez-Ullate, D., A. González-López, and M. A. Rodríguez. "New algebraic quantum many-body problems." Journal of Physics A: Mathematical and General 33, no. 41 (October 5, 2000): 7305–35. http://dx.doi.org/10.1088/0305-4470/33/41/305.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Quantum many body"

1

Bausch, Johannes Karl Richard. "Quantum stochastic processes and quantum many-body physics." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/269857.

Full text
Abstract:
This dissertation investigates the theory of quantum stochastic processes and its applications in quantum many-body physics. The main goal is to analyse complexity-theoretic aspects of both static and dynamic properties of physical systems modelled by quantum stochastic processes. The thesis consists of two parts: the first one addresses the computational complexity of certain quantum and classical divisibility questions, whereas the second one addresses the topic of Hamiltonian complexity theory. In the divisibility part, we discuss the question whether one can efficiently sub-divide a map describing the evolution of a system in a noisy environment, i.e. a CPTP- or stochastic map for quantum and classical processes, respectively, and we prove that taking the nth root of a CPTP or stochastic map is an NP-complete problem. Furthermore, we show that answering the question whether one can divide up a random variable $X$ into a sum of $n$ iid random variables $Y_i$, i.e. $X=\sum_{i=1}^n Y_i$, is poly-time computable; relaxing the iid condition renders the problem NP-hard. In the local Hamiltonian part, we study computation embedded into the ground state of a many-body quantum system, going beyond "history state" constructions with a linear clock. We first develop a series of mathematical techniques which allow us to study the energy spectrum of the resulting Hamiltonian, and extend classical string rewriting to the quantum setting. This allows us to construct the most physically-realistic QMAEXP-complete instances for the LOCAL HAMILTONIAN problem (i.e. the question of estimating the ground state energy of a quantum many-body system) known to date, both in one- and three dimensions. Furthermore, we study weighted versions of linear history state constructions, allowing us to obtain tight lower and upper bounds on the promise gap of the LOCAL HAMILTONIAN problem in various cases. We finally study a classical embedding of a Busy Beaver Turing Machine into a low-dimensional lattice spin model, which allows us to dictate a transition from a purely classical phase to a Toric Code phase at arbitrarily large and potentially even uncomputable system sizes.
APA, Harvard, Vancouver, ISO, and other styles
2

Riera, Graells Arnau. "Entanglement in Many Body Quantum Systems." Doctoral thesis, Universitat de Barcelona, 2010. http://hdl.handle.net/10803/1600.

Full text
Abstract:
THESIS SUMMARY

TEXT:

This thesis is made of two parts. In the first one, the issue of entanglement in many body systems is addressed. The concept of entanglement and some of the recent progress on the study of entropy of entanglement in many body quantum systems are reviewed. Emphasis is placed on the scaling properties of entropy for one-dimensional models at quantum phase transitions.

Then, we focus on the area-law scaling of the entanglement entropy. An explicit computation in arbitrary dimensions of the entanglement entropy of the ground state of a discretized scalar free field theory that shows the expected area law result is also presented. For this system, it is shown that area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations.

To finish this first part, the issue of how simple can a quantum system be such as to give a highly entangled ground state is addressed. In particular, we propose a Hamiltonian of a XX model with a ground state whose entropy scales linearly with the size of the block. It provides a simple example of a one dimensional system of spin-1/2 particles with nearest neighbour interactions that violates area-law for the entanglement entropy.

The second part of this thesis deals with the problem of simulating quantum mechanics for highly entangled systems. Two different approaches to this issue are considered. One consists of using ultra-cold atoms systems as quantum simulators. With this aim, some experimental techniques related to cold atoms that allow to simulate strongly correlated many body quantum systems are reviewed an explicit example of simulation is presented. In particular, we analyze how to achieve a Mott state of Laughlin wave functions in an optical lattice and study the consequences of considering anharmonic corrections to each single site potential expansion that were not taken into account until now.

