Academic literature on the topic 'Quantum magnetisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Quantum magnetisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Quantum magnetisms"
Stewart, A. M. "Gauge Invariant Magnetism." Australian Journal of Physics 50, no. 6 (1997): 1061. http://dx.doi.org/10.1071/p97024.
Full textOsborne, Ian S. "Cooperative quantum magnetism." Science 361, no. 6404 (August 23, 2018): 763.14–765. http://dx.doi.org/10.1126/science.361.6404.763-n.
Full textFreeman, Arthur J., and Kohji Nakamura. "Computational quantum magnetism: Role of noncollinear magnetism." Journal of Magnetism and Magnetic Materials 321, no. 7 (April 2009): 894–98. http://dx.doi.org/10.1016/j.jmmm.2008.11.107.
Full textSlot, M. R., Y. Maximenko, P. M. Haney, S. Kim, D. T. Walkup, E. Strelcov, Son T. Le, et al. "A quantum ruler for orbital magnetism in moiré quantum matter." Science 382, no. 6666 (October 6, 2023): 81–87. http://dx.doi.org/10.1126/science.adf2040.
Full textSachdev, Subir. "Quantum magnetism and criticality." Nature Physics 4, no. 3 (March 2008): 173–85. http://dx.doi.org/10.1038/nphys894.
Full textInosov, D. S. "Quantum magnetism in minerals." Advances in Physics 67, no. 3 (July 3, 2018): 149–252. http://dx.doi.org/10.1080/00018732.2018.1571986.
Full textBlackburn, Elizabeth. "Magnetism, superconductors, quantum systems." Neutron News 24, no. 4 (October 2013): 6–7. http://dx.doi.org/10.1080/10448632.2013.831644.
Full textCastilla, G., S. Chakravarty, and V. J. Emery. "Quantum Magnetism of CuGeO3." Physical Review Letters 75, no. 9 (August 28, 1995): 1823–26. http://dx.doi.org/10.1103/physrevlett.75.1823.
Full textKUZEMSKY, A. L. "QUANTUM PROTECTORATE AND MICROSCOPIC MODELS OF MAGNETISM." International Journal of Modern Physics B 16, no. 05 (February 20, 2002): 803–23. http://dx.doi.org/10.1142/s0217979202010002.
Full textGeorgii, Robert, and Klaus-Dieter Liss. "Quantum Beams for New Aspects in Magnetic Materials and Magnetism." Quantum Beam Science 3, no. 4 (November 25, 2019): 22. http://dx.doi.org/10.3390/qubs3040022.
Full textDissertations / Theses on the topic "Quantum magnetisms"
Catalano, Alberto Giuseppe. "Understanding and exploiting non-local effects in quantum spin chains." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF022.
Full textAt the verge of the second quantum revolution, understanding and exploiting the phenomena resulting from the interplay between the intrinsic non-locality of quantum mechanics and purely non-local interactions is of crucial importance for the development of novel quantum technologies. In this thesis, we will mostly focus on the non-local effects introduced by topological frustration (TF), a form of weak frustration that was first introduced in the context of antiferromagnetic quantum spin chains by applying the so called frustrated boundary conditions, realized as a combination of periodic boundary conditions and odd number of spins. Our goal is double. From one side, we will further improve the theoretical understanding of topologically frustrated phases. Beyond these theoretical implications, this work will demonstrate that TF spin chains exhibit compelling technological potential, proposing them as competitive candidates for the development of robust and efficient quantum batteries
Joshi, Darshan Gajanan. "Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-198634.
Full textRezakhanlou, Karen. "Orbital magnetism and quantum chaos /." [S.l.] : [s.n.], 1995. http://library.epfl.ch/theses/?nr=1312.
Full textBrambleby, Jamie. "Quantum magnetism in coordination polymers." Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/111284/.
Full textAguilà, Avilés David. "Design, synthesis and study of coordination complexes for quantum computing." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/123544.