Finally, a different approach to simulate strongly correlated systems is considered: to use small quantum computers to simulate them. An explicit quantum algorithm that creates the Laughlin state for an arbitrary number of particles n in the case of falling fraction equal to one is presented. We further prove the optimality of the circuit using permutation theory arguments and we compute exactly how entanglement develops along the action of each gate. We also discuss its experimental feasibility decomposing the qudits and the gates in terms of qubits and two qubit-gates as well as the generalization to arbitrary falling fraction.

KEYWORDS: Entanglement, Many body quantum systems, Quantum Information Condensed Matter, Cold atoms, Spin chains, Quantum simulator, Quantum computation.
"Entrellaçament quàntic en sistemes de molts cossos"

TEXT:
Aquesta tesi està composada per dues parts. En la primera, adrecem la qüestió de l'entrellaçament quàntic en els sistemes de molts cossos. Així, introduïm primer el concepte d'entrellaçament i revisem els progressos recents sobre aquest camp. A continuació, ens centrem la llei d'àrea per l'entropia d'entrellaçament i presentem un càlcul explícit d'aquesta entropia per a l'estat fonamental d'un camp escalar no interactuant obtenint la llei d'àrea esperada. Finalment, acabem aquesta part presentant un sistema molt senzill 1-dimensional que tot i tenir interaccions locals mostra una llei de volum per l'entropia.

En la segona part de la tesi tractem el problema de la simulació de sistemes quàntics altament entrellaçats. Considerem dos possibles vies per tractar aquest problema. Una d'elles consisteix en la utilització d'àtoms ultra-freds com a simuladors quàntics. En particular, analitzem un mètode per obtenir un estat producte de funcions d'ona de Laughlin en un xarxa òptica i estudiem les conseqüències de considerar la correcció anharmònica de l'expansió del potencial a cada pou de la xarxa. Finalment, considerem una altra aproximació a la simulació de sistemes fortament correlacionats: utilitzar petits ordinadors quàntics per a simular-los. Per il.lustrar aquest tipus de simulació, presentem un algoritme quàntic que crea un estat de Laughlin per un nombre arbitrari de partícules i en el cas de fracció d'ocupació 1.
APA, Harvard, Vancouver, ISO, and other styles
3

Graham, Abi Claire. "Many-body interactions in quantum wires." Thesis, University of Cambridge, 2004. https://www.repository.cam.ac.uk/handle/1810/284031.

Full text
Abstract:
The first part of this thesis describes transport measurements of long quantum wires, which are affected by disorder. The resulting additional features in the conductance are characterised, and the results are discussed in the context of the Luttinger liquid model. Realistic strategies for controlling disorder in long wires are suggested, which should eliminate many of the problems associated with experimental studies of Luttinger liquids. Disorder effects are further investigated using a new lithography technique called Erasable Electrostatic Lithography (EEL). A scanning probe tip at a fixed voltage is used to locally charge surface states above a long disordered quantum wire. This allows the potential of the disordered wire to be manipulated, with the creation of microconstrictions and quasi-bound states inside the wire. The importance of electron-electron interactions in short 1D systems was demonstrated in 1996 by the discovery of the 0.7 structure. This is an additional quasi-plateau in the conductance at a value of around 0.7(2e2/h) and is a universal phenomenon in quantum wires. The main result of this thesis is the discovery of non-quantised conductance structures at the crossings of spin-split 1D subbands which have similar characteristics to the 0.7 structure. We call these new structures 0.7 analogues. It is shown that the 0.7 analogue is accompanied by a spontaneous splitting and abrupt restructuring of energy levels in the region of the crossing, which is thought to be an exchange effect. We believe that this gives valuable new insight into the origin of the 0.7 structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Jia, Ningyuan. "Quantum Many-Body Physics with Photons." Thesis, The University of Chicago, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10928150.

Full text
Abstract:

Understanding and manipulating quantum materials is a long-sought goal in both the condensed matter and cold atom communities. Photons have recently emerged as a good candidate for studying quantum many-body states due to their fast dynamics and convenient manipulation. Tremendous efforts have been made to engineer single particle Hamiltonian with non-trivial topology. Having individual photons to strongly collide with each other and form an entangled many-body state remained as a challenge in optical domain.

In this thesis, I will first demonstrate how to engineer artificial magnetic field and non-trivial topology for microwave photons. In a classical lumped element circuit, we demonstrate the edge modes for microwave photons within the bulk band, and also show that these modes propagates with topological protection against the local lattice disorder. This work paves the way to synthesize correlated quantum materials in a lattice using microwave photons, combined with circuit QED technique.

Recently, Rydberg-Rydberg interaction has been broadly used in cold atom experiment to generate long-range inter-particle coupling for quantum information processing and quantum material simulation. We combine this technique with cavity electromagnetically induced transparency and create a robust quasi-particle, cavity Rydberg polaritons, which harness the power from both cavity photons with exotic topology and Rydberg atoms with strong interactions. We first demonstrate the interaction in the single quanta level in a quantum dot with single cavity mode and further expand it into multi-mode regime with modulated atomic states.

APA, Harvard, Vancouver, ISO, and other styles
5

Scarlatella, Orazio. "Driven-Dissipative Quantum Many-Body Systems." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS281/document.

Full text
Abstract:
Ma thèse de doctorat était consacrée à l'étude des systèmes quantiques à plusieurs corps dissipatifs et pilotés. Ces systèmes représentent des plateformes naturelles pour explorer des questions fondamentales sur la matière dans des conditions de non-équilibre, tout en ayant un impact potentiel sur les technologies quantiques émergentes. Dans cette thèse, nous discutons d'une décomposition spectrale de fonctions de Green de systèmes ouverts markoviens, que nous appliquons à un modèle d'oscillateur quantique de van der Pol. Nous soulignons qu’une propriété de signe des fonctions spectrales des systèmes d’équilibre ne s’imposait pas dans le cas de systèmes ouverts, ce qui produisait une surprenante "densité d’états négative", avec des conséquences physiques directes. Nous étudions ensuite la transition de phase entre une phase normale et une phase superfluide dans un système prototype de bosons dissipatifs forcés sur un réseau. Cette transition est caractérisée par une criticité à fréquence finie correspondant à la rupture spontanée de l'invariance par translation dans le temps, qui n’a pas d’analogue dans des systèmes à l’équilibre. Nous discutons le diagramme de phase en champ moyen d'une phase isolante de Mott stabilisée par dissipation, potentiellement pertinente pour des expériences en cours. Nos résultats suggèrent qu'il existe un compromis entre la fidélité de la phase stationnaire à un isolant de Mott et la robustesse d'une telle phase à taux de saut fini. Enfin, nous présentons des développements concernant la théorie du champ moyen dynamique (DMFT) pour l’étude des systèmes à plusieurs corps dissipatifs et forcés. Nous introduisons DMFT dans le contexte des modèles dissipatifs et forcés et nous développons une méthode pour résoudre le problème auxiliaire d'une impureté couplée simultanément à un environnement markovien et à un environnement non-markovien. À titre de test, nous appliquons cette nouvelle méthode à un modèle simple d’impureté fermionique
My PhD was devoted to the study of driven-dissipative quantum many-body systems. These systems represent natural platforms to explore fundamental questions about matter under non-equilibrium conditions, having at the same time a potential impact on emerging quantum technologies. In this thesis, we discuss a spectral decomposition of single-particle Green functions of Markovian open systems, that we applied to a model of a quantum van der Pol oscillator. We point out that a sign property of spectral functions of equilibrium systems doesn't hold in the case of open systems, resulting in a surprising ``negative density of states", with direct physical consequences. We study the phase transition between a normal and a superfluid phase in a prototype system of driven-dissipative bosons on a lattice. This transition is characterized by a finite-frequency criticality corresponding to the spontaneous break of time-translational invariance, which has no analog in equilibrium systems. Later, we discuss the mean-field phase diagram of a Mott insulating phase stabilized by dissipation, which is potentially relevant for ongoing experiments. Our results suggest that there is a trade off between the fidelity of the stationary phase to a Mott insulator and robustness of such a phase at finite hopping. Finally, we present some developments towards using dynamical mean field theory (DMFT) for studying driven-dissipative lattice systems. We introduce DMFT in the context of driven-dissipative models and developed a method to solve the auxiliary problem of a single impurity, coupled simultaneously to a Markovian and a non-Markovian environment. As a test, we applied this novel method to a simple model of a fermionic, single-mode impurity
APA, Harvard, Vancouver, ISO, and other styles
6

Wesslén, Carl-Johan. "Many-Body effects in Semiconductor Nanostructures." Licentiate thesis, Stockholms universitet, Fysikum, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-102344.