Full textEl trabajo realizado en esta tesis doctoral se basa en el diseño, la síntesis y el estudio de complejos de coordinación, centrándose en la comprensión de sus propiedades magnéticas y la posibilidad de su aplicación en la computación cuántica. Para el diseño de estos materiales moleculares, tres diferentes propuestas han sido llevadas a cabo. En primer lugar, se han desarrollado ligandos capaces de agregar metales paramagnéticos en dos grupos diferentes, definiendo de esta manera los dos posibles bits cuánticos de una puerta lógica. Complejos de coordinación homo- y heterometálicos con NiII, CoII y CuII han sido sintetizados y caracterizados para tal efecto. La segunda estrategia seguida ha estado centrada en el diseño de complejos de coordinación lineales para su posterior ensamblaje en parejas de compuestos. Se han desarrollado ligandos que favorezcan la complejación de este tipo de topología, obteniéndose un compuesto de CoII con las propiedades estructurales idóneas para su ensamblaje. Utilizando el ligando bifuncional 4.4’-bipiridina, se ha podido unir dos entidades [Co4] obteniendo así otro prototipo de “parejas moleculares”. La tercera estrategia se ha centrado en el diseño de moléculas asimétricas para facilitar la definición de cada bit cuántico dentro de la entidad molecular. Para ello, se ha sintetizado un ligando no simétrico, que ha sido utilizado para obtener complejos dinucleares homo- y heterometálicos de iones lantánido. Se ha obtenido compuestos con todos los elementos de la serie de los lantánidos. Su estudio magnético y estructural ha mostrado que los dos centros metálicos de estas entidades moleculares son distintos, lo que ha permitido definir el espín de cada ion lantánido como un bit cuántico. El estudio magnético a muy bajas temperaturas de un compuesto de dos átomos de terbio(III), por ejemplo, ha permitido definir dos puertas lógicas: la CNOT y la √SWAP. Utilizando el espectro de energías de los estados magnéticos de la molécula, se han observado las transiciones entre dichos estados en relación a las dos operaciones lógicas.
Steele, Andrew J. "Quantum magnetism probed with muon-spin relaxation." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:030d7e91-f38e-433f-9539-652b0f4996cc.
Full textFiore, Mosca Dario. "Quantum magnetism in relativistic osmates from first principles." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/17982/.
Full textBühler, Adam [Verfasser]. "Quantum Simulator for Spin-Orbital Magnetism / Adam Bühler." München : Verlag Dr. Hut, 2016. http://d-nb.info/1097818373/34.
Full textLorenz, Wolfram. "On the Spin-Dynamics of the Quasi-One-Dimensional, Frustrated Quantum Magnet Li2CuO2." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-71010.
Full textThe magnetic properties of Li2CuO2 have attracted interest since more than two decades, both in theory and experiment. Despite these efforts, the precise nature of the magnetic interactions in this insulator remained an issue of controversial debate. From theoretical studies, the compound was understood as a quasi-one-dimensional magnet with strong ferromagnetic interactions along the chain, while in contrast, experimentally studies suggested dominant three-dimensional inter-chain interactions. In this thesis, the leading magnetic exchange interactions of Li2CuO2 are determined on the basis of a detailed inelastic neutron scattering study of the magnetic excitation spectrum, analyzed within spin-wave theory. It is unequivocally shown, that the material represents a quasi-one-dimensional spin-chain compound. In particular, the competition of ferro- and antiferromagnetic interactions in the chain has been evidenced. The applicability of a spin-wave model for analysis of this low-dimensional spin-1=2 system is shown. The magnetic phase diagram of Li2CuO2 is studied by specific heat, thermal expansion and magnetostriction measurements as well as magnetization measurements in both static and pulsed magnetic fifields. The phase diagram is discussed with respect to the exchange interactions. With its simple crystallographic and magnetic structure, Li2CuO2 may serve as a worthwhile model system in the class of spin-chain compounds with competing ferromagnetic and antiferromagnetic interactions
Morris, Richard. "Studies towards quantum magnonics." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:89784b64-de31-457f-b9b2-54125c862632.
Full textBooks on the topic "Quantum magnetisms"
Barbara, Bernard, Yosef Imry, G. Sawatzky, and P. C. E. Stamp, eds. Quantum Magnetism. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8512-3.
Full textSchollwöck, Ulrich, Johannes Richter, Damian J. J. Farnell, and Raymod F. Bishop, eds. Quantum Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96825.
Full textBernard, Barbara, ed. Quantum magnetism. Dordrecht: Springer, 2008.
Find full textYoshihito, Miyako, Takayama H. 1945-, and Miyashita S. 1954-, eds. Frontiers in magnetism: Metallic magnetism, glassy magnetism, quantum magnetism. Tokyo: Physical Society of Japan, 2000.
Find full textWhite, Robert M. Quantum Theory of Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-69025-2.
Full textNolting, Wolfgang, and Anupuru Ramakanth. Quantum Theory of Magnetism. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85416-6.
Full textAnupuru, Ramakanth, and SpringerLink (Online service), eds. Quantum theory of magnetism. Heidelberg: Springer, 2009.
Find full textAuerbach, Assa. Interacting Electrons and Quantum Magnetism. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0869-3.
Full textAuerbach, Assa. Interacting electrons and quantum magnetism. New York: Springer-Verlag, 1994.
Find full textViola Kusminskiy, Silvia. Quantum Magnetism, Spin Waves, and Optical Cavities. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13345-0.