Full text
Abstract:
Low dimensional semiconductor structures are modeled using techniques from the field of many-body atomic physics. B-splines are used to create a one-particle basis, used to solve the more complex many-body problems. Details on methods such as the Configuration Interaction (CI), Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC) are discussed. Results from the CC singles and doubles method are compared to other high-precision methods for the circular harmonic oscillator quantum dot. The results show a good agreement for the energy of many-body states of up to 12 electrons. Properties of elliptical quantum dots, circular quantum dots, quantum rings and concentric quantum rings are all reviewed. The effects of tilted external magnetic fields applied to the elliptical dot are discussed, and the energy splitting between the lowest singlet and triplet states is explored for varying geometrical properties. Results are compared to experimental energy splittings for the same system containing 2 electrons.
APA, Harvard, Vancouver, ISO, and other styles
7

Mur, Petit Jordi. "Many-body studies on atomic quantum systems." Doctoral thesis, Universitat de Barcelona, 2006. http://hdl.handle.net/10803/1587.

Full text
Abstract:
En aquesta tesi presentem un conjunt d'estudis sobre sistemes atòmics on els efectes quàntics són especialment destacats. Aquests estudis s'han dut a terme aplicant diverses tècniques de la física teòrica de molts cossos.

En primer lloc hem estudiat la possible existència d'una transició de fase superfluida en un gas ultrafred d'àtoms fermiònics, mitjançant una generalització de la teoria BCS de la superconductivitat que dóna especial rellevància al paper jugat per l'asimetria de densitat entre les dues espècies, i permet que l'estat fonamental presenti un trencament espontani de simetria.

En una segona part, hem estudiat la dinàmica d'un condensat de Bose-Einstein el grau de llibertat d'espí del qual pot evolucionar dins d'una trampa òptica quasi-unidimensional, tant a temperatura zero com finita, mitjançant una formulació de camp mitjà.

Finalment, hem dut a terme un estudi detallat de l'estat fonamental i la tensió lineal de sistemes bidimensional d'heli-4, primerament mitjançant les tècniques de Monte Carlo, i posteriorment amb un funcional de la densitat construit amb aquest objectiu.
EN CASTELLÀ:

En esta tesis se presenta un conjunto de estudios sobre sistemas atómicos donde los efectos cuánticos son especialmente destacados. Dichos estudios se han llevado a cabo aplicando varias técnicas de la física teórica de muchos cuerpos.

En primer lugar, se ha estudiado la posible existencia de una transición superfluida en un gas ultrafrío de átomos fermiónicos mediante una generalización de la teoría BCS de la superconductividad que presta especial atención al papel jugado por la asimetría de densidad entre las dos especies, y permite que el estado fundamental presente una rotura espontánea de simetría.

En una segunda parte, se ha estudiado la dinámica de un condensado de Bose-Einstein cuyo grado de libertad de espín puede evolucionar en una trampa óptica cuasi-unidimensional, tanto a temperatura cero como finita, mediante una formulación de campo medio.

Finalmente, se ha llevado a cabo un estudio detallado del estado fundamental y la tensión lineal de sistemas bidimensionales de helio-4, primeramente mediante las técnicas de Monte Carlo, y posteriormente con un funcional de la densidad construido al efecto.

PALABRAS CLAVE: Átomos fríos, Aparejamiento, Condensado espinorial, Helio, Dos dimensiones

SUMMARY:

This thesis presents a set of studies on atomic systems where quantum efects are particularly relevant. These studies have been developed by applying a variety of tools from many-body physics.

First of all, we have studied the prospects for the existance of a superfluid transition in an ultracold gas of fermionic atoms, by generalizing the BCS theory of superconductivity to the case when the two species that pair have different densities and the ground state may spontaneously break one or more symmetries.

In a second part, we have studied the dynamics of a Bose-Einstein condensate whose spin degree of freedom is free to evolve inside a quasi-onedimensional optical trap. We have used a mean-field formulation to address both the zero temperature case and the finite temperature one.

Finally, we have performed a careful study of the ground state and the line tension of two-dimensional systems of helium-4. First, we have used Monte Carlo techniques, then with a Density Functional built on-purpose.

KEYWORDS: Cold gases, Pairing, Spinor condensate, Helium, Two dimensions
APA, Harvard, Vancouver, ISO, and other styles
8

Heyl, Markus Philip Ludwig. "Nonequilibrium phenomena in many-body quantum systems." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-145838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Young, Carolyn 1979. "Many-body cotunneling in coupled quantum dots." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101692.

Full text
Abstract:
The zero-temperature equilibrium conductance of mesoscopic devices due to single-particle resonant tunneling was first described by Landauer [1]. The Landauer formula was later extended to the multi-channel case by Fisher and Lee [2], who reduced the problem of calculating electronic transport properties to the problem of solving for the Green's function for a given system geometry.
In this work, the single-particle formalism is extended to the study of higher-order two-particle cotunneling processes by considering many-body Green's functions. The effect of attaching leads to the system is described in terms of a two-particle self-energy, whose analytical form is written in terms of a Feynman path integral over all possible tunneling processes between the leads and the device. In addition, an efficient numerical technique for the calculation of the fully dressed Green's function of a device region attached to two-particle leads is presented.
The problem of two-particle transport is then approached, and an analogy to single-particle transport on the infinite plane is drawn. It is shown that, for nonspin flip cotunneling processes, the two-particle transport result can be related to the single-particle conductance by way of a simple convolution. Finally, results for the cotunneling contribution to the conductance of double quantum dots, or charge qubits, are presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Brell, Courtney Gordon Gray. "Many-body models for topological quantum information." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/13539.

Full text
Abstract:
We develop and investigate several quantum many-body spin models of use for topological quantum information processing and storage. These models fall into two categories: those that are designed to be more realistic than alternative models with similar phenomenology, and those that are designed to have richer phenomenology than related models. In the first category, we present a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the perturbative low-energy limits of entirely two-body Hamiltonians. This construction reproduces the target models' behavior using only couplings which are natural in terms of the original Hamiltonians. As an extension of this work, we construct parent Hamiltonians involving only local 2-body interactions for a broad class of Projected Entangled Pair States (PEPS). We define a perturbative Hamiltonian with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. We then move on to define models that generalize the phenomenology of several well-known systems. We first define generalized cluster states based on finite group algebras, and investigate properties of these states including their PEPS representations, global symmetries, relationship to the Kitaev quantum double models, and possible applications. Finally, we propose a generalization of the color codes based on finite groups. For non-Abelian groups, the resulting model supports non-Abelian anyonic quasiparticles and topological order. We examine the properties of these models such as their relationship to Kitaev quantum double models, quasiparticle spectrum, and boundary structure.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Quantum many body"

1

Rivasseau, Vincent, Robert Seiringer, Jan Philip Solovej, and Thomas Spencer. Quantum Many Body Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29511-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuramoto, Yoshio. Quantum Many-Body Physics. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55393-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Pisa: Edizioni Della Normale, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marie, Ericsson, and Montangero Simone, eds. Quantum information and many body quantum systems: Proceedings. Pisa: Edizioni Della Normale, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaldor, U., ed. Many-Body Methods in Quantum Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-93424-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zagoskin, Alexandre M. Quantum Theory of Many-Body Systems. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0595-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zagoskin, Alexandre. Quantum Theory of Many-Body Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07049-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quantum scaling in many-body systems. Singapore: World Scientific, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08490-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Philippe A., and François Rothen. Many-Body Problems and Quantum Field Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04894-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Quantum many body"