Full textBook chapters on the topic "Quantum magnetisms"
Parkinson, John B., and Damian J. J. Farnell. "Quantum Magnetism." In An Introduction to Quantum Spin Systems, 135–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13290-2_11.
Full textAeppli, Gabriel, and Philip Stamp. "Quantum Magnetism." In Handbook of Magnetism and Magnetic Materials, 261–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_5.
Full textAeppli, Gabriel, and Philip Stamp. "Quantum Magnetism." In Handbook of Magnetism and Magnetic Materials, 1–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_5-1.
Full textSchnack, Jürgen. "Molecular magnetism." In Quantum Magnetism, 155–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119593.
Full textMikeska, Hans-Jürgen, and Alexei K. Kolezhuk. "One-dimensional magnetism." In Quantum Magnetism, 1–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119591.
Full textRichter, Johannes, Jörg Schulenburg, and Andreas Honecker. "Quantum magnetism in two dimensions: From semi-classical Néel order to magnetic disorder." In Quantum Magnetism, 85–153. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119592.
Full textIvanov, Nedko B., and Diptiman Sen. "Spin wave analysis of heisenberg magnets in restricted geometries." In Quantum Magnetism, 195–226. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119594.
Full textLaflorencie, Nicolas, and Didier Poilblanc. "Simulations of pure and doped low-dimensional spin-1/2 gapped systems." In Quantum Magnetism, 227–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119595.
Full textCabra, Daniel C., and Pierre Pujol. "Field-theoretical methods in quantum magnetism." In Quantum Magnetism, 253–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119596.
Full textFarnell, Damian J. J., and Raymond F. Bishop. "The coupled cluster method applied to quantum magnetism." In Quantum Magnetism, 307–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/bfb0119597.
Full textConference papers on the topic "Quantum magnetisms"
Gavryusev, Vladislav, Luca Guariento, Veronica Giardini, Andrea Fantini, Shawn Storm, Jacopo Catani, Massimo Inguscio, Leonardo Fallani, and Giacomo Cappellini. "A New Programmable Quantum Simulator with Strontium Rydberg Atoms in Optical Tweezer Arrays." In Quantum 2.0, QTh2A.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qth2a.2.
Full textOliveira, Samuel L., and Stephen C. Rand. "Optical magnetism." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431630.
Full textKimel, A. V., A. Kirilyuk, and Th Rasing. "Femtosecond opto-magnetism." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431810.
Full textHaas, Stephan, Adolfo Avella, and Ferdinando Mancini. "Quantum Magnetism, Nanomagnets and Entanglement." In LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XII: Twelfth Training Course in the Physics of Strongly Correlated Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2940446.
Full textDegen, Christian, and Pol Welter. "Quantum microscopy of nanoscale magnetism." In Spintronics XIV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2021. http://dx.doi.org/10.1117/12.2597939.
Full textFisher, William M., and Stephen C. Rand. "Parametric Optical Magnetism and the Complex Mathieu Equation." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.ituf3.
Full textMajedi, Hamed. "Nonlinear Optics and Optomagnetics in Quantum Materials." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/nlo.2023.tu2b.5.
Full textVenkataramana, Bonu, A. Das, Manas Sardar, S. Dhara, and A. K. Tyagi. "Intrinsic high magnetism in SnO2 quantum dots." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872649.
Full textSakai, Tôru, and Kiyomi Okamoto. "Exotic Magnetism of the Quantum Spin Nanotubes." In Proceedings of the International Symposium on Science Explored by Ultra Slow Muon (USM2013). Journal of the Physical Society of Japan, 2014. http://dx.doi.org/10.7566/jpscp.2.010208.
Full textPorras, D., and J. I. Cirac. "Simulation of quantum magnetism with trapped ions." In Moscow, Russia, edited by Yuri I. Ozhigov. SPIE, 2005. http://dx.doi.org/10.1117/12.620491.
Full textReports on the topic "Quantum magnetisms"
Scheie, Allen. Quantum magnetism, philosophy, and neutron scattering. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2367470.
Full textLee, Minhyea. Transport Studies of Quantum Magnetism: Physics and Methods. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1349030.
Full textLi, Yi, Hsiang-hsuan Hung, Zi Cai, Congjun Wu, Wei-Cheng Li, and Dan Arovas. Novel Quantum States with Exotic Spin Properties - Unconventional Generalization of Magnetism. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada582118.
Full textSharpe, Aaron. Emergent Quantum Magnetism and Cryogenic Spin-Memory in Twisted Bilayer Graphene. Office of Scientific and Technical Information (OSTI), November 2023. http://dx.doi.org/10.2172/2430210.
Full text