1

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hecht, K. T. "Many-Body Formalism." In Quantum Mechanics, 721–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salam, Akbar. "Many-Body Forces." In Molecular Quantum Electrodynamics, 257–310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9780470535462.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Flügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ceperley, D. M., and M. H. Kalos. "Quantum Many-Body Problems." In Monte Carlo Methods in Statistical Physics, 145–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82803-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kotecha, Isha. "Many-Body Quantum Spacetime." In On Generalised Statistical Equilibrium and Discrete Quantum Gravity, 45–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90969-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kam, Chon-Fai, Wei-Min Zhang, and Da-Hsuan Feng. "Quantum Many-Body Systems." In Coherent States, 191–218. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20766-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05179-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Salasnich, Luca. "Many-Body Systems." In Quantum Physics of Light and Matter, 115–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52998-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Quantum many body"

1

Lindgren, Ingvar. "Many-body theory." In Relativistic, quantum electrodynamics, and weak interaction effects in atoms. AIP, 1989. http://dx.doi.org/10.1063/1.38434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

GUERLIN, C., K. BAUMANN, F. BRENNECKE, D. GREIF, R. JÖRDENS, S. LEINSS, N. STROHMAIER, et al. "SYNTHETIC QUANTUM MANY-BODY SYSTEMS." In Proceedings of the XIX International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814282345_0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kelly, Hugh P. "Many-body calculations of photoionization cross sections." In Computational quantum physics. AIP, 1992. http://dx.doi.org/10.1063/1.42617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gustafson, Erik, Andy Li, Abid Khan, Joonho Kim, Doga Kürkçüoglu, M. Sohaib Alam, Peter Orth, Armin Rahmani, and Thomas Iadecola. "Preparing quantum many-body scar states on quantum computers." In Preparing quantum many-body scar states on quantum computers. US DOE, 2023. http://dx.doi.org/10.2172/1969682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

VERSTRAETE, FRANK. "ENTANGLEMENT IN MANY-BODY QUANTUM PHYSICS." In Proceedings of the 14th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812779885_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khatiwada, Pawan, and Imran Mirza. "Entanglement in many-body quantum systems." In Frontiers in Optics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/fio.2020.jm6a.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kira, Mackillo (Mack). "Quantum Optics with Many-Body States." In Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m4b.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van Isacker, P., Kurt B. Wolf, Luis Benet, Juan Mauricio Torres, and Peter O. Hess. "Seniority in quantum many-body systems." In SYMMETRIES IN NATURE: SYMPOSIUM IN MEMORIAM MARCOS MOSHINSKY. AIP, 2010. http://dx.doi.org/10.1063/1.3537842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mekhov, Igor B. "Merging quantum optics and quantum many-body atomic systems." In 12th European Quantum Electronics Conference CLEO EUROPE/EQEC. IEEE, 2011. http://dx.doi.org/10.1109/cleoe.2011.5942918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beau, Mathieu, Aurelia Chenu, Jianshu Cao, and Adolfo del Campo. "Quantum Simulation and Quantum Metrology of Many-Body Decoherence." In Quantum Information and Measurement. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/qim.2017.qf5b.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Quantum many body"

1

Scalapino, Douglas J. Sugar, Robert L. Numerical Simulations of Quantum Many-body Systems. Office of Scientific and Technical Information (OSTI), April 1998. http://dx.doi.org/10.2172/842398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Scalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6652913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scalapino, D. J. Numerical simulation of quantum many-body systems. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10127187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Jianxin, and Benedikt Fauseweh. Digital quantum simulation of non-equilibrium quantum many-body systems. Office of Scientific and Technical Information (OSTI), May 2022. http://dx.doi.org/10.2172/1868210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Martin, Joshua. Quantum many-body equilibration of neutrino flavor oscillations. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2217479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lukin, Mikhail, and Eugene Demler. Quantum Simulations of Many-Body Systems with Ultra-Cold Atoms. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada496260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scully, Marlan O. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada558091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DeMille, David, and Karyn LeHur. NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Scalapino, D. J., and R. L. Sugar. Numerical simulation of quantum many-body systems. Progress report for March 1, 1991--September 1, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10133898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Paesani, Francesco. Final Report: Chemical Reactivity Through Adaptive Quantum Mechanics/Many-Body Representations: Theoretical Development, Software Implementation, and Applications. Office of Scientific and Technical Information (OSTI), October 2023. http://dx.doi.org/10.2172/2203697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